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1



Current Edition

This manuscript was last updated on March 20, 2024. The latest edition can be found on Github

Manuscript Changes

1. June 10th, 2020 - Magnetic Field Model section updated to reflect the difference between the East North
Vertical and the North East Down reference frames. The Figure showing the magnetic field for an example
Low Earth Orbit has also been update. Also added this page for manuscript changes and the following pages
that list where this file can be found.

2. December 10th, 2020 - Moved to public Github Repo separate from MATLAB
3. December 30th, 2020 - Moved papers.bib to parent directory Added datetime to title page. Added section

headers to RC aircraft design. Wrote text all the way through the airfoil selection. Added a references section.
4. December 31st, 2020 - Finished RC aircraft section.
5. September 30th, 2021 - Renamed report to Aerospace Mechanics and Controls
6. December 21st, 2021 - Moved CubeSAT abstract to introduction on CubeSATs. Imported entire Aircraft

Mechanics textbook into here
7. December 22nd, 2021 - Added a section on GNC design for CubeSats. Added acknowledgements section.
8. June 2nd, 2022 - Added some items to changes needed and fixed two references
9. July 30th, 2022 - Included a derivation of direct measurement of Euler Angles using an IMU.
10. July 31st, 2022 - Added GPS coordinate conversion to cartesian coodinates as well as heading angle and speed

estimation from GPS.
11. October 27th, 2022 - Added computation of lat, lon, alttiude to ECI frame.
12. March 20th, 2024 - Added a Current Edition section above Manuscript Changes. Also added color to hyper-

links

Changes Needed

1. Aircraft Changes

(a) In general add Project Based learning to this manuscript
(b) Need to finish section on how to design an RC aircraft
(c) It would be nice to include some plots on RC aircraft design sections
(d) I think an example RC aircraft design example would be good
(e) I think a section on abbreviations would be good.

2. Rocket Changes

(a) Add rocket aerodynamics if it is not already in here
(b) Add project based learning on how to design and build a rocket.

3. Quadcopter Changes

(a) Add a section on quadcopter dynamics and controls.
(b) Add a section on aerodynamics for quadcopters

4. Spacecraft Changes

(a) Add some work on Kerbal Space Program
(b) Need to make Orbital Elements its own section. Discuss how to get position and velocity from orbital

elements and orbital elements from position and velocity.
(c) Need to explain the difference between Geodetic and Geocentric coordinates
(d) Need to add the computation of latitude an longitude from cartesian and vice versa as well as flat Earth

approximation
(e) Derivation of ground path taking into account orbital precession, rotation of the Earth and swath angle

from projection of a satellite onto the Earth. See pdf from the Air Force. A Google search will hopefully
turn up the paper I’m thinking of.

(f) Consider adding the section on pointing analysis

5. General Changes

(a) Direct the reader to my Instrumentation textbook to build a datalogger to put on an airplane or rocket.

2

https://github.com/cmontalvo251/LaTeX/blob/master/Aerospace_Mechanics/aerospace_mechanics.pdf


(b) Direct reader to FASTkit to run dynamics in simulation
(c) Include some simulation results of aircraft, rocket and satellite from FASTkit.
(d) Need to add derivation of a complimentary filter using transfer functions which means I probably need

to add in transfer functions into this manuscript
(e) Need to finish discrete dynamics section
(f) Need example ID and ADs
(g) Need to add parallel axis theorem for inertia computation

Acknowledgements

Carlos Montalvo would like to thank numerous students for their contribution to this document. They have been
instrumental in making this textbook a reality and this textbook would not be where it is today without them.
Those students are: Weston Barron, Colin Mcgee, Darcey D’Amato, Ruthie Hill, Drew Russ, William Sherman,
Maxwell Cobar, Wei Min Patrick, Caroline Franklin, Andrew Givens, Aaron Godfrey, Nghia Huynh, Lisa Schibelius,
and Brandon Troub.

3



Contents

1 Introduction 7

2 Nomenclature 7

3 Particle Dynamics 8
3.1 Systems of Particles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
3.2 Rotational Dynamics for Systems of Particles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

4 Rigid Bodies 9
4.1 Translational Dynamics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
4.2 Rotational Dynamics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
4.3 Inertia Estimation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
4.4 Aerospace Convention . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

5 Attitude Parameterization of Rigid Bodies 11
5.1 Euler Angles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

5.1.1 3-2-1 Sequence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
5.1.2 Derivatives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
5.1.3 Screw Rotation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
5.1.4 Transformation Matrix to Euler Angles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

5.2 Quaternions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
5.2.1 The General Quaternion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
5.2.2 Quaternion Transformations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
5.2.3 Euler to Quaternion Transformations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
5.2.4 Quaternion Operations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
5.2.5 Quaternion Derivatives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

6 Aerospace Equations of Motion 15
6.1 Translational Equations of Motion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
6.2 Reaction Wheel Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
6.3 Attitude Equations of Motion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

7 External Models 16
7.1 GPS Coordinates to Cartesian Coordinates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
7.2 Density Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
7.3 Magnetic Field Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
7.4 Gravitational Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
7.5 Earth Orbital Elements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

8 External Forces and Moments 23
8.1 Solar Radiation Pressure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
8.2 Propulsion Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
8.3 Magnetorquer Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
8.4 Aerodynamics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

8.4.1 Aircraft Aerodynamics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
8.4.2 Projectile Aerodynamics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
8.4.3 Spacecraft Aerodynamics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

9 Guidance Navigation and Controls 28
9.1 Vehicle State Estimation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

9.1.1 Inertial Measurement Unit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
9.1.2 Global Positioning System (GPS) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

9.2 Euler Angle Estimation via IMU . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
9.2.1 Direct Measurement of Roll and Pitch . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
9.2.2 Direct Measurement of Yaw . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

9.3 Low Earth Orbit Attitude Estimation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

4



9.4 Spacecraft Position Estimation using a Ground Station Network (GSN) . . . . . . . . . . . . . . . . 32
9.5 Heading Angle and Speed Estimation using GPS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
9.6 Spacecraft Attitude Control Schemes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

9.6.1 B-dot Controller . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
9.6.2 Reaction Wheel Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
9.6.3 Reaction Control Thrusters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
9.6.4 Cross Products of Inertia Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
9.6.5 PID Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

9.7 Controllability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

10 Systems Engineering 37
10.1 Interface Diagrams . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
10.2 Activity Diagrams . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

11 GNC Design for CubeSATs 39
11.1 Trajectory Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
11.2 Spacecraft Environment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
11.3 Spacecraft Attitude Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

11.3.1 Magnetorquers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
11.3.2 Reaction Wheels . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
11.3.3 Thrust Vector Control (TVC) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
11.3.4 Reaction Control System (RCS) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
11.3.5 Control Moment Gyro . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

11.4 Spacecraft Attitude Determination . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
11.4.1 Sensor Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
11.4.2 StarTracker . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
11.4.3 Sun Sensors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
11.4.4 Horizon Sensor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
11.4.5 Deep Space . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

11.5 Position Estimation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
11.6 Trade Studies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
11.7 Risks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
11.8 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

12 Radio Controlled Aircraft Design 47
12.1 Vehicle Type Selection and Requirements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
12.2 Initial Design - Hand Sketch and Aspect Ratio . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
12.3 Weight Estimate - Tabular Approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
12.4 Airfoil Selection and 2D and 3D Lift . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
12.5 Wing Loading and Thrust to Weight Ratio . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
12.6 Stability and Control, Center of Mass, Aerodynamic Center and Static Margin . . . . . . . . . . . . 51
12.7 Iteration, Detailed Sketch and Final Checks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
12.8 Computer Aided Design (CAD) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
12.9 Purchase Components . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
12.10Building . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
12.11Flying . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

12.11.1Day Before Flight Checklist . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
12.11.2Ground Safety Check List . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
12.11.3Preflight Checklist . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
12.11.4Post Flight checklist . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

13 Numerical Integration Techniques 54
13.1 Linear Dynamics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
13.2 Euler’s Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
13.3 Runge-Kutta-4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
13.4 Discrete Dynamics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

5



14 State Estimation 55
14.1 Sensor Measurement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
14.2 Linear Least Squares . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
14.3 Weighted Least Squares . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
14.4 A Priori Knowledge of the State Vector . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
14.5 Complimentary Filter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
14.6 Sequential Linear Estimator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
14.7 The Continuous Time Complimentary Filter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
14.8 The Continuous Discrete Kalman Filter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
14.9 Kalman Filter for Spacecraft Dynamics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
14.10Extended State Kalman Filter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

15 Helpful Aircraft Equations 62

6



1 Introduction

This report represents aerospace mechanics and controls for CubeSats, quadcopters and aircraft. A CubeSAT is
a small satellite on the order of 10 centimeters along each axis. A 1U satellite is a small cube with 10 cm sides.
These satellites are used for a variety of missions and created by a variety of different organizations. When deployed
from a rocket, a CubeSAT may obtain a large angular velocity which must be reduced before most science missions
or communications can take place. Maximizing solar energy charging also involves better pointing accuracy. To
control the attitude of these small satellites, reaction wheels, magnetorquers and even the gravity gradient are used
in low earth orbit (LEO) while reaction control thrusters are typically used in deep space. On a standard LEO
CubeSAT, 3 reaction wheels are used as well as 3 magnetorquers. In the initial phase of the CubeSAT mission, the
magnetorquers are used to reduce the angular velocity of the satellite down to a manageable level. Once the norm
of the angular velocity is low enough, the reaction wheels can spin up reducing the angular velocity to zero. At this
point a Sun finding algorithm is employed to find the Sun and fully charge the batteries. In LEO two independent
vectors are obtained, the Sun vector and the magnetic field vector, to determine the current attitude of the vehicle
which is typically called attitude determination. Other sensors such as horizon sensors, star trackers and even lunar
sensors can be used to obtain the quaternion of the vehicle. This paper investigates the necessary mathematics
to understand the intricacies of guidance, navigation and control specifically discussing the attitude determination
and controls subsystem (ADACS).

2 Nomenclature

x, y, z components of the mass center position vector in the inertial frame (m)
ϕ, θ, ψ Euler roll,pitch, and yaw angles (rad)
q0, q1, q2, q3 quaternions
u, v, w components of the mass center velocity vector in the body frame (m/s)
p, q, r components of the mass center angular velocity vector in the body frame (rad/s)
ω⃗B{I angular velocity vector of the vehicle in the body frame (rad/s)
TIB rotation matrix from frame I to frame B
H relationship between angular velocity components in body frame and derivative of Euler angles
m mass (kg)
I mass moment inertia matrix about the mass center in the body frame (kg ´m2)
X,Y, Z components of the total force applied to CubeSAT in body frame (N)
L,M,N components of the total moment applied to CubeSAT in body frame (N-m)
r⃗AÑB position vector from a generic point A to a generic point B (m)

V⃗A{B velocity vector of a generic point A with respect to a generic frame B (m/s)
Spr⃗q skew symmetric matrix operator on a vector. Multiplying this matrix by a vector is equivalent

to a cross product
Xi, Yi, Zi components of the total force applied to aircraft i in body frame(N)
Li,Mi, Ni components of the total moment applied to aircraft i in body frame(N-m)
XWi, YWi, ZWi total weight force applied to aircraft i (N)
L,D Lift and Drag on Aircraft (N) - Not to be confused with Roll moment
g gravitational constant on Earth pm{s2q

ρ atmospheric density(kg{m3)
Si reference area of wing on aircraft i (m2)
bi Wingspan of aircraft i (m)
c̄i mean chord of wing on aircraft i (m)
α Angle of attack (rad)
β Slideslip angle (rad)
CL, CD, Cm Lift, Drag and Pitch Moment coefficients
δt, δa, δr, δe thrust, aileron, rudder, and elevator control inputs(rad)
SBpr⃗q skew symmetric matrix operator on a vector expressed in the body frame.
Kp,Kd,KI proportional, derivative, and integral control gains
V Total airspeed (m/s)
p̂, q̂, r̂ Non-dimensional angular velocities
l Distance from center of mass to aerodynamic center of the tail (m)
lt Distance from aerodynamic center of main wing to aerodynamic center of tail (m)
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α0 zero lift angle of attack (rad)
CL0 Zero angle of attack lift coefficient
Cmα Pitch moment curve slope versus α
CLα Lift curve slope
Cmq Pitch damping coefficient
Cmδe Pitch moment curve slope versus elevator deflection angle
a8 Speed of sound (m/s)
µ8 Viscosity of Fluid kg{pm´ sq

3 Particle Dynamics

3.1 Systems of Particles

For this formulation we start with Newton’s Second Law with no approximations. Similar dynamic forumlations
can be found in [1, 2, 3, 4].

N
ÿ

i“0

F⃗ji “
dp⃗j
dt

(1)

where p⃗j is the momentum of a particle. F⃗ji is a force on the particle. The statement above states that sum of
all forces on a particle is equal to the time rate of change of momentum. If two particles are then considered the
equation can be written for both particles.

N
ř

i“0

F⃗1i ` f⃗12 “
dp⃗1
dt

N
ř

i“0

F⃗2i ` f⃗21 “
dp⃗2
dt

(2)

Note that the forces f⃗12 and f⃗21 are internal forces experienced by each particle exerted on each other since they
are rigidly connected. Newton’s Third Law states that for every action there is an equal and opposite reaction.
That is, f⃗12 “ ´f⃗21. Thus, if both equations are added the following equation is created

P
ÿ

j“0

N
ÿ

i“0

F⃗ji “

P
ÿ

j“0

dp⃗j
dt

(3)

where P is the number of particles. Typically the double summation in F is written just as F⃗ .

3.2 Rotational Dynamics for Systems of Particles

Note that by construction, a system of particles rigidly connected can now rotate about a center point. The center
of mass of a system of particles can be defined using the relationship below

r⃗C “
1

m

P
ÿ

j“0

mj r⃗j (4)

where

m “

P
ÿ

j“0

mj (5)

This vector can then be used to create rotational dynamics starting with the linear dynamics.

P
ÿ

j“0

N
ÿ

i“0

Spr⃗CjqF⃗ji “ M⃗C “

P
ÿ

j“0

Spr⃗Cjq
dp⃗j
dt

(6)

where Spr⃗Cjq is the skew symmetric matrix of the vector from the center of mass to the jth particle which results
in a cross product. The skew symmetric operator is denoted by Spq.

Spr⃗Cjq “

»

–

0 ´zCj yCj
zCj 0 ´xCj

´yCj xCj 0

fi

fl (7)
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4 Rigid Bodies

At this point, many assumptions are made about the system of particles.

1. The mass of each particle or rigid body is constant.

2. An inertial frame is placed at the center of the Earth that does not rotate with the Earth. We assume that
the Earth is “fixed” to this point but still rotates. The coordinates of our vehicle though are expressed in this
non-rotating inertial frame. This is explained in more detail later.

3. The rigid body is not flexible and does not change shape. That is, the time rate of change of the magnitude
of a vector r⃗PQ is zero for any arbitrary points P and Q attached to the rigid body.

4.1 Translational Dynamics

Using all of these simplifications, the momentum term on the right can be simplified to

P
ÿ

j“0

p⃗j “ mv⃗C{I (8)

The derivation of the term above starts by deriving the position of the center of mass as the following equation.

r⃗j “ r⃗C ` r⃗Cj (9)

Taking one derivative results in the following equation

v⃗j{I “ v⃗C{I `
Bdr⃗Cj
dt

` Spω⃗B{Iqr⃗Cj (10)

where Spω⃗B{Iq is the skew symmetric matrix of the angular velocity vector which results in a cross product. This

equation comes from the derivative transport theorem. Since the body is a rigid body the term
Bdr⃗Cj

dt “ 0 resulting
in the equation below

v⃗j{I “ v⃗C{I ` Spω⃗B{Iqr⃗Cj (11)

which any dynamicist knows as the equation for two points fixed on a rigid body. This equation can then be
substituted into the equation for momentum such that.

P
ÿ

j“0

p⃗j “

P
ÿ

j“0

mj

`

v⃗C{I ` Spω⃗B{Iqr⃗Cj
˘

(12)

The first term reduces to
P
ÿ

j“0

mj v⃗C{I “ v⃗C{I

P
ÿ

j“0

mj “ mv⃗C{I (13)

the second term reduces to zero since the sum of all particles from the center of mass is by definition the center of
mass and thus zero.

P
ÿ

j“0

Spω⃗B{Iqmj r⃗Cj “ Spω⃗B{Iq

P
ÿ

j“0

mj r⃗Cj “ 0 (14)

Plugging this result for momentum into Newton’s equation of motion yields. This is typically called Newton-Euler
equations of motion.

F⃗C “ m

˜

Bdv⃗C{I

dt
` Spω⃗qB{I v⃗C{I

¸

(15)
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4.2 Rotational Dynamics

Plugging in the expression for two points fixed on a rigid body results in a much different expression. First let’s
expand the rotational dynamic equations of particles using the assumptions made for a rigid body.

M⃗C “
d

dt

P
ÿ

j“0

Spr⃗Cjqmj v⃗j{I (16)

Then the equation of two points fixed on a rigid body can be introduced to obtain the following equation

M⃗C “
d

dt

P
ÿ

j“0

Spr⃗Cjqmj

`

v⃗C{I ` Spω⃗B{Iqr⃗Cj
˘

(17)

expanding this into two terms yields

M⃗C “
d

dt

˜

P
ÿ

j“0

mjSpr⃗CjqSpω⃗B{Iqr⃗Cj `

P
ÿ

j“0

Spr⃗Cjqmj v⃗C{I

¸

(18)

To simplify this further a useful equality is used for cross products. That is Sp⃗aq⃗b “ ´Sp⃗bq⃗a. The equation above
then changes to

M⃗C “
d

dt

˜˜

´

P
ÿ

j“0

mjSpr⃗CjqSpr⃗Cjq

¸

ω⃗B{I ´ Spv⃗C{Iq

P
ÿ

j“0

r⃗Cjmj

¸

(19)

Notice, that parentheses were placed around the first term to isolate the angular velocity. This is because the
angular velocity is constant across the system of particles. The term on the right has also been altered slightly to
isolate the fact that the velocity of the center of mass is independent of the system of particles. With the equation
in this form it is easy to see that the term on the right is zero because it is the definition of the center of mass. The
equation then reduces to

M⃗C “
d

dt

˜

P
ÿ

j“0

mjSpr⃗CjqSpr⃗Cjq
T

¸

ω⃗B{I (20)

Notice again that minus sign has been removed. The skew symmetric matrix has an interesting property where
the transpose is equal to the negative of the original matrix. The term in brackets is a well known value for rigid
bodies and is known as the moment of inertia for rigid bodies.

IC “

P
ÿ

j“0

mjSpr⃗CjqSpr⃗Cjq
T (21)

This results in the kinematic equations of motion for rigid bodies to the simple equation below.

M⃗C “
d

dt

`

IC ω⃗B{I

˘

(22)

With the equation in this form it is finally possible to carry out the derivative

M⃗C “

BdpIC ω⃗B{Iq

dt
` Spω⃗B{IqIC ω⃗B{I (23)

The first term requires the chain rule to perform the derivative and can thus result in a time varying moment of
inertia matrix and the derivative of angular velocity. Therefore the equation can simply be written as

M⃗C “ 9Iω⃗B{I ` IC

Bdpω⃗B{Iq

dt
` Spω⃗B{IqIC ω⃗B{I (24)

4.3 Inertia Estimation

There are several equations that can be used to compute the moment of inertia depending on the geometry of the
vehicle. For this example we will look at a cuboid to demonstrate inertia calculations. Firstly, the total mass m
and size (length l, width w, and height h) are required.

Ix “ m
12 pl2 ` w2q

Iy “ m
12 pl2 ` d2q

Iz “ m
12 pd2 ` w2q

(25)
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Where Ix is the cuboid’s moment of inertia around the x-axis, It can be seen that the moment of inertia about
the y and z-axis are computed similarly, but by using different length parameters. Note that cross products of
inertia are obtained by using the parallel axis theorem often caused by solar panels on satellites or payloads on
aircraft and quadcopters.

4.4 Aerospace Convention

Aerospace convention involves using the Newton-Euler equations of motion to describe the vehicle[1] as explained
in the previous section. Typically the position of the vehicle is written as

CIpr⃗Cq “

$

&

%

x
y
z

,

.

-

(26)

The derivative of the position vector is the velocity vector is then written as

CIpv⃗C{Iq “

$

&

%

9x
9y
9z

,

.

-

(27)

However, body frame coordinates are typically used to describe the velocity vector such that

CBpv⃗C{Iq “

$

&

%

u
v
w

,

.

-

(28)

In order to relate the body frame components of the velocity vector the inertial frame coordinates a transformation
matrix is used to give the following equation.

$

&

%

9x
9y
9z

,

.

-

“ rTIBs

$

&

%

u
v
w

,

.

-

(29)

Note that standard aircraft forces and moments are applied to the body. The forces are typically written as X,Y
and Z while the moments are given as L,M and N. They can be written in component form using the equations
below.

CBpF⃗Cq “

$

&

%

X
Y
Z

,

.

-

“ XÎB ` Y ĴB ` ZK̂B (30)

CBpM⃗Cq “

$

&

%

L
M
N

,

.

-

“ LÎB `MĴB `NK̂B (31)

5 Attitude Parameterization of Rigid Bodies

The matrix TIB is a 3x3 transformation matrix that rotates a vector from the body to the inertial frame. A
transformation matrix has the unique property that the inverse of the transformation is just the transpose of the
matrix. There are multiple ways to construct this rotation frame and a few ways are discussed in the sections that
follow.

5.1 Euler Angles

Euler angle are used to describe 3 unique rotation from the inertial to body frame. They are typically denoted as
ψ, θ and ϕ. The order of the rotation can vary however the 3-2-1 sequence is standard for aircraft while the 3-1-3
sequence is standard for spacecraft.
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5.1.1 3-2-1 Sequence

The transformation from the inertial frame to the body frame involves three unique rotations. The first is a rotation
about the z-axis such that

CApv⃗C{Iq “ rTIAsTCIpv⃗C{Iq “

»

–

cospψq sinpψq 0
´sinpψq cospψq 0

0 0 1

fi

flCIpv⃗C{Iq (32)

this rotation is called the yaw or heading rotation. Note that the matrix rTIAs is a matrix that rotates a vector
from the A frame to the inertial frame. The transpose of this matrix rotates a vector from the inertial frame to the
A frame. From here the intermediate frame (A frame) is rotated about the y-axis such that

CNRpv⃗C{Iq “ rTANRsTCApv⃗C{Iq “

»

–

cospθq 0 ´sinpθq

0 1 0
sinpθq 0 cospθq

fi

flCApv⃗C{Iq (33)

this rotation is called the pitch angle rotation. Finally the (NR) no roll frame is rotated through the x-axis such
that

CBpv⃗C{Iq “ rTNRBsTCNRpv⃗C{Iq “

»

–

1 0 0
0 cospϕq sinpϕq

0 ´sinpϕq cospϕq

fi

flCNRpv⃗C{Iq (34)

A Figure of this is shown below.

Figure 1: Six Degree of Freedom Schematic

Putting all of these 2-D rotations together creates a transformation matrix from body to inertial.

CBpv⃗C{Iq “ rTNRBsT rTANRsT rTIAsTCIpv⃗C{Iq “ rTIBsTCIpv⃗C{Iq (35)

Note again that the inverse of this matrix is given below using the properties of matrix transposes. Standard
shorthand notation is used for trigonometric functions: cospαq ” cα , sinpαq ” sα , and tanpαq ” tα.

TIBpϕ, θ, ψq “ TIATANRTNRB “

»

–

cθcψ sϕsθcψ ´ cϕsψ cϕsθcψ ` sϕsψ
cθsψ sϕsθsψ ` cϕcψ cϕsθsψ ´ sϕcψ
´sθ sϕcθ cϕcθ

fi

fl (36)

5.1.2 Derivatives

If Euler angles are used to parameterize the orientation, the derivative of Euler angles is somewhat cumbersome to
obtain. The angular velocity of a body is typically written as

ω⃗B{I “

$

&

%

p
q
r

,

.

-

“ pÎB ` qĴB ` rK̂B (37)
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There are no inertial components for the angular velocity vector. However, a relationship can be derived relating
the derivatives of the Euler angles. The angular velocity can be written in vector form such that

ω⃗B{I “ 9ψK̂I ` 9θĴNR ` 9ϕÎB (38)

relating the unit vectors K̂I and ĴNR to the body frame using the planar rotation matrices results in the equation
below. Note that NR is denoted as the “No-Roll” frame.

$

&

%

9ϕ
9θ
9ψ

,

.

-

“ rHs

$

&

%

p
q
r

,

.

-

(39)

where

H “

»

–

1 sϕtθ cϕtθ
0 cϕ ´sϕ
0 sϕ{cθ cϕ{cθ

fi

fl (40)

5.1.3 Screw Rotation

It is often useful to extract Euler Angles from a unit vector. A unit vector has two degrees of freedom and thus has
two rotations ψ and θ which can be determined using the equation below where n̂p1q denotes the first component
of the vector in the body frame.

ψ “ tan´1

ˆ

n̂p2q

n̂p1q

˙

; θRi “ tan´1

ˆ

n̂p3q

n̂p1q2 ` n̂p2q2

˙

(41)

5.1.4 Transformation Matrix to Euler Angles

Besides using unit vectors, sometimes it is beneficial to extract Euler angles from a known tranformation matrix.
The equations below can be used to accomplish this where TBIpi, jq is the ith row and jth column of the TBI

matrix where TBI “ TT
IB

θ “ ´sin´1pTBIp1, 3qq ϕ “ tan´1pTBIp2, 3q{TBIp3, 3qq ψ “ tan´1pTBIp1, 2q{TBIp1, 1qq (42)

5.2 Quaternions

5.2.1 The General Quaternion

It is well known that equations of motion produced by using only three orientation parameters results in a singularity
[1]. As such, the orientation of the vehicle can be parameterized using four parameters known as quaternions.
Many supplemental equations and explanations can be found for quaternions in [5, 6, 7, 8, 9, 10, 11, 12]. I also
recommend visiting an interactive visualization tool made by popular YouTube star Ben Eater https://eater.

net/quaternions. To begin, The standard quaternion is written below.

q⃗ “

$

’

’

&

’

’

%

q0
q1
q2
q3

,

/

/

.

/

/

-

(43)

In this case 4 parameters are used to denote the quaternion. In order to get a physical understanding of what a
quaternion is imagine a vector η⃗ in 3-D space. The rotation from the body to the inertial frame is then the rotation
of the inertial frame about the unit vector η⃗ through angle γ. The quaternion can then be written as

q⃗ “

"

cospγ{2q

η⃗sinpγ{2q

*

(44)

In this case it is possible to obtain the individual quaterions as q0 “ cospγ{2q and ϵ⃗ “ rq1, q2, q3sT “ η⃗sinpγ{2q.
Furthermore, if given 4 quaternions, the angle γ is simply cos´1p2q0q and η⃗ “ ϵ⃗{sinpγ{2q. Note that because a
quaternion is essentially screw rotation about a known unit vector, there are two identical quaternions for every
orientation. That is q⃗pγq “ q⃗pγ ´ 2πq.
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5.2.2 Quaternion Transformations

In order to rotate the inertial frame to the body frame using quaternions, the transformation matrix is shown below.
Note that TBI “ TT

IB .

TBIpq⃗q “

»

–

q0
2 ` q1

2 ´ q2
2 ´ q3

2 2pq1q2 ` q0q3q 2pq1q3 ´ q0q2q

2pq1q2 ´ q0q3q q0
2 ´ q1

2 ` q2
2 ´ q3

2 2pq0q1 ` q2q3q

2pq0q2 ` q1q3q 2pq2q3 ´ q0q1q q0
2 ´ q1

2 ´ q2
2 ` q3

2

fi

fl (45)

5.2.3 Euler to Quaternion Transformations

In the event Euler angles are need, converting quaternions to Euler angles is a standard operation and shown below.

ϕ “ tan´1
´

2pq0q1`q2q3q

1´2pq21`q22q

¯

θ “ sin´1 p2pq0q2 ´ q3q1qq

ψ “ tan´1
´

2pq0q3`q1q2q

1´2pq22`q23q

¯

(46)

It is also possible to convert Euler angles to quaternions using the equations below.

q0 “ cospϕ{2qcospθ{2qcospψ{2q ` sinpϕ{2qsinpθ{2qsinpψ{2q

q1 “ sinpϕ{2qcospθ{2qcospψ{2q ´ cospϕ{2qsinpθ{2qsinpψ{2q

q2 “ cospϕ{2qsinpθ{2qcospψ{2q ` sinpϕ{2qcospθ{2qsinpψ{2q

q3 “ cospϕ{2qcospθ{2qsinpψ{2q ´ sinpϕ{2qsinpθ{2qcospψ{2q

(47)

5.2.4 Quaternion Operations

The norm of the quaternions is given by |q⃗| “
a

q20 ` q21 ` q22 ` q23 . In standard spacecraft applications, the norm
of the quaternion is just 1. The conjugate of the quaternion q⃗ is given below.

q⃗˚ “

$

’

’

&

’

’

%

q0
´q1
´q2
´q3

,

/

/

.

/

/

-

(48)

The inverse of a quaternion is then just q⃗´1 “ q⃗˚{|q⃗|. Determining the difference between two quaternions is done
using the quaternion difference operation as shown below where |q̃| “ 1.0 [8].

δq⃗ “ q⃗ C q̃´1 “

"

q0q̃0 ´ ϵ⃗T ϵ̃
´q0ϵ̃` q̃0ϵ⃗´ Sp⃗ϵqϵ̃

*

(49)

5.2.5 Quaternion Derivatives

The derivatives of a quaternion are written in shorthand using the equation below.

9⃗q “
1

2
Ωpω⃗B{Iqq⃗ “

1

2
χpq⃗qω⃗B{I (50)

The operators Ωpq and χpq are shown below. Note that Ωpq operates on a 3 ˆ 1 vector and χ on a 4 ˆ 1 vector. In
this case λ “ rλ0, κ⃗sT .

Ωpr⃗q “

„

01x1 ´r⃗T

r⃗ ´Spr⃗q

ȷ

(51)

χpλ⃗q “

„

´κ⃗
λ0I3x3 ` Spκ⃗q

ȷ

(52)

These vector operators can then be used to expand the kinematic derivatives as shown by equation 53.
$

’

’

&

’

’

%

9q0
9q1
9q2
9q3

,

/

/

.

/

/

-

“
1

2

»

—

—

–

0 ´p ´q ´r
p 0 r ´q
q ´r 0 p
r q ´p 0

fi

ffi

ffi

fl

$

’

’

&

’

’

%

q0
q1
q2
q3

,

/

/

.

/

/

-

(53)

where qi are the four quaternions and p, q, r are the components of the angular velocity vector in the body frame.
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6 Aerospace Equations of Motion

The translational equations of motion of the vehicle are written using inertial coordinates using the center of the
Earth as a fixed point. For up to cis-lunar orbits this is typically a good approximation for first order analysis. The
vehicle is assumed to be a rigid body using quaternions to parameterize orientation.

6.1 Translational Equations of Motion

The translational equations of motion of satellites are fairly simple given that everything is written in the inertial
frame. The position vector of the vehicle is r⃗ “ rx, y, zsT and the velocity is V⃗B{I “ r 9x, 9y, 9zsT . The acceleration
of the vehicle is found by summing the total forces on the body and dividing by the mass of the vehicle. In the
equation below NC is the number of planetary bodies acting on the vehicle while F⃗P is the force imparted by
thrusters.

a⃗B{I “
1

ms

˜

NC
ÿ

i“1

Fi ` F⃗P

¸

(54)

Note that for a spacecraft the magnitude of the gravitational acceleration vector is on the order of ˘10 m{s2.
Sources point to solar radiation pressure being on the order of 4.5 µPa [13]. For a 1U CubeSat (10 cm x 10 cm) the
force would be equal to 0.45mN . A 1U CubeSat has a nominal mass of 1 kg which would accelerate the CubeSat on
the order of 0.45mm{s2, which is considerably less than gravitational acceleration. Furthermore, using the standard
aerodynamic drag equation (0.5ρV 2SCD), where conservative estimates are used, the aerodynamic force at 600 km
above the Earth’s surface would be about 3.0 nN [14]. This assumes a density equal to 1.03 ˆ 10´14 kg{m3, a
velocity equal to 7.56 km{s, and a drag coefficient equal to 1.0 [15]. A force this small would impart an acceleration
of about 3.0 nm{s2 which is also considerably less than gravitational acceleration. These forces cannot be neglected
for longer missions but can be ignored where appropriate. For an aircraft and quadcopter the equations of motion
are typically written in the body frame. As such the derivative transport theorem is used and the translational
equations of motion are written as the following.

$

&

%

9u
9v
9w

,

.

-

“
1

m

$

&

%

X
Y
Z

,

.

-

´

»

–

0 ´r q
r 0 ´p

´q p 0

fi

fl

$

&

%

u
v
w

,

.

-

(55)

6.2 Reaction Wheel Model

The reaction wheel model must be included before the attitude dynamics because they directly affect the inertia
of the vehicle. There are three reaction wheels on this vehicle and each one has it’s own angular velocity ωRi and
angular acceleration αRi. The inertia of each reaction wheel is first written about the center of mass of the reaction
wheel and is given by the equation below where the reaction wheel is modeled as a disk with finite radius prRW q

and height phRW q. The subscript R is used to denote that this inertia matrix is about the center of mass of the
reaction wheel while the super script R is used to denote the frame of reference.

IRRi “

»

–

mRr
2{2 0 0

0 pmR{12qp3r2RW ` h2RW q 0
0 0 pmR{12qp3r2RW ` h2RW q

fi

fl (56)

In order to rotate the inertia matrix into the vehicle body frame of reference an axis of reaction wheel rotation is
used. The vector n̂Ri is used to denote the axis about which the reaction wheel rotates. Euler Angles θRi and ψRi
can be extracted from this unit vector as discussed previously in Section 5.1. The rotation matrix TRip0, θRi, ψRiq
can then be generated using equation 36. This matrix can then be used to compute the inertia of the reaction wheel
in the vehicle body frame.

IBRi “ TT
RiI

R
RTRi (57)

The parallel axis theorem can then be used to shift the inertias to the center of mass of the vehicle where the
subscript RB denotes the reaction wheel inertia taken about the center of mass of the vehicle.

IBRBi “ IBRi `mRiSpr⃗RiqSpr⃗Riq
T (58)

The vector r⃗Ri is the distance from the center of mass of the vehicle to the center of mass of the reaction wheel in
the vehicle body reference frame. The total inertia of the entire vehicle-reaction wheel system is then just a sum of
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all the reaction wheel inertias.

IS “ IB `

3
ÿ

i“1

IBRBi (59)

The total angular momentum of the vehicle is then equal to the following equation where ω⃗B{I is the angular
velocity of the vehicle.

H⃗S “ IBω⃗B{I `

3
ÿ

i“1

IBRiωRin̂Ri (60)

In a similar fashion, the total torque placed on the vehicle is equal to the following

M⃗R “

3
ÿ

i“1

IBRiαRin̂Ri (61)

It is typically assumed that the angular acceleration of each reaction wheel can be directly controlled. However, as
the reaction wheel angular velocity increases, the maximum angular acceleration allowed begins to decrease. Once
the reaction wheel reaches its angular velocity limits, the angular acceleration possible drops to zero. This is called
reaction wheel saturation and must be dealt with using a method called momentum dumping.

6.3 Attitude Equations of Motion

The attitude equations of motion are formulated assuming the vehicle can rotate about three axes. The derivative
of angular velocity is found by equating the derivative of angular momentum to the total moments placed on the
vehicle while reaction wheel torques from the vehicle are added.([1]).

9⃗ωB{I “ I´1
S

´

M⃗P ` M⃗M ` M⃗R ´ Spω⃗B{IqH⃗S ´ 9ISω⃗B{I

¯

(62)

The applied moments use subscripts pP q for propulsion, pMq for magnetorquers, and pRq for reaction wheels. The
term 9IS is the change in inertia in the body frame caused by deployment of solar panels and/or antenna. Also,

recall that H⃗S is the total angular momentum of the entire vehicle including the reaction wheels if present. For
aircraft the rotational dynamic equation can be found as

$

&

%

9p
9q
9r

,

.

-

“ I´1
C

¨

˝

$

&

%

L
M
N

,

.

-

´

»

–

0 ´r q
r 0 ´p

´q p 0

fi

fl IC

$

&

%

p
q
r

,

.

-

˛

‚ (63)

7 External Models

Many external models are used in simulation to accurately depict the environment. The paper here begins with
the Earth Magnetic Field and Gravitational Models. The magnetic field model comes from the Geographic Library
model which uses the EMM2015 magnetic field model. The gravitational model comes from the EGM2008 model
[16].

7.1 GPS Coordinates to Cartesian Coordinates

All external models below imply a spherical world with an Earth Centered Inertial (ECI) frame at the center of
the planet. However, often times for small UAV applications it is useful to convert the GPS coordinates (latitude,
longitude, altitude, pλLAT , λLON , hq) to a flat earth approximation where the x-axis is pointing North, the y-axis
is pointing east and the z-axis is pointing towards the center of the planet. This is similar to spherical coordinates
which is explained later on but in this case the axis system is cartesian rather than spherical. This is useful in
obtaining the position of the vehicle which can be used to approximate heading and speed which again is explained
in another section. The equations to convert LLH (latitude,longitude, altitude) to a cartesian coordinate system are
given below. Note that these equations assume that the vehicle creates an origin point to define as the center of the
inertial frame which is on the surface of the planet rather than the center of the planet λLAT,0, λLON,0. Typically
when the vehicle gets its first valid GPS coordinate, that point is set as the origin.

x “ κpλLAT ´ λLAT,0q

y “ κpλLON ´ λLON,0qcosp π
180λLAT,0q

z “ ´h
(64)
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In the equation above κ “ 60.0 ˚ pFeet{NauticalMilesq ˚ pMeters{Feetq which essentially converts degrees from
the LLH coordinates first to nautical miles and then to feet and then to meters. For example, if the vehicle moves
North 1 degree that is equivalent to 60 nautical miles on the surface. Vice versa, 1 nautical mile on the surface is
equal to one minute or a 60th of a degree in latitude. The conversion from nautical miles to feet is 6076.11548556
and feet to meters is 0.3048. Note that often time is is good to convert the cartesian coordinates back to LLH
coordinates. That inversion is shown below.

λLAT “
x

κ
` λLAT,0 (65)

λLON “
y

κcospλLAT,0
π

180 q
` λLON,0 (66)

h “ ´z (67)

7.2 Density Model

The density model is simply given as an exponential model.

ρ “ ρse
´σh (68)

where ρs is the density at sea-level, h is the altitude above the Earth in kilometers and σ “ 0.1354km´1 is known
as the scale height [17, 18, 19].

7.3 Magnetic Field Model

The Magnetic Field model used in this simulation stems from the Enhanced Magnetic Field Model (EMM2015)
([20]). The Earth’s magnetic is a complex superposition of multiple sources including the inner core and outer core
of the planet. Models have been created that use spherical harmonics to compute the magnetic field at any location
around the Earth. The EMM2015 model uses a 720 order model increasing the spatial resolution down to 56 km.
This model was compiled from multiple sources including but not limited to satellite and marine data. It also
includes data from the European Space Agency’s Swarm satellite mission. In order to include this harmonic mesh
data into this simulation, the GeographicLib module written in C++ is included in the simulation ([16]). Note that
I take no credit for this model. This section only serves to explain the model. The result of utilizing this model is
the ability to provide any position coordinate of the satellite to the module and have the model return the magnetic
field strength in East, North, Vertical Coordinates. Specifically, the inputs to the model are the position x, y, z of
the satellite assuming an inertial frame with the z-axis pointing through the north pole and the x axis pointing
through the equator at the prime meridian as seen in Figure 2. This is known as the Earth-Centered Inertial (ECI)
coordinate system ([21]).
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Figure 2: Earth-Centered Inertial Frame and Spherical Coordinate Frame

In order to connect these inertial coordinates (x, y, z) to be used in the EMM2015 model, the latitude, longitude
and height above the surface of the Earth are required. To do this, the coordinates are converted into spherical
coordinates using the equations below.

ρ “
a

x2 ` y2 ` z2

ϕE “ 0

θE “ cos´1
´

z
ρ

¯

ψE “ tan´1
`

y
x

˘

(69)

Note that ρ, ϕE , θE , ψE are related to latitude and longitude coordinates but not quite the same. In order to
obtain the latitude and longitude coordinates the following equations are used. The height is simply the distance
from the center of the ECI frame minus the reference height from the approximation of Earth as an ellipsoid
(RC “ 6, 371, 393 meters). Note that the angles from Equation 69 are converted to degrees.

λLAT “ 90 ´ θE
180
π

λLON “ ψE
180
π

h “ ρ´RC

(70)

The inputs to the EMM2015 model are the latitude, longitude and height. The inverse of the above two equations
are given below. These would be used in the event a latitude and longitude coordinate is given and there is a need
to obtain the x,y and z coordinates in the ECI frame. The first step is to convert latitude, longitude and altitude
and convert that to standard spherical angles and distance from the center of the planet.

θE “ p90 ´ λLAT q π
180

ψE “ λLON
π

180
ρ “ h`RC

(71)

Once that is complete the extraction of x,y and z are computed by the equation below.

x “ ρsinpθEqcospψEq

y “ ρsinpθEqsinpψEq

z “ ρcospθEq

(72)
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The output from the EMM2015 model is in the East, North, Vertical (ENV) reference frame where the x-axis is
East pointing in the direction of the rotation on the Earth, the y-axis is North pointing towards the North pole and
finally the z-axis is the Vertical component that is always pointing radially away from the center of the Earth. In
order to get the coordinates into the ECI frame the coordinates must first me converted to the North, East, Down
reference frame (NED). In this case the x-axis is pointing North, the y-axis pointing East and the z-axis is always
pointing towards the center of the Earth and called Down. The equation to rotate from the ENV frame to NED
frame is shown below.

$

&

%

βx
βy
βz

,

.

-

NED

“

»

–

0 1 0
1 0 0
0 0 ´1

fi

fl

$

&

%

βx
βy
βz

,

.

-

ENV

(73)

Once the magnetic field is in the NED reference frame it can then be rotated to the inertial frame using the following
equation where β⃗NED is the magnetic field in the NED coordinate system and β⃗I is the magnetic field in the inertial
frame.

β⃗I “ TIBp0, θE ` π, ψEqβ⃗NED (74)

The matrix TIBpϕ, θ, ψq represents the transformation matrix from the spherical reference frame to the inertial
reference frame. Note that there is no rotation about the x-axis through ϕE and the pitch rotation is augmented by
π because of the switch between North, East, Down (NED) and the z-axis of the ECI pointing through the North
pole. The result of these equations, is the ability to obtain the magnetic field across an entire orbit. Figure 3 shows
an example 56 degree inclination orbit, 600 km above the Earth’s surface. The orbit begins with the satellite above
the equator and the prime meridian and assumes the Earth does not rotate.

Figure 3: Example 56 Degree Inclination Orbit at 600 km above Earth’s Surface

Figure 4 shows the magnetic field during the orbit in the inertial frame. PCI stands for Planet Centered Inertial
which in this case is the same as the ECI frame since the planet is Earth.
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Figure 4: Magnetic Field of Earth in Inertial Frame for 56 Degree Orbit at 600 km Above Surface

For a satellite in LEO, the spacecraft will experience a magnetic dipole moment. The magnetic dipole moment
is caused by noting that the structure of the satellite is metal with current that creates its own magnetic field.
The magnetic dipole moment torque is given by computing the torque produced by the magnetic field of the Earth
interacting with the metallic structure of the satellite. First the dipole constant ds “ 2.64E ´ 03 N ´ m{T is the
assumed value for torque as a function of Tesla in LEO. This constant is derived by assuming the torque from this
disturbance at 500 km above the surface is the same as the solar radiation torque. Using this constant, the torque
is given by the equation below where β⃗I is the magnetic field strength of Earth in the inertial frame. The direction
of the torque is assumed to be in the same direction of the magnetic field since the structure is not fully modeled.
Although not accurate, the goal is to approximate the magnitude as closely as possible.

M⃗MD “ β⃗Ids (75)

7.4 Gravitational Models

Three types of gravitational models can be used. The first is the Newtonian gravitational model that assumes all
planets are point masses with no volume. The result of the gravitational field vector is then

FC “ ´G
mCms

r2
r̂ (76)

where G is the gravitational constant, C denotes the planet applying the gravitational field, mC is the mass of the
planet, ms is the mass of the satellite and r⃗ is a distance vector from the center of the planet to the satellite. The
vector r̂ is just the unit vector of r⃗ while r is the magnitude of r⃗.

The second gravitational field model stems from the Earth Gravity Model (EGM2008) [22] which can also be
found in the GeographicLib module [16]. This model compute’s Earths gravitational field at any point in three
dimensional space. The model takes in coordinates in the ECI frame and returns the gravitational acceleration in
the ECI frame thus no rotation is required. Just like the EMM2015 model this model uses spherical harmonics
and a reference ellipsoid. The reference ellipsoid is then updated with gravity disturbances such as non-uniform
geoid heights. This model is an upgrade from EGM84 and EGM96 which only used models of order 180 and 360
respectively. The EGM2008 model as a comparison uses a model of order 2190. Figure 5 shows the gravitational
acceleration vector during a 56 degree orbit at 600 km above the Earth’s surface. The x-axis has been non-
dimensionalized to represent the entire orbit. Thus when the x-axis is equal to 100 the satellite has completed one
orbit.
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Figure 5: Gravitational Field of Earth in Inertial Frame for 56 Degree Orbit at 600 km Above Surface

For a satellite in LEO, the vehicle will experience a gravity gradient torque. The gravity gradient torque is
given by computing the gravitational force at one end of the satellite and the other denoted as F⃗ pr⃗Bq and F⃗ pr⃗T q

for bottom and top respectively. The torques are then crossed with the distance from the center of mass to the top
of the satellite. It is assumed that the satellite is symmetric and thus, the torque is just the difference between the
two forces crossed with the vector from the CG to one side of the satellite.

M⃗G “ SpF⃗ pr⃗Bq ´ F⃗ pr⃗T qqr⃗CG´B (77)

The third gravitational field model assumes the vehicle is close to the surface such as a quadcopter or aircraft.
In this case the gravitational field is held at a constant and equal to 9.81 m{s2.
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7.5 Earth Orbital Elements

Assuming that the Sun is the central inertial reference point, it is possible to obtain the position of Earth at any
point in time using well documented orbital elements of the Earth. This formulation follows the derivation by JPL
and can be found at [23]. In order to obtain the position of the Earth, the Julian Day must be obtained. The
Julian Day of January 1st, 2019 is 2,458,485. The Julian Day of January 1st, 2000 (which is the day of the last
inertial frame update) is 2,451,545. In order to obtain the Julian Day of the current day, you simply need to count
the number of calendar days from January 1st of 2000. Again I have listed the Julian day of January 1st, 2019
to help with this calculation. To compute the orbital elements of the Earth you must then compute the number
of centuries from January 1st, 2000 which is given by the equation below where J is the Julian day and C is the
number of centuries since 1/1/2000.

C “ pJ ´ 2, 451, 545q{36, 525.0 (79)

This number is then used in the equations below to obtain the current semi-major axis, eccentricity, inclination,
mean longitude, longitude of perihelion and the longitude of the ascending node respectively. The subscript 0
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Table 1: Orbital Elements of Earth-Moon Barycenter

a e i L long.peri. (w̄) long.node. (Ω)
AU, AU/Cy rad, rad/Cy deg, deg/Cy deg, deg/Cy deg, deg/Cy deg, deg/Cy

1.00000261 0.01671123 -0.00001531 100.46457166 102.93768193 0.0
0.00000562 -0.00004392 -0.01294668 35999.37244981 0.32327364 0.0

denotes the orbital element in the year 2000.

a “ pa0 ` 9aCqAU
e “ e0 ` 9eC

i “ i0 ` 9iC

L “ L0 ` 9LC
w̄ “ w̄0 ` 9̄wC

Ω “ Ω0 ` 9ΩC

(80)

The parameters in the equation above for every planet can be found at [23]. Also, The term AU is an astronomical
unit which is equal to 149,597,870,700 meters. For reference though the parameters for Earth are shown below.
Just in case you are reading this in the not so distant future, these parameters are only valid until the year 2050.
Also, the parameters below are for the Earth-Moon barycenter which is the center of mass of the Earth and Moon.
In the table, the first row is the value in the year 2000 and the second row is the rate per century (Cy). Using these
parameters, compute the argument of the perihelion w “ w̄ ´ Ω and the mean anomaly M “ L´ w̄. Note that for
planets Jupiter, Saturn, Uranus and Neptune, the mean anomaly has a different form. Basically anything past the
asteroid belt. With the mean anomaly compute you must modulus this value such that M is between plus or minus
180 degrees. Once that’s done you must solve for the eccentric anomaly (E) using the Kepler equation below where
e˚ is the eccentricity in degrees e˚ “ 180e{π.

M “ E ´ e˚sinpEq (81)

Solving this numerically is pretty simple and only requires a few iterations of the loop below using the C++
programming language. This loop can easily be adapted to any language on modern computers. C++ is shown
here in the event this is used for embedded processors in future satellite systems.

E = M + e*180.0/PI*sin(M*PI/180.0);

dM = 1;

dE = 0;

while (abs(dM) > 1e-6) {

dM = M - (E - e*180.0/PI*sin(E*PI/180.0));

dE = dM/(1.0-e*cos(E*PI/180.0));

E += dE;

}

At this point the spatial coordinates can be obtained in the planet’s orbital plane where the semi-latus rectum or
sometimes simply called the parameter is p “ ap1 ´ eq.
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,
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-
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apcospπE{180q ´ eq
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0

,

.

-

(82)

Notice that the value z1 is zero. This is because orbits are all two dimensional. In order to obtain the coordinates
of the planet in the J2000 ecliptic plane, the equation below is used which is similar to the standard Euler angle
transformation matrix only the 3-1-3 rotation sequence is used rather than 3-2-1.
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fi

fl
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(83)

Running through this formulation for all the planets in the Solar System including Pluto it is possible to plot the
position of all planets. The figures below are for January 1st, 2019.
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Figure 6: Position of Planets using Orbital Elements

8 External Forces and Moments

In addition to gravity acting on a vehicle, other forces also act on the satellite. For a 1U CubeSat, the gravity
gradient over 10 cm is about 0.24 µm{s2 using the EGM2008 model. Multiplying this acceleration by a 1 kg mass
and applying a 10 cm moment arm yields a moment of about 2.4 ˆ 10´8 N ´ m. Aerodynamic torques could be
as large as 1.5 ˆ 10´10 N ´ m assuming the aerodynamic center is 5 cm away from the center of mass. Typical
magnetorquers operate in the vicinity of 3.0 ˆ 10´6 N ´ m, assuming a current of 0.04 A, an area of 0.02 m2, 84
turns and a magnetic field of 40, 000 nT . Using these calculations, magnetorquers are two orders of magnitude
larger than gravity torques and four orders of magnitude larger than aerodynamic torques. It is important to keep
these values in mind when neglecting certain parameters [13, 14, 15].

8.1 Solar Radiation Pressure

Solar radiation pressure is relatively constant at 1 AU and thus is simply given as ps “ 4.5e ´ 6 Pa. The force
is then found to be just the pressure multiplied by the frontal area of the satellite. The torque, similar to the
aerodynamic torque, is the force crossed with a distance vector from the center of mass to the center of pressure of
solar radiation. The vector ŝ is a unit vector denoting the direction of the sun.

F⃗SR “ psSŝ (84)
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M⃗SR “ S
´

F⃗SR

¯

r⃗CG´CPs (85)

8.2 Propulsion Model

In order for a vehicle to lift off to enter space, engineers must be able to apply a force that is greater than the
force acting on the vehicle due to gravity and aerodynamics. The applied force is known as thrust. Thrust can be
generated by the propulsion system of the vehicle. Electric and chemical are two well-known methods to produce
thrust which take advantage of Newton’s third law of motion.

Electric Propulsion Systems typically use electric heating or electric or magnetic fields to accelerate propellants
(usually gases). These systems can be very fuel-efficient, however it does not generate enough thrust. These engines
are great for deep space exploration where transit times can be very long and rapid maneuvers are not required[24].

Chemical propulsion systems are more effective in our environment. These systems involve the use of chemical
reactions to release energy and accelerate gases to produce thrust. Chemical propulsion is a broad category and
can be subdivided into liquid propulsion, solid propulsion, and hybrid propulsion.

Liquid propulsion systems can be further subdivided into either a monopropellant (a single propellant fluid) or
a bi-propellant (two fluids, which includes fuel and an oxidizer). The simplest form of fuel and oxidizer would be
liquid hydrogen and liquid oxygen. Typically, the propellants may be kept on board and fed from high-pressure
tanks (pressure-fed) or use turbopumps to move the propellant to the combustion chamber (pump-fed) before the
hot exhaust exits the nozzle. Liquid Propulsion systems can produce a wide range of thrust, can have high specific
impulse (Isp), and can be easily controlled; but often must be fueled shortly prior to launch.

On the contrary, solid rocket motors (or SRMs) are simple devices. The propellants, the fuel and oxidizer,
are mixed together and stored in a cylinder. An electrical signal is sent to the igniter which creates hot gases to
ignite the main propellant grain. By converting the high thermal energy of the gases into kinetic energy, therefore
thrust is developed. These motors usually have a relatively short burn time. For example, The Thiokol motor using
ammonium perchlorate/aluminum as propellant, has a burn time of 75 s with a thrust of 3,300,000 lb.

Even though solid rocket motors are simple and can be ignited in a moment’s notice, their Isp (specific impulse)
is generally lower than liquid systems. Also, they cannot be readily throttled. Once ignited, the motor will burn to
extinction[25].

It is important to note, however, that if propulsion is needed for the spacecraft it is necessary to work with
the propulsion team to determine the ∆V , mass flow rate, and attitude control. For this analysis each satellite is
equipped with NP thrusters that have a fixed Isp. The mass flow rate of each thruster is given by the equation
below where p is the force of the thruster.

9mi “ σi
p

9.81 Isp
(86)

Each thruster is either on or off as given by the variable σ which is either a 1 or a 0. When the thruster is on, the
force applied is equal to p and when the thruster is off the thrust applied is equal to zero. Thus in this fashion to
total mass flow rate per unit time of the entire satellite is just a sum of all the pulses.

9m “
p

9.81 Isp

NP
ÿ

i“1

σi (87)

It is assumed that the time response of the thrusters is instantaneous during power up and power down. There is a
delay between pulses and the thrusters only stay on for a fixed time thus the thrusters are pulsed in a square wave
fashion with a certain duty cycle. The force applied is simply equal to the force times a unit vector that is aligned
with the axis of the thruster. The total force applied to each satellite is then given by the formula below.

F⃗P “ p
NP
ÿ

i“1

σin̂Pi (88)

The total moment applied to the satellite is simply the force applied crossed with a vector from the center of mass
of the satellite to the center of mass of the thruster.

M⃗P “ p
NP
ÿ

i“1

σiSpr⃗Piqn̂Pi (89)
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8.3 Magnetorquer Model

The magnetorquer model assumes that three magnetorquers are aligned in such a way that the magnetic moment
produced by each magnetorquer is aligned with the principal axes of the body frame of the satellite. Each magne-
torquer is controlled independently such that i⃗M “ rix, iy, izsT which is the applied current in each magnetorquer.
The magnetic moment is then given by the equation below

µ⃗M “ nA⃗iM (90)

where n is the number of turns in the coil of each magnetorquer and A is the area of the magnetorquer. For simplicity
it is assumed that all magnetorquers have the same area and same number of turns. The torque produced by all
magnetorquers is then simply found by crossing the magnetic moment with the magnetic field of the Earth in the
Body reference frame.

M⃗M “ Spµ⃗M qTBIpq⃗qβ⃗I (91)

In order to obtain the magnetic field vector in the body frame, the inertial magnetic field vector must be rotated
into the body frame of the satellite. In component form, equation (91) reduces to the following equation using the

identity that a⃗ˆ b⃗ “ ⃗́bˆ a⃗
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where βx, βy, βz are the components of the magnetic field in the body frame of the satellite. The moments L,M,N
are thus the control torques that rotate the satellite as seen in equation (63).

8.4 Aerodynamics

Aircraft aerodynamics are written using a taylor series expansion about a trim point[2][14]. That is, the aerodynamic
forces are given by

F⃗ “ F⃗0 `
BF⃗

Bx⃗
px⃗´ x⃗0q (93)

where x⃗ “ rx, y, z, ϕ, θ, ψ, u, v, w, p, q, rsT . The partial derivative is thus expanded such that
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By ... BF⃗

Br

ı

(94)

To find all of the partial derivative the forces are first written using a combination of dynamic pressure and
coefficients that are functions of geometry and Reynolds number rather than speed, pressure and size. A general
lift force can be written using the equation below

L “
1

2
ρV8

2SCL (95)

where ρ is the atmospheric density, V8 is the free-stream velocity, S is the planform area of the wing and CL is the
lift coefficient.

V8 “
a

ua2 ` va2 ` wa2 (96)

The subscript ’a’ above denotes the velocity of the aircraft plus the atmospheric disturbance.
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Note that the dynamic pressure is different for a rocket or projectile. A similar expression can be created for a
generic moment such that

M “
1

2
ρV8

2Sc̄CM (98)

where c̄ is the mean chord of the aircraft. The dynamic pressure q8 “ 1
2ρV8

2S can be used to non-dimensionalize
the forces, thus L{q8 “ CL. This means that the equation involving partial derivatives can be written as
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(99)

25



If the vector is then expanded to include the components of the vector F⃗ the partial derivatives expand to

BC⃗F
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fi

ffi

fl

(100)

shorthand can be adopted for the forces above such that BCY

Bx “ CY x. Using this shorthand the equation above can
be written as.

BC⃗F
Bx⃗

“

»

–

CXx CXy ... CXr
CY x CY y ... CY r
CZx CZy ... CZr

fi

fl (101)

The coefficients listed above are standard coefficients that all aircraft have. A similar matrix can be formulated
for the moments on an aircraft. When system identifying an aircraft all of these coefficients may be determined.
However, many of these terms are zero. For example, all coefficients with respect to x y and z are zero. That is,
CXx “ CY x “ ...CNx “ CXy “ ...CNz “ 0. Other coefficients can be set to zero as well.

8.4.1 Aircraft Aerodynamics

For aircraft, some further simplifications are made. Some of the coefficients defined above are combined to be
written as functions of the angle of attack(α) and sideslip(β).

α “ tan´1

ˆ

wa
ua

˙

(102)

β “ sin´1

ˆ

va
V8

˙

(103)

Transforming the equations into these formulations gives rise to coefficients such as CLα which is the change in lift
as a function of angle of attack and CY β which is the change in Y-Force as a function of sideslip. Using all of the
coefficients defined above taking into account the change to lift and drag, the body aerodynamic force is calculated
using the equation below.
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Where the lift and drag coefficients are:

"

CL
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*

“

"

CL0 ` CLαα ` CLq
qc̄

2V8
` CLδeδe

CD0 ` CDαα
2

*

(105)

The body aerodynamic moment is also computed using an aerodynamic expansion.
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The aerodynamic coefficients in equations (104), (105) and (106) can be obtained from flight data, aerodynamic
modeling and windtunnel tests. Notice that the only coefficients remaining are coefficients from angle of attack,
sideslip and angular velocities. Furthermore, the coefficients for angular velocities are also non-dimensionalized
by terms such as b{p2V8q where b is the wingspan of the aircraft and c̄ is the mean chord of the aircraft. These
terms are introduced to fully non-dimensionalize the coefficients. Notice, as well that four extra terms were also
introduced. These will be discussed in more detail in the control section however the four terms are the aileron
control surface δa, the elevator control surface δe, the rudder control surface δr and the thrust control value δt.
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8.4.2 Projectile Aerodynamics

To fully define the projectile aerodynamics some more assumptions are made about the projectile.

1. The projectile is axially symmetric

2. The aerodynamic forces are not necessarily formulated at the center of mass

3. The projectile has the potential to be spinning rapidly thus interacting with the surrounding atmosphere

For a projectile the dynamic pressure is written as

Q “
π

8
ρV 2

8d
2 (107)

The aerodynamic forces on the projectile are modeled using taylor series ballistic expansions with known coefficients
similar to the aircraft model only slightly different assumptions are made given the dynamics of the projectile. The
subscripts in the equation below stand for steady and unsteady aerodynamics.
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In this equation, Q is the dynamic pressure, d is the aerodynamic reference area, CX0
is the zero-yaw axial force

coefficient,CX2
is the yaw-squared axial force coefficient, CNα

is the normal force derivative coefficient, CYpα
is the

Magnus force coefficient, and V “
?
u2 ` v2 ` w2 is the total velocity of the projectile. The aerodynamic moments

acting on the projectile are the pitching, pitch damping, Magnus, and roll damping moments. Pitching and Magnus
moments are given by taking the cross product of the normal and Magnus forces given in (108) with the position
vector from the center of mass to the center of pressure and location of Magnus force, respectively. The total
aerodynamic moments are given in Eqn. (109).
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Here, SBpr⃗CG,COP q is the skew-symmetric operator acting on the position vector from the center of mass to the
center of pressure expressed in the projectile body frame. Furthermore, SBpr⃗CG,MCOP q is the skew-symmetric
operator acting on the position vector from the center of mass to the magnus center of pressure expressed in the
projectile body frame. Typically the center of mass is defined from the rear of the projectile such that

CBpr⃗CGq “
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%

SLCG
BLCG
WLCG

,

.

-

(110)

Similarly, the center of pressure is defined from the rear of the projectile such that

CBpr⃗COP q “

$
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%

SLCOP
BLCOP
WLCOP

,

.

-

(111)

The vector r⃗CG,COP is then simply the different between both vectors.

r⃗CG,COP “ r⃗COP ´ r⃗CG (112)

The damping coefficient defined in equation (109) include Clp which is the roll damping coefficient while Cmq
is the

pitch damping coefficient. These coefficients are added which essentially inhibit angular motion of the projectile. In
addition, to these coefficients, sometimes magnus coefficients are given as pure moments rather than forces acting
at a distance. This can be given in the equation below.

MUA “ Qdp´CMα
v

V
` CNpα

w

V

pd

2V
q (113)

Where CMα replaces the moment produced by CNα and CNpα
replaces the moment produced by CYpα

. It is possible
to derive an equation between the two different representations as given by the equations below.

CMα “
pSLCOP ´SLCGqCNα

d

CNpα “
pSLMAG´SLCGqCYpα

d

(114)
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8.4.3 Spacecraft Aerodynamics

The aerodynamic force is computed using aerodynamic coefficients and dynamic pressure where V⃗ is the velocity
of the satellite and V is the magnitude of the velocity vector. Furthermore, S is the surface area of the satellite and
CD is the drag coefficient. The torque on the satellite is then given by the cross product between the aerodynamic
force and a distance vector representing the distance between the center of mass and the center of pressure r⃗CP´CG.

F⃗A “
1

2
ρV V⃗ SCD (115)

M⃗A “ ´S
´

F⃗A

¯

r⃗CP´CG (116)

9 Guidance Navigation and Controls

Every vehicle must be able to maintain a specific position within its flight or orbit as well as point in a specific
direction to achieve its mission. Mission goals have specific trajectories or orbits that must be reached and main-
tained, and this section is intended to explain how this is done from a guidance navigation and controls perspective.
The basis for the guidance, navigation, and control (GNC) subsystem are attitude control, attitude estimation, and
position estimation. Attitude describes which direction the vehicle is pointing in three-dimensional space. Attitude
control is the act of controlling the orientation of the vehicle while attitude estimation is the process of determining
the precise direction of the vehicle in order to perform attitude control. Position estimation primarily involves
integration schemes or GPS in order to determine the position of the vehicle on the surface of the planet. While
performing the mission, the vehicle will continually use this subsystem to document the position. The basis of these
techniques follows an understanding of spaceflight mechanics and systems engineering. Thus, the following approach
will help garner a better understanding of an academic approach to the GNC subsystem and what methods are
used to convey each component of the subsystem.

The GNC subsystem is critical for the survival of the vehicle. It is the system that determines the vehicles
orientation and position in space. Guidance is task of computing the desired trajectory and orientation of a vehicle.
Guidance is completed by using components to determine any changes in position, altitude, or orientation to assist
the vehicle in following its projected trajectory. Similar to guidance, navigation is the system’s way of leading the
vehicle in space and keeping it on its intended path. When people think of navigation they typically refer to Global
Positioning Systems (GPS) in their car or on their phones. This same idea applies to aerospace systems as well. A
GPS is a common device used for navigation on a vehicle and these components are discussed more further in this
section. In order to have a successful flight and achieve the intended mission goal the vehicle needs to be stable
and controlled in space. There are many different components different aerospace vehicles use to accomplish this.
Satellites use reaction wheels and gimbaled thrusters to name a few while aircraft use aerodynamic surfaces.

9.1 Vehicle State Estimation

Vehicle State estimation is a fundamental portion of GNC and requires the vehicle to determine it’s orientation
with respect to an inertial frame as well as its position from an inertial reference point. Some sensors are specific to
the vehicle application but here this section will discuss a standard INS (Inertial Navigation System) which consists
of a GPS (Global Positioning System) and an IMU (Inertial Measurement Unit).

9.1.1 Inertial Measurement Unit

An inertial measurement unit (IMU) is a combination of three sensors. An accelerometer, rate gyro and magnetome-

ter. A magnetometer is a device that measures the local magnetic field in the body frame β̂B “ rβ̂x, β̂y, β̂zsT [26].
Note that theˆimplies a measurement rather than the truth signal. Measurements from sensors are prone to bias,
drift, scale factor, misalignment, noise and other sources of error that must be accounted for.
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Figure 7: Example Magnetometer [27]

A rate gyroscope, commonly referred to as a rate gyro measures the angular velocity also in the body frame
ω̂B{I “ rĝx, ĝy, ĝzsT .

Figure 8: Example IMU with Integrated Rate Gyro [28]

Accelerometers are sensors used to measure acceleration at a point P on a rigid body âB{I “ râx, ây, âzsT .
For simplicity however, it is assumed that point P on the rigid body is the center of mass point C therefore the
accelerometer is measuring the acceleration of the body itself in the body frame with respect to an inertial frame
B{I.

Figure 9: Example Accelerometer [29]

As mentioned before, the IMU consists of 3 sensors all returning 3 measurments. This results in 9 scalar
quantities being returned from this sensor which is where the term 9DOF gets it origin. In reality DOF means
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Degrees of Freedom which is contrary to the standard 6DOF simulation models explained above. However, the
sensor community chooses to coin the term 9DOF to highlight the 9 different scalar values returned from IMUs. It
is possible to obtain a 10DOF sensor which also returns pressure or temperature data.

9.1.2 Global Positioning System (GPS)

The Global Positioning System (GPS) was developed in order to allow accurate determination of geographical
locations by military and civil users. It works by using satellites in Earth’s orbit to transmit data which makes
it possible to measure the distance between the satellites and the operator. This form of signal communication is
incredibly accurate and used heavily for attitude estimation. Up to 30 GPS satellites are currently in orbit, mostly
in MEO, at altitudes around 20,000 km. There will be between four and eight of them above any site on the Earth
at any time[30]. These satellites continuously emit coded high-frequency radio signals which may be received by
special GPS receivers. These signals contain information about the exact orbits of the satellites and the time of
atomic clocks onboard. When signals from three or more satellites are received, the GPS receiver will compute the
best possible location of the user by triangulation. Much like when on Earth, a GPS can be used for navigation in
space. The GPS receiver on board the satellite will also receive its longitude, latitude, and altitude as long as it is
within the GPS constellation.

Figure 10: Example GPS Receiver [31]

9.2 Euler Angle Estimation via IMU

Using an IMU it is possible to obtain Euler Angles assuming a Flat Earth Approximation. Recall that Euler angles
are a 3D transformation from the Inertial frame to the Body Frame (See Section 5.1). The angle ϕ and θ can
directly be measured via the accelerometer by creating a relationship between the gravity vector in the inertial
and body frames. The heading angle can be measured by creating a relationship between the magnetic field in
the body frame and the inertial frame using a magnetometer. The rate gyro can be used to integrate the angular
velocity to obtain Euler angles as well but is prone to drift. The accelerometer though is prone to errors when the
vehicle experiences large acceleration loads. Thus, typically the Euler angles from the rate gyro are fused with the
estimates from the magnetometer and the accelerometer. Still, some errors can still exist and the Euler angles can
be fused with estimates from GPS but that will be explored in a separate section. First, let’s examine the direct
estimation of roll and pitch using the accelerometer.

9.2.1 Direct Measurement of Roll and Pitch

Understand that the gravity vector in the inertial frame can be written as CIpg⃗q “ r0, 0, gsT . However, since the
first rotation in the Euler angle sequence is about the z-axis, the gravity vector in the A frame and Inertial (I)
frames are identical. That is, CApg⃗q “ CIpg⃗q. Normalizing the gravity vector yields CApḡq “ r0, 0, 1sT . The
measurement from the accelerometer must also be normalized such that āB{I “ âB{I{||âB{I ||. Since the aircraft
is always experiencing gravity, and the accelerometer is measuring the acceleration vector a relationship can be
obtained between the gravity vector in the A frame and the acceleration vector in the body frame. Note that an
assumption is being made here. It is assumed that the only acceleration being experienced is gravity. Therefore,
if any external accelerations are experienced by the vehicle via thrust or aerodynamics, this equation is not valid.
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Still, for small UAV applications these equations can be accurate if fused properly with the rate gyro measurements.

CBpāB{Iq “ TT
NRBT

T
ANRCApḡq “

$

&

%

´sθ
sϕcθ
cϕcθ

,

.

-

(117)

The equation above takes the normalized gravity vector in the A frame and rotates it to the body frame through
the no roll frame. Since the rotation is from the A frame to the body frame, only two rotations are required. Notice
also that the first row can be used to obtain the pitch angle.

θ “ ´sin´1pāxq (118)

The roll angle can then be obtained by taking the second two rows and dividing them together to get a tangent
function.

ϕ “ tan´1

ˆ

āy
āz

˙

(119)

Note that this equation is only valid if cθ ‰ π{2. This means the vehicle cannot fly straight up. For quadcopters
and airplanes this is pretty typical for standard and level flight. For rockets however, either the IMU must be placed
in an orientation that doesn’t result in this singularity at launch or quaternions must be used. For spacecraft an
entirely different algorithm is needed and is explained in a different section.

Note that the pitch angle equation is written using the inverse sine function. Often times it is beneficial
to compute the pitch angle using the inverse tangent function so that the atan2 function may be utilized on a
microcontroller which determines the quadrant of the angle more robustly. To do this the gravity vector must be
written in the no roll frame.

CNRpḡq “ TT
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Then the acceleration vector is rotated to no roll frame as well from the body frame

CNRpāB{Iq “ TNRBCBpāB{Iq “

$
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āx
āycϕ ´ āzsϕ
āysϕ ` āzcϕ

,

.

-

(121)

Setting the two equations above equal to each other and diving the first row by the second row results in a tangent
equation for pitch. This result is shown in the equation below.

θ “ ´tan´1

ˆ

āx
āysϕ ` āzcϕ

˙

(122)

Notice that these equations for pitch can be constructed by drawing a right triangle with the gravity vector as the
hypotenuse. The sine function is the opposite side of the triangle divided by the hypotenuse which is 1 since the
gravity vector was normalized while the inverse tangent function is the opposite side over the adjacent side.

9.2.2 Direct Measurement of Yaw

In order to obtain the yaw angle of the vehicle through a direct measurement, the magnetometer is used. First it
is assumed that the magnetic field strength is a constant through the flight of the vehicle and that it is oriented
along the x-axis in the inertial frame of the Flat Earth Approximation. Remember that the x-axis is North using
the Flat Earth Approximation. The magnetic field vector of the Earth is then normalized to unity.
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(123)

Again, in order to get a tangent function for the yaw angle estimation, the magnetic field of the Earth is written in
the A frame.

CApβ̄Cq “ TT
IACIpβ̄Cq “
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(124)
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The magnetic field measurment of the magnetometer is then written in the A frame as well. However, the magne-
tometer measures the magnetic field in the body frame. Thus 2 rotations are requires to get from the body frame
to the A frame. Again the magnetometer measurement is normalized.

CApβ̄Bq “ TANRTNRBCBpβ̄Bq “

$

&

%

β̄xcϕ ` β̄ysθsϕ ` β̄zcϕsθ
β̄ycϕ ´ β̄zsϕ

´β̄xsθ ` β̄ysϕcθ ` β̄zcϕcθ

,

.

-

(125)

The two equations for magnetic field in the A frame can then be equated. In this case, the second row is divided
by the first row to obtain a tangent relationship for yaw. The result for yaw is shown below.

ψ “ tan´1

ˆ

β̄zsϕ ´ β̄ycϕ
β̄xcϕ ` β̄ysθsϕ ` β̄zcϕsθ

˙

(126)

9.3 Low Earth Orbit Attitude Estimation

In LEO the main algorithm begins with obtaining the magnetic field in the body frame using magnetometers β⃗B .
Using the IGRF model the locally measured magnetic field can be compared with the known magnetic field for any
given location within its orbit. Using the true data and the measured data, the spacecraft can compute its actual
position to the measured position and make the correct adjustments. A Sun measurement is then taken using a Sun
sensor S⃗B . Once those two independent body frame measurements are taken the inertial reference vectors must be
obtained from a database. Startrackers have this database built in; however, for the magnetic field and the Sun
vector these must be obtained from a separate database as discussed in Section 7.5. The idea is that if the position
of the Earth is known then the position of the Sun with respect to the Earth is also known. The magnetic field
vector can be obtained from the IGRF model as discussed in Section 7.3. The magnetic field vector in the inertial
frame is given as β⃗I . Note that the IGRF model requires the latitude and longitude to be known. Thus, in LEO a
GPS is required to feed into the database. The inertial Sun vector S⃗I only requires the Julian time which can be
obtained from GPS as well. The julian time is based on the julian day as explained in Section 7.5.

The initial attitude determination algorithm itself requires two independent vectors. As stated previously,
startrackers provided a large enough aperture and enough stars to produce the full quaternion by obtaining multiple
unique vectors to unique stars. Multiple solar sensors or multiple magnetometers unfortunately do not obtain non-
unique vectors and the algorithm fails. In LEO this is typically done with solar sensors and magnetometers but
it can be done with star trackers. In deep space it is typically done with startrackers but it could be possible to
obtain a Moon vector that would require a Moon sensor.

The derivation below is done for the LEO case with a Sun and magnetic field measurement. The derivation is
identical for the deep space case with a Moon sensor simply by substituting the magnetic field measurment with a
Moon measurement. Every vector is first normalized to obtain β̂B , β̂I , ŜB , ŜI . A triad is then created from body
frame vectors using the equations below.

f̂1 “ ŜB f̂2 “ f̂1 ˆ β̂B f̂3 “ f̂1 ˆ f̂2 (127)

The matrix F is then created using the triad as an orthonormal basis F “ rf̂1, f̂2, f̂3s. Similar equations are used
for the inertial measurements.

ĝ1 “ ŜI ĝ2 “ ĝ1 ˆ β̂I ĝ3 “ ĝ1 ˆ ĝ2 (128)

The matrix G is then created just as the F matrix such that G “ rĝ1, ĝ2, ĝ3s. The transformation from inertial to
body frame is then created using the formula below.

TBI “ FGT (129)

This matrix above is similar to the matrix in equation 36 and thus the Euler angles can be extracted from the
matrix itself using the formulation defined in Section 5.1. Euler can then be converted to quaternions if needed.
Note that it is relatively easy to extract Euler angles from the TIB matrix, it is not so simple to extract quaternions.
This is due to the fact that for every orientation there exists two quaternions that represent this space. Thus, it is
more ideal to obtain Euler angles from the transformation matrix and then convert them to quaternions.

9.4 Spacecraft Position Estimation using a Ground Station Network (GSN)

There are several types of ground stations depending on the spacecraft’s distance from Earth. Ground services may
be either Direct-to-Earth (DTE) or space relay. DTE ground stations are located on the Earth’s surface. They
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provide direct point-to-point access with antennas at ground stations. DTE services are great for missions needing
frequent, short-duration contacts with high data transfer.

Space relay services involve an intermediate satellite that communicates with a ground station on the Earth’s
surface. Relay communication satellites for low-Earth orbit spacecraft can be in Geosynchronous Equatorial Orbit
(GEO), roughly 36,000 km from the surface of Earth, or in low-Earth orbit. Relays are important for providing
communication and tracking when direct-to-ground communications are not feasible due to physical asset visibility
constraints. Space-based relay assets give missions full-time coverage and continuous access to communication and
tracking services.

Finally, deep space communication is also possible. The Deep Space Network (DSN) is developed to conduct
telecommunication and tracking operations with space missions in GEO. This includes missions at lunar distances,
the Sun-Earth LaGrange points, and in highly elliptical Earth orbits, and even missions to other planets[32]. The
DSN network consists of three ground stations placed around 120 degrees apart on Earth which provides 360 degrees
coverage[33].

Figure 11: Deep Space Network Satellite Coverage [34]

9.5 Heading Angle and Speed Estimation using GPS

On Earth there is no need for a DSN because the vehicle is within the GPS constellation. Assuming the vehicle
has the necessary GPS sensors a full NMEA (National Marine Electronics Association) can be obtained. However,
in this example it is assumed that only the latitude, longitude and altitude coordinates are obtained in a discrete
fashion. In order to get heading and speed it is assumed that consecutive measurements are obtained at i and
i ` 1 timestamps. Let’s assume that the vehicle is traveling in a specific direction or heading and obtains a GPS
coordinate pλLAT,i, λLON,i, hiq at time ti. A few seconds later or whenever the update period may be the vehicle
moves and the GPS returns a new GPS coordinate pλLAT,i`1, λLON,i`1, hi`1q at time ti`1. First, the coordinates
are converted to a cartesian coordinate system. This is explained in the External Model section. This results in
xi, yi, zi at time ti and xi`1, yi`1, zi`1 at time ti`1. First, the speed estimate is given by using a simple first order
differentiation as given by

vx “ pxi`1 ´ xiq{∆t
vy “ pyi`1 ´ yiq{∆t

(130)

where ∆t “ ti`1 ´ ti. Note that it is not recomended to compute the velocity in the z-axis as the altitude estimate
of GPS is often not very good. Finally, the estimate for heading can follow from the speed estimate and is given as

ψ “ tan´1

ˆ

vy
vx

˙

(131)

Note that it is recommended to filter these estimates as GPS on its own is only accurate to around 3 meters.
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9.6 Spacecraft Attitude Control Schemes

Many control schemes are needed to orient a satellite and all depend on the application. In LEO magnetorquers
can be used to detumble a satellite while thrusters must be used in deep space. In addition reaction wheels can be
used to detumble a satellite anywhere in space provided the angular momentum in the satellite does not saturate
the reaction wheels. Sections that follow detail the control schemes typically utilized on small sats. A section on
PID control for aircraft is also in this section.

9.6.1 B-dot Controller

In LEO, the standard B-dot controller reported in many sources ([35],[36],[37],[38]) can be used to de-tumble a
satellite. The standard B-dot controller requires the magnetorquers to follow the control law shown below

µ⃗B “ kSpω⃗B{IqTBIpq⃗qβ⃗I (132)

where k is the control gain. Using equation (90) it is possible to write the current in component form again using
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This equation can then be substituted into equation (92) to produce the total torque on the satellite assuming that
the magnetorquers can provide the necessary current commanded by equation (133).
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The goal of the controller here is to drive ω⃗B{I Ñ 0. The literature will show that this is not completely achieved
[39]. There are multiple explanations for this. For starters, equation (91) assumes that the magnetic moment is not
co-linear with the magnetic field of the Earth. If it is, the result is zero torque applied to the satellite. Furthermore,
equation (133) results in zero current if the angular velocity vector of the satellite is co-linear with the magnetic
field. Thus, if the magnetic field vector, angular velocity vector or the magnetic moment vector are co-linear, the
torque applied to the satellite will be zero. If a new operator is defined such that

WpTBIpq⃗qβ⃗Iq “

»

–

β2
y ` β2

z ´βxβy ´βxβz
´βxβy β2

x ` β2
z ´βyβz

´βxβz ´βyβz β2
x ` β2

y

fi

fl (135)

it is easy to see that the torque applied to a satellite is then simply the angular velocity vector multiplied by
this transition matrix. If this transition matrix is put into row-reduced-echelon form it is easy to see that the
determinant of this matrix is equal to zero ([40]).

rrefpWpTBIpq⃗qβ⃗Iq “

»

–

1 0 ´βx{βz
0 1 ´βy{βz
0 0 0

fi

fl (136)

A zero determinant means that there exists a vector ω⃗B{I that will result in zero torque for a given value of the
magnetic field. This is typically avoided since the magnetic field of the Earth is time and spatially varying which
results in a transition matrix that changes over time due to orientation changes in the satellite as well as changes
in the satellite’s orbit. However, for low inclination orbits, it’s possible for the magnetic field to stay relatively
constant with βx « βy « 0. If the satellite is tumbling about the yaw axis such that p “ q “ 0, the yaw torque on
the satellite (N) will be zero. Using this simple controller, there is no way to remove the remaining angular velocity
from the satellite unless reaction wheels are used.

9.6.2 Reaction Wheel Control

Assuming each reaction is aligned with a principal axis of inertia the control scheme is extremely simple. When the
wheels are not aligned the derivation will proceed similar to the reaction control thruster section. The derivation
here will just be for the aligned case. In this analysis it is assumed that a torque can be applied to the reaction
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wheel and thus the angular velocity of the reaction wheel αRi can be directly controlled. Assuming this a simple
PD control law can be used to orient the satellite at any desired orientation using Euler angles for this control law
since the satellites are aligned with the principal axes of rotation [1].

αRi “ ´kppϵi ´ ϵdesiredq ´ kdpωi ´ ωdesiredq (137)

In the equation above ϵ denotes either roll ϕ, pitch θ or yaw ψ depending on which reaction wheel is being used.
The Euler angles in this case would be obtained by converting the quaternions to Euler angles as defined in Section
5.2.

Often times however your reaction wheels are not pointed on the principal axis of inertia. In this case a Least
Squares Regression model is needed. In this case the equation above is used to compute the desired torque to be
placed on the satellite such that

M⃗desired “ ´kppϵi ´ ϵdesiredq ´ kdpωi ´ ωdesiredq (138)

This equation is then equated to the equation for torque placed on the satellite where the angular accelerations are
placed into a vector.

M⃗desired “ M⃗R “
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“ Jα⃗ (139)

Since J is a 3ˆNRW matrix its impossible to simply invert the matrix and solve for the vector of angular accelerations
α⃗. In this case there are an infinite number of solutions. As such a minimization routine is required where the
solution found also happens to be the lowest amount of angular acceleration. In this case, Lagrange’s method was
used to find the vector of angular accelerations [41].

α⃗ “ JT
`

JJT
˘´1

M⃗desired (140)

9.6.3 Reaction Control Thrusters

The control law for the thrusters is a bit complex if the location of thrusters is not know apriori. If the location
is known then simple PID control laws can be generated by applying pure couples to the correct thrusters that
activate the correct axes. If the location is not known then the following derivation will suffice. There are NP
thrusters and only 3 degrees of freedom that need to be controlled; thus, the system is an overactuated system.
Using equation 89, the equation can be written in matrix form as given by the equation below where M⃗p is replaced

by M⃗desired. The equation for M⃗desired is generated using a similar PD control law as the reaction wheels.

M⃗desired “ prSpr⃗P1qn̂P1 Spr⃗P2qn̂P2 . . . Spr⃗PNpqn̂PNpsσ⃗ “ Mσ⃗ (141)

Since M is a 3 ˆNP matrix its impossible to simply invert the matrix and solve for the vector of pulses σ⃗. In this
case there are an infinite number of solutions. As such a minimization routine is required where the solution found
also happens to be the least amount of pulses. In this case, Lagrange’s method was used to find the vector of pulses
[41].

σ⃗ “ MT
`

MMT
˘´1

M⃗desired (142)

Note that a similar equation can be derived for F⃗desired. The solution to the equation above results in values of σ
that are bigger than 1 and sometimes negative. If a value in this vector is bigger than 0 the value is set to 1 and
if the value is negative the value is set to 0. Thus, the solution does not yield an exact solution but it does allow
for flexibility in the number of thrusters and their respective orientations. Sizing of the thrusters depends on many
independent variables including the thrust T and the Isp. Using the Isp the exit velocity of the thruster can be
obtained by using the equation below

ve “ Ispg0 (143)

where g0 is the gravitational acceleration of the Earth at sea-level. Then the mass flow rate of the thruster can be
obtained using the equation below.

9mP “ T {ve (144)

Using this mass flow rate total propellant mass required can be computed assuming a certain duty cycle.
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9.6.4 Cross Products of Inertia Control

An interesting form of control is to take advantage of momentum dumping. Looking at the equation for angular
acceleration again (Eqn 63) this equation can be simplified for certain cases. For example, if the roll rate of the
satellite is set to be non-zero while the pitch rate and yaw rates are set to zero it is easy to see that if the inertia is
diagonal the derivative of angular velocity is zero. However, if the cross products of inertia are given by the matrix
below

Is “

»

–

Ixx Ixy Ixz
Ixy Iyy Iyz
Ixz Iyz Izz

fi

fl (145)

the derivative of angular velocity becomes
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again assuming the roll rate is non zero and the pitch rate is zero. This result shows that momentum can be
transferred to different axes provided the cross products of inertia are non-zero.

9.6.5 PID Control

For a conventional PID controller of an aircraft, the rudder, elevator and aileron commands are set to

δr “ ´Kvv

δe “ Kppθ ´ θcq `Kd
9θ

δa “ Kppϕ´ ϕcq `Kd
9ϕ

(147)

The Euler angle commands ϕc and θc are set using the following relationships:

ϕc “ Kppψ ´ ψcq `Kd
9ψ

θc “ Kppz ´ zcq `Kd 9z `KI

ş

z ´ zcdt
(148)

The control scheme defined above is a conventional inner loop-outer loop control of a fixed wing aircraft using a
PID tracking controller.

9.7 Controllability

Controllability is formally stated as a system where any initial state xp0q “ x0 and final state x1, t1 ą 0, there exists
a piecewise continuous input uptq such that xpt1q “ x1. For a fixed wing aircraft the system has 12 states with 8
dynamic modes and 4 zero or rigid body modes. For a fixed wing aircraft the system has 12 states with 8 dynamic
modes and 4 zero or rigid body modes. A conventional aircraft has 4 controls to control these 12 modes. The easiest
way to test the controllability of a system is to compute the controllability matrix. However, the controllability
matrix must be computed using a linearized model such that 9⃗x “ Ax⃗`Bu⃗. In order to do this the aircraft must be
in equilibrium. For this example the aircraft is set with an initial velocity of 20 m{s at an altitude of 200 m. The
altitude command is set to 200 m and the heading command is set to zero. Given the zero heading angle command
and the symmetry of the configurations investigated the rudder and aileron commands are set to zero. Thus, only
the thrust and elevator controls are activated for the trimming procedure. Each configuration is simulated for 200
seconds or until the derivatives of all states except 9x are within a required tolerance. Using this equilibrium point
a linear model can be computed by using forward finite differencing assuming that the aircraft model is put in the
form 9⃗x “ F px⃗, u⃗q.

9⃗
δx “

F px⃗0 ` ∆x⃗0, u⃗0q ´ F px⃗0, u⃗0q

∆x⃗
δ⃗x`

F px⃗0, u⃗0 ` ∆u⃗q ´ F px⃗0, u⃗0q

∆u⃗
δ⃗u (149)

This linear model is the classic linear model where
9⃗
δx “ Aδ⃗x ` Bδ⃗u. Using this linear model, the controllability

matrix can be computed as
WC “ rB AB A2B A3B ... AN´1Bs (150)

where N is the number of states in the system. With the controllability matrix formulated, the rank of the matrix
is computed. If the rankpWCq “ N the system is said to be controllable.
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10 Systems Engineering

Systems engineering is a branch of engineering used to help in the design of complex systems. The general V&V
diagram for a systems life cycle can be seen below.

Figure 12: Verification and Validation Diagram for a Systems Engineering Life Cycle [42]

The left side of the V&V diagram highlights all of the required design while the right side details the build.

10.1 Interface Diagrams

Interface Diagrams (IDs) are important for many reasons. The biggest reason that these diagrams are created
and maintained is to create visibility within each subsystem team in a systems engineering7 project. It is crucial
that each member working on a project has a general or even an expert understanding of each subsystem. During
the design process, it is important that each function of each subsystem’s component is documented so that the
current design selection is recorded and so each of the member’s is familiar with each subsystem and all of its
functionalities. The following image is the ID for the attitude control and maneuver electronics subsystem on the
Gemini Spacecraft.

Figure 13: ACME Interface Diagram from the Gemini Spacecraft[43]
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This is an example of an interface diagram for a small subsystem of a large systems engineering project. The
spacecraft requires several subsystems to work together in the design and fabrication process. Each of these
subsystems has their own ID as well. This is a good example to introduce you to what these diagrams are. The
left side of the image is the digital computer which has an accumulator which flows to the ladder logic block. From
the ladder logic flows several functions into both the attitude control and maneuver electronics and attitude display
blocks. This ID is simple since there are only four components with many functions, however, many complicated
systems can have extremely complex diagrams. The Figure below is an example of an ID for an entire spacecraft
with all of the subsystems included in the diagram.

Figure 14: New Horizons Interface Diagram[44]

10.2 Activity Diagrams

Activity diagrams are similar to a flowchart. It is a tool for representing the sequence of Actions that describe the
behavior of a Block or other structural element. The sequence of execution is defined using Control Flows. The
Actions in an activity diagram can contain Input and Output Pins which act as buffers for items that flow from
one action to another. Anything that can be produced, consumed, or conveyed by the system is considered to be
an item. Physical materials, energy, power, data, and information are examples of items[45].

Activity diagrams are useful for engineering modeling. It conveys high-level functions and operations to the
user. The main purpose of an activity diagram is to draw the activity or action flow of a system. Next, it is used to
describe the sequence from one activity to another. Finally, an activity diagram describes the parallel, branched,
and concurrent flow of the system [46].

Activity diagrams are important to the design process because they maintain coherence throughout the project.
If a system is composed of multiple, intertwining subsystems, a person can simply follow the activity diagrams to
understand how each component and subsystem interacts with one another. Activity diagrams also describe the
data flow of a system and when or where that data is created, converted or used. Overall, activity diagrams are
the roadmap of a system and describe the intricacies of how it operates.

As stated previously, activity diagrams denote how components and subsystems interact with each other. This
is accomplished through the use of swimlanes which keep separate the individual activities and object flows of a
component or subsystem. Swimlanes are the boxes which contain activities, however control and object flows can
traverse swimlanes. Activities which have inputs and outputs will also have a pin attached to them. This small
rectangular box denotes when matter, energy or data flow is created or destroyed.

The main purpose of activity diagrams is to show the control flow of the system. This control flow refers to the
execution path of an activity. Control flow is indicated by control nodes for which there are seven different kinds.
Each control node is described in the table below.
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Control Node Description Appearance

Initial Node The beginning of an activity sequence Black circle
Activity Final Node The end of an activity sequence Black circle within a circle
Flow Final Node The end of one branch of an activity sequence,

but not the entire activity diagram.
Circle with an ’X’ in it

Decision Node The splitting point of an activity flow based
on the outcome of a boolean operator such
as ‘isCommandValid ==True’. One flow in
comes in, while two flows come out as branch-
ing paths.

Diamond

Merge Node The merging point of two activity paths. Two
flows come in, while one flow comes out.

Diamond

Fork Node The distribution of an activity flow into mul-
tiple pathways. When one object or control
token comes in, it is duplicated into multiple
paths.

Black bar

Join Node The joining point of multiple synchronized
concurrent flows. Two concurrent flows come
in, while one flow comes out.

Black bar

11 GNC Design for CubeSATs

11.1 Trajectory Analysis

The trajectory of a spacecraft is crucial to the GNC subsystem. The type of orbit that the spacecraft is designed for
plays a large role in determining the components chosen for the attitude control, attitude estimation, and position
estimation.

There are five main trajectories that spacecrafts typically follow:

1. LEO (Low Earth Orbit) - Things that must be taken into account in this trajectory are aerodynamics, Earth
albedo, and space debris.

2. MEO (Medium Earth Orbit) - Van Allen Belts, which are radiation belts, need to be considered during the
design process.

3. GEO (Geosynchronous Orbit) - Most communication satellites are in geostationary orbit since the satellite
appears stationary and the communication dishes can be pointed directly at them and do not need to be
maneuvered to follow the satellite.

4. HEO (High Earth Orbit or Highly Elliptical Orbit) - In this case you might be well outside of the GPS
constellation, thus, constant position must be considered by an alternate means.

5. Deep Space - A deep space orbit is largely outside of any protective atmosphere, therefore radiation is a
dominant concern. Also, well beyond the GPS constellation.

6. Propulsion, magnetorquers, and reaction wheels are the three main mechanisms for controlling the attitude
of the spacecraft. Reaction wheels can be used universally, however, magnetorquers are only useful within a
magnetic field. Thus, within Low Earth Orbit (LEO) magnetorquers are incredibly useful, however in highly
elliptical orbit (HEO) they may not be nearly as useful. As for the third option, propulsion, it is really only
useful outside of a magnetic field when magnetorquers are not ideal. A middle Earth orbit (MEO) is unique
in that it can use everything that is offered in the LEO and HEO but it will continually travel through the
Van Allen Belts. The Van Allen Belts are pockets of radiation trapped by the Earth’s magnetic field which
require additional shielding onboard the spacecraft to mitigate its effects.

In LEO, it is common to use a Global Positioning System (GPS) to estimate the position of the spacecraft. This
component is most useful at lower altitudes because it is able to reach the GPS signal, however, as the altitude
increases and the spacecraft moves farther away from the signal, it is no longer helpful. This is when an integration
scheme may be the best possibility for position estimation. Integration schemes, such as RK-11, are tedious but are
commonly used in HEO. Since HEO’s have an enormous apogee compared to perigee, up to a 35:1 ratio, the need
for an alternate means to determine position is imperative[9][47].
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Much like a HEO, any deep space trajectory will more than likely take the spacecraft outside of the GPS
constellation. Therefore, in order to determine position the spacecraft must use NASA’s deep space network,
a numerical analysis, or another mathematical means. Communication with the spacecraft is another complex
variable when in a deep space trajectory. Because of the large amount of latency between the ground and the
spacecraft, the spacecraft will need to be able to autonomously operate without a constant uplink from the ground.
Lastly, the spacecraft will need additional radiation shielding when in deep space to protect itself. This will further
increase its mass and add further constraints to the GNC subsystem.

Attitude estimation can be determined by the use of magnetometers, however, similar to magnetorquers, they are
only useful within a magnetic field. Thus, magnetometers are used when the spacecraft is set to be in LEO. There
are several methods that can be used for attitude estimation, however, the only other one that greatly depends on
the orbit are horizon sensors which must be used in LEO.

11.2 Spacecraft Environment

The environment of space can have an enormous impact on the spacecraft and the GNC subsystem. The environment
is dependent on the trajectory of the spacecraft and at what altitude it is set to reach. The environment of space
changes as the spacecraft travels farther from the earth and there can be negative repercussions depending on the
components and materials chosen for the spacecraft.

There are four main environments that may affect a spacecraft:

1. Earth: Does not affect the design of the spacecraft but it is important to keep in mind that if components are
not commercial off the shelf (COTS), they need to be built in a lab

2. Launch: It is crucial to research the vibration requirements before launching. Again, if it is not commercial
off the shelf, a vibe test must be run to ensure the components survive.

3. LEO: This environment has many factors that must be considered including effects from the sun, thermal
changes, Van Allen Belts which account for a large amount of radiation thus radiation shielding must be
researched for the separate components.

4. Deep Space: There are some things such as meteorites that may need to be considered, however, there is not
much that can be done. This environment should not heavily affect the design. Note that the spacecraft is
going to undergo multiple types of disturbances as explained in the dynamic model section.

11.3 Spacecraft Attitude Control

Attitude control is the means by which the orientation of the spacecraft is maintained within the orbit. Throughout
the mission, the spacecraft experiences disturbance torques that are caused by a variety of sources, such as aerody-
namics, gravity gradient, and solar radiation pressure discussed previously. These torques impart momentum which
rotate the system away from its desired orientation. The purpose of attitude control is to reject these disturbance
torques while simultaneously pointing towards a desired orientation. Possible active mechanisms for attitude control
are magnetorquers, reaction wheels, thrust vector control, reaction control system, and control moment gyros.

There are several components that can be used for the attitude control of a satellite. Selecting the proper
component is dependent on the orbit and its apogee/perigee, the system’s requirements, and the risks associated
with the component. There are several steps involved with component selection. Typically the team will review
the requirements and perform a preliminary risk analysis. This will generally help narrow down which components
to use where. To determine the specific component, trade studies are conducted to compare the components from
different manufacturers to determine the best one for the project at hand.

11.3.1 Magnetorquers

The first option for attitude control is a magnetorquer. A magnetorquer, or torque rod, is built from electromagnetic
coils. These coils produce a magnetic field that interacts with another magnetic field, typically Earth’s, which in
turn produces a torque upon the satellite[48]. These components are used for changing the angular momentum of
the satellite. In addition to attitude control, magnetorquers are also used for detumbling the satellite. Detumbling
is a means of stabilizing the satellite after being inserted into the desired orbit[49]. The International Geomagnetic
Reference Field (IGRF) is a software that reports the magnetic field of the earth by using latitude, longitude,
and altitude from a GPS. This magnetic field is then used to determine the proper magnetic field required by the
magnetorquer to maneuver the satellite.
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Figure 15: Example Magnetorquer[50]

An example of magnetorquer effectiveness is its ability to detumble during an orbit, and how many orbits it will
take to completely detumble the spacecraft. First, the magnetorquer will have a magnetic moment value associated
with the physical parameters of the rod µ. First the average torque is computed by taking the magnetic moment
and multiplying it with the average field strength and the point (from IGRF model). Then, this average torque is
multiplied by total time of the orbit Tp to determine the magnetorquer’s momentum effectiveness over one orbit.

Note that the torque from the magnetorquer’s M⃗MT is substracted by the total disturbance torques M⃗D to obtain
the total effectiveness of the magnetorquers. From this, it is possible to calculate the number of orbits it will take
to detumble the spacecraft on an axis.

Norbits “
||H⃗S ||

TppM⃗MT ´ M⃗Dq
(151)

The magnetorquer effectiveness boils down to the difference in the total moment that the magnetorquers can
produce and the total disturbance momentum during the orbit. Then, the number of orbits that it will take for
the spacecraft to detumble in an axis is a function of the magnetorquer effectiveness divided by the initial angular
momentum in each axis.

11.3.2 Reaction Wheels

Reaction wheels are mechanical disks, or flywheels, that rotate the satellite during orbit. The reaction wheels take
in electrical power and provide a torque to the satellite[51]. This electrical power is provided to a DC motor which
then spins the reaction wheel. Because momentum must be conserved, angular momentum must also be conserved.
Thus, by Newton’s third law, when the reaction wheel rotates one direction the satellite rotates in the other. So, a
minimum of one reaction wheel is placed on each axis to control the rotation in all directions. The primary role of
a reaction wheel is to point the satellite without the use of any fuel.

Figure 16: Example Reaction Wheels[52]

The inertia storage for reaction wheels is a parameter that can be used to seek out the best reaction wheels for
the spacecraft. Once the inertia storage is computed, one can search for reaction wheels with the proper amount of
inertia storage required. For example, if a reaction wheel with an inertia storage of 50 mNms is needed, one can go
to Blue Canyon Technologies website to find the datasheets for their different reaction wheels. From there, it can
be determined that the best fit would be the RWP050 reaction wheels[53].

41



Once an estimate of the inertia of the satellite is obtained, they can be used to compute the required inertia
storage of the reaction wheels. The tip off rate for a spacecraft is the rate at which the spacecraft’s angular velocity
is altered due to its deployment. The following equation shows how momentum can be calculated due to tip off.

||H⃗S || “ maxpISqωTORf (152)

where ωTOR is typically set at 10 deg/s and f the factor of safety is typically set to 2.

11.3.3 Thrust Vector Control (TVC)

When aerodynamic control surfaces are ineffective, TVC is a solution to maintain the vehicle’s correct attitude for
the thrust duration. It accomplishes this goal by gimballing (rotating) the thrust chamber or by redirecting the
exhaust-gas flow to develop torque [54]. However, thrust vectoring only moves the vehicle in two directions. TVC
is typically used to control pitch and yaw attitude on boosters and upper stages.

Figure 17: TVC Diagram[55]

11.3.4 Reaction Control System (RCS)

Reaction control systems are small thrusters. These thrusters alter the speed of the spacecraft’s rotational or
spinning motion. They are good for making quick turns and are used for getting to new orientations quickly.
Reaction control thrusters are typically in ”couples” or pairs of thrusters that together can spin the spacecraft
without changing the lateral velocity. In addition, these thrusters usually work great with reaction wheels. When
reaction wheels slow down, they produce a force. The RCS will oppose this force which allows the spacecraft to
remain in the intended orientation[56].
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Figure 18: Example RCS Thruster [57]

11.3.5 Control Moment Gyro

A CMG is a spinning rotor at a constant speed [25]. Similar to a reaction wheel, a CMG also has a spinning
fly-wheel controlled by a brushless motor. However, the spin axis of a CMG can rotate with the help of a second
motor placed on a gimbal axis. If the angular momentum can only rotate in a fixed plane, it is known as a single
gimbal control moment gyros (SGCMG). GMCS are usually more efficient and produce higher torque than reaction
wheels as the size of the unit increases[58].

Figure 19: Example CMG [59]

11.4 Spacecraft Attitude Determination

Attitude determination is a fundamental portion of the ADACS board and requires the vehicle to determine it’s
orientation with respect to an inertial frame. The sections that follow detail the sensors and fundamental attitude
determination algorithms derived thus far.

11.4.1 Sensor Overview

There are a multitude of sensors that are typically used on board small sats. Note that most satellites use a
combination of these sensors rather than using all of them on one single satellite.

1. Magnetometers: Only used in LEO, they measure the magnetic field in the body frame β⃗B “ rβx, βy, βzsT .
2. Rate Gyros: These sensors measure the angular velocity of the spacecraft in the body frame p, q, r.
3. Solar Sensors: These sensors can be coarse analog sensors with an accuracy of 45 degrees or can be high

precision digital sensors that have accuracy down to 1 degree. Sun senors return an azimuth υ and declination
δ angle which can be then translated into a vector in the body frame S⃗B .

4. Horizon Sensors: Horizon sensors are typically used in LEO as they find the horizon of the Earth and use
that for orientation information. These sensors also return an azimuth and declination angle that can be
translated into a body frame vector H⃗B .
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5. Startrackers: Startrackers utilize a large aperture digital camera to photograph a starmap within the field
of view of the lens. The photographed stars are then cross referenced with a starmap database and return
the full quaternion vector.

Some issues arise with all of these sensors. For example, magnetometers must be activated when magnetorquers
are turned off otherwise those artificial magnetic fields will pollute the data. Rate gyros are prone to drift while
solar sensors can be quite inaccurate. Startrackers also run the risk of being blinded by the Sun and/or the Moon
thus it is possible to design an attitude determination algorithm that utilizes the Sun’s ephemeris data along with
the Moon’s ephemeris data in the event that the startracker is obscured by the Sun/Moon.

11.4.2 StarTracker

A star tracker is another critical component of attitude control. This device is a camera that points out from one
face of the satellite. The camera is able to detect the stars in its field of view (FOV) and determine the location of
the satellite based on this. Specifically, the star tracker images the “starscape” to identify the known planets and
stars, and compares the imaged locations to the known locations using the SPICE Toolkit[60]. NASA Jet Propulsion
Laboratory (JPL) has produced the SPICE Toolkit for knowledge of the location of the planetary bodies and stars
and specific times[61].

Figure 20: Example StarTracker [62]

11.4.3 Sun Sensors

A sun sensor is a device that senses the sun’s direction to measure the position of the sun with respect to the
sensor’s position. There are three types of sun sensors. The first one is an analog sensor whose output signal is a
continuous function of the Sun angle. Next is a sun presence sensor which provides a constant output signal when
it senses the sunlight. The last one is a digital sensor that produces encoded discrete output that is measured by
the sun angle function.

Sun sensors work based on the entry of light into a thin slit on top of a rectangular chamber with the bottom
part lined with a group of light-sensitive cells. The chamber casts an image of a thin line on the chamber bottom.
The cells at the bottom of the rectangular chamber measure the distance of the image and the refraction angle by
using the chamber height. The cells convert the incoming photons into electrons and develop voltages which are
converted into digital signals. the direction of the sun can be computed when the sensors are perpendicular to each
other [63].
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Figure 21: Example Sun Sensor [31]

11.4.4 Horizon Sensor

The horizon sensor is a sensor used by spacecraft in LEO to determine the location of the Earth’s horizon. There
are two main types of horizon sensors: statics and scanning. A static horizon sensor is able to detect the infrared
radiation emitting from the Earth’s surface to locate the horizon of Earth. Scanning horizon sensors are much more
complicated and use a system consisting of a spinning mirror to direct light onto a bolometer. This bolometer
can sense when the infrared signal is present or lost. So, as the mirror rotates and reflects infrared light into the
bolometer, the bolometer is able to detect when the signal is present or lost to determine the edge of the horizon[64].

Figure 22: Example Horizon Sensor [65]

11.4.5 Deep Space

As explained earlier, in deep space it is possible to obtain a vector to the Moon to be used in the attitude determi-
nation algorithm. The Moon sensor would give a vector to the Moon in the body frame M⃗B while an inertial vector
would be needed M⃗I . This inertial Moon vector could be obtained via the Moon’s ephemeris data which could be
loaded onto the satellite’s processor and use the orbital elements of the Moon to determine its position relative to
the Earth. However, the Moon’s ephemeris data would more than likely give the Moon’s position relative to the
Earth (r⃗CÑK). The vector M⃗I would then be given by

M⃗I “ r⃗CÑK ´ r⃗B (153)

where r⃗B is the satellite’s position relative to the Earth. Note however that the position of the satellite relative to
the Earth would need to be obtained via the Deep Space Network (DSN) and a combination of state estimation
by integrating the orbital equations. The reference paper [10] is a great paper that details all the different kinds of
sensors and their algorithms. This section will eventually be supplemented by the material in that reference paper.
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11.5 Position Estimation

Position estimation is for determining the placement or location of the spacecraft in orbit. This can often be confused
with attitude estimation, however, this can be clarified with an analogy. A human’s posture is their attitude while
their location, or place in reference to something else, is their position. This analogy can be transferred to spacecraft
attitude and position. Position estimation is how mission control determines the location of the spacecraft in space.
It is vital for the spacecraft to know its position in order for the on board sensors to work as intended. Position
estimation is similar to attitude control in the sense that the orbit plays a large role in determining the proper
component. The major options for attitude estimation are Global Positioning Systems and the Ground Station
Network.

11.6 Trade Studies

Tradeoffs and considerations are analysis tools used to compare different components. It is not always obvious which
component is best for a subsystem function. As shown in the previous sections, there are several options for attitude
control, attitude estimation, and position estimation. It may not stand out at first glance which components are
the best, so it is up to the team to perform a proper tradeoff analysis, a.k.a a trade study. What this typically
looks like is a comparison of the different parameters of the components. For example, if the GNC team decides to
look at an integrated system for attitude estimation, a trade study can be conducted to compare the mass, power,
volume, and momentum storage for different Blue Canyon Technologies XACT systems [53]. It is important to keep
this trade study organized and regularly updated, so it is recommended that a table is created to compare these
parameters.

The name “tradeoff” comes from the fact that for a system it is typical that one feature must be compromised
for the other. For example, to get more power, it is probably reasonable to assume that volume will be compromised
because the size of the component will need to increase to fit a larger power supply. Another example may be that
in order to increase the volume of a component to fit a larger payload, the mass will be compromised and may
increase. These compromises especially become issues when they interfere with the subsystem requirements.

11.7 Risks

Risk assessments are arguably the most important task for the GNC team. It is crucial that the entire system is
taken into consideration and assessed for possible failures because only one part needs to fail to cripple the whole
mission. This includes non physical issues such as increased lead times on parts for example. The purpose of a risk
assessment is to identify all possible risks, their severity and likelihood and to come up with mitigation strategies
for those risks.

The purpose of risk assessments is to determine mitigation strategies so that the identified risks may be prevented.
These mitigations are discussed amongst the team and heavily considered while designing the subsystem. Mitigation
strategies can range anywhere from simply creating a preflight checklist to diverting control from one component
to another in the event of a failure. These strategies are the main purpose of creating a risk analysis in the first
place, so careful deliberation should be used when creating them.

The best way to conduct a risk assessment is by creating a risk table for the GNC subsystem. A risk table will
list out the possible risks determined by the team and their subsequent mitigation strategies. It will also list out
the likelihood and severity of each individual risk as decided by the team. These can be determined in any way
deemed reasonable by the team, but is most often used on a scale of one to five for each category. These values can
then be input into a risk criticality matrix which shows which risks are of the greatest threat level.

It is important that risk statements are written in a specific way to avoid any confusion or miscommunication
between the different subteams. A risk statement consists of four parts: the condition, departure, asset and
consequence. The condition is a single phrase that describes the current key fact-based situation or environment
that is causing concern, doubt, anxiety, or uneasiness. The departure describes a possible change from the design
or plan. It is an undesired event that is made credible or more likely as a result of the condition. The asset
is an element of the system or plan. It represents the primary resource that is affected by the individual risk.
The consequence is a single phrase that describes the foreseeable, credible negative impact(s) to meet performance
requirements. A proper risk statement should utilize these four parts in a format similar to the following: “Given
that [CONDITION], there is a possibility of [DEPARTURE] adversely impacting [ASSET], which can result in
[CONSEQUENCE]”
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11.8 Conclusions

The GNC subsystem’s purpose is to know where the spacecraft is, where it needs to go, and determine how it will get
there. These requirements are determined by the overall mission goal of the spacecraft. The system constraints are
divided into three main categories: the attitude control, attitude estimation, and position estimation. The attitude
control is how the spacecraft will maintain its current orientation during orbit. Magnetorquers, reaction wheels,
thrust vector control, reaction control systems, and control moment gyros are all common components used to
counteract the disturbance torques and maintain the desired orientation. Attitude estimation is how the spacecraft
estimates its current orientation. This is commonly achieved by star trackers, sun sensors, magnetometers, rate
gyros, accelerometers, and horizon sensors. Lastly, the position estimation is knowing the precise location of the
satellite during its orbit. GPS and the GSN are the two most common methods for determining the satellites
position.

Not only are the components important but one must also consider the trade-offs and risks associated with the
mission. Risks must be assessed and properly mitigated in order to ensure the safety and success of the spacecraft.
This is done by creating risk tables using if-then terminology.

12 Radio Controlled Aircraft Design

Many principles for large aircraft design can be applied to smaller radio controlled aircraft but understand that
many of the aerodynamic principles are not quite well defined for slow and small aircraft. These aircraft have low
Reynolds number which often exhibits odd phenomena. For example, airfoil selection is really not so much a design
point other than ease of manufacturing rather than maximizing lift coefficient. Remember that Reynolds number
can be defined from the equation below where ρ is the density at sea-level (1.225 kg/m3 in SI units), V is the desired
flight speed, c̄ is the mean aerodynamic chord and µ8 is the viscosity of air which in SI units is 1.81e-5 kg{pm´ sq.

Re “
ρV c̄

µ8

(154)

You can tell that flying a small aircraft (c̄) and flying slow pV q results in a low Reynolds number. Either way
the procedure below has produced some great aircraft and the tools you’ll learn along the way will help you in your
future aerospace engineering career. If you’re not an engineer then this text will at least give you an appreciation
for what goes into aircraft design. If you’d much rather watch youtube videos than read this document, feel free to
watch my Youtube playlist on radio controlled aircraft design[66]

12.1 Vehicle Type Selection and Requirements

In the very beginning of your design you need to decide on the type of aircraft you want to build. Designing a
glider versus an aerobatic airplane will result in vastly different engineering design decisions. For example, a glider
is going to have very long slender wings while an aerobatic airplane is going to have somewhat shorter wings with
large control surfaces. I suggest you select from the following types of aircraft and then move on: Gliders, Trainers,
Sport Aerobatic, Racers. If you’d like to build a scale aircraft there isn’t much to design since the shape of the
aircraft is pretty much built. If you do go with a scale aircraft this textbook isn’t really for you since you aren’t
really building a scratch build aircraft. You’re more just copying someone else’s design. In that case you may as
well just buy a kit or watch some videos on balsa wood construction and an overview of all the electronics required
for RC aircraft flight.

If you selected one of the other styles you’re ready to move onto to the next stage which is requirements.
There is so much literature on Systems Engineering, top level requirements, functional requirements and derived
requirements. The bottom line is you need to determine what you want your aircraft to do. Do you want it to fly
straight up, upside down? Do you want the aircraft to be hand launched? Land on a runway? Determine what
you want the aircraft to do and create a bulleted list of those requirements. Throughout the design you can refer
to these requirements and make sure you are satisfying these requirements. If this is your first build then you may
just have one requirement and that is to take off and land without crashing. But think a bit deeper. Do you want
to turn the vehicle? Do you want full channel control for roll, pitch and yaw or just yaw control? Do you want
landing gear? What sort of flying characteristics do you want? Be as specific as possible here.
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12.2 Initial Design - Hand Sketch and Aspect Ratio

Once you have an idea of what the aircraft type is and what the requirements are it’s time to hand sketch your
aircraft. Try and use engineering paper, french curves, a ruler and a compass. Make this hand sketch look nice
so you can use it in your future design. Draw your sketch to scale. You might be wondering, “how do I draw
the aircraft without knowing what my wing loading or thrust to weight ratio is?”. The answer comes from my
late aircraft design professor Dr. Mikolowski (RIP). He would always say “If it looks good, it flies good”. After
designing so many aircraft and seeing so many scratch builds from my students I can honestly say that this is true
100%. If you’re reading this now it means that there is already over 100 years of aircraft technology on the internet
for you to research and see what other aircraft look like. Make your aircraft look like that but make sure it fits
into your aircraft type and make sure it satisfies your requirements from above. If one of your requirements was to
hand launch, then make sure your drawing reflects a vehicle without landing gear and a place to grab the aircraft.
If you wanted full channel support make sure to include all the control surfaces. Think about where you want the
propulsion system to go and how you’re going to access the electronics before you fly. Think about what you want
the wing to look like. Make it as big as you think it needs to fly. Use your intuition. This is an art. So much of
engineering is an art.

Once your aircraft sketch is complete (make sure to do a front view, side view and top view of your aircraft),
it’s time to take down some wing characteristics. This is why you need to draw your sketch to scale. Measure the
length of the wing (wingspan b) and the chord at the root (cr) and the tip (ct). Compute the area of the wing (S)
using the area of a trapezoid or rectangle depending on the shape of your wing. Once you have the wingspan and
area you can compute the aspect ratio of your aircraft.

AR “
b2

S
(155)

The general rule is that the larger the aspect ratio the more aerodynamically efficient your aircraft will be.
This is why gliders have very long and slender wings. At the same time, high aspect ratio wings suffer from larger
bending moments and can flex considerably in flight. Finally, it’s important to compute the mean aerodynamic
chord of the wing. This is basically the average chord of your wing. If you create a rectangular wing your mean
aerodynamic chord is just the chord of the wing since it’s constant. If not you’ll need to integrate over the length
of the wing using the formula below where y = 0 is the centerline of the vehicle and y=b/2 is the wingtip on the
right side[67]. The parameter cpyq is the chord length as a function of y.

c̄ “
2

S

ż b{2

0

cpyq2dy (156)

12.3 Weight Estimate - Tabular Approach

Once you have an idea of the overall shape it’s time to estimate how heavy the aircraft will be. First think about
the fundamental components of an aircraft. If you’re not familiar with any of the components below, just type the
item into Google and you’ll find numerous articles and Youtube Videos about each component.

1. ESC - Electronic Speed Controller
2. Battery - Assume for now that you’ll be using a 1500mAh 3S Battery unless you’re building a micro aircraft

in which case you might end up using a 600 mAh 2S or even a 300 mAh 1S. Think about the size of your
aircraft. You will do more sophisticated battery design in the future.

3. Motor and Propeller - Again select something that is in the ballpark of the aircraft you’re building. You’ll do
a redesign later.

4. Servos
5. Receiver
6. Control Linkages and Servo Horns
7. Fuselage
8. Main Wing
9. Tail both Horizontal and Vertical
10. Payload

For each of the components above you need to estimate the weight of these components. The only way to do
that is to either look up the weight of similar aircraft to the one you’re designing or find components that you
think will work for your aircraft and add up all of the weights. The most difficult part is going to be estimating the
empty weight of the aircraft which is just the structure of the aircraft. For these estimates you need to decide what
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materials you plan on using. Is your aircraft made out of foam, balsa, carbon fiber or some type of combination.
Perform an initial material selection and then use that to estimate your weight. Create a table in a spreadsheet type
program or a numerical computer program so that you can go back and change weights as your design progresses.
Use the spreadsheet or numerical program to compute the total weight of your aircraft. This is your maximum
takeoff weight.

12.4 Airfoil Selection and 2D and 3D Lift

The section 8.4 details the aerodynamic forces on the aircraft. In this stage of design we will only be looking at the
lift equation.

L “
1

2
ρV 2SCL (157)

The coefficient of lift CL is the lift coefficient of the aircraft. This coefficient is a function of Reynolds number,
angle of attack, airfoil shape and wing shape. Recall that the angle of attack is the angle between the zero lift line
of the airfoil and the free stream air. Breaking the velocity vector into components yields the equation below where
w is the airspeed along the z-axis of the vehicle and u is the velocity along the x-axis.

α “ tan´1
´w

u

¯

(158)

Using the angle of attack as a parameter, the lift coefficient can be expanded to the following:

CL “ CLαpα ´ α0q (159)

The parameter α0 is the angle of attack that results in zero lift. This is a function of the airfoil shape. The parameter
CLα is the lift curve slope and is a function of airfoil shape, wing shape and Reynolds number. In order to remove,
wing shape from the design, the aspect ratio is used to convert the wing lift to a sectional airfoil coefficient.

CLα “
Clα

1 `
Clα

πeAR

(160)

The parameter e is an efficiency parameter which is often assumed to be 80-90%. The coefficient, Clα is the airfoil
lift curve slope which is different than the wing lift curve slope. The wing lift curve slope will always be smaller
than the airfoil lift curve slope. This is because of an effect called wing tip vortices. Wing tip vortices are an
aerodynamic effect where high pressure from the bottom of the wing moves around the wingtips to the area of low
pressure. The only way to mitigate these vortices is by installing winglets or increasing the aspect ratio. Note that
winglets increase drag and weight which is why you don’t typically see them on RC aircraft. The coefficient Clα is
then simply a function of airfoil shape and Reynolds number. This is what is often referred to as 2D lift. It is the
lift of airfoils which are two dimensional rather than 3D lift which is over an entire wing. It is at this point that
airfoil selection and design can be used. The website airfoiltools.com is a great resource for plotting lift curve
slopes of various airfoil shapes as a function of Reynolds number. I also have a great Youtube video on how to
use XFLR5 (pronounced X-Flyer Five)[68]. A more comprehensive guide on XFLR5 can be found in [69] while the
software itself can be downloaded in [70]. The basics of airfoil selection then break down into the following process.

First, using your max takeoff weight and cruise flight speed, compute the lift coefficient required in cruise. This
assumes that lift equals weight.

CL “
2W

ρV 2S
(161)

Then using your flight speed and chord length, compute the Reynolds number of your aircraft. Use this Reynolds
number and airfoiltools or XFLR5 to compute the sectional lift characteristics of various airfoils. Airfoil selection
can be as complicated as you make it but you’re looking for the highest lift to drag ratio airfoil. Another simple
way is to just select the airfoil with the highest sectional lift coefficient. Another item to consider is manufacturing.
Some airfoils may be feasible for full sized aircraft but not for RC flyers. My recommendation is to build an aircraft
with a Clark-Y airfoil. They are easy to cut with balsa or shape with foam and have good lift to drag characteristics.
Note that this airfoil is cambered. If you want to fly upside down I suggest you use a symmetric airfoil like a NACA
0012 or NACA 0014 is you need a bit more thickness to fit a wing spar through the airfoil. Once you have your
airfoil selected, use the lift curve slope to estimate Clα by fitting a linear trend line to the portion of the graph
before stall. Also make sure to take note of what the zero lift angle of attack is. You can then compute the wing
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lift curve slope by using equation 160. Once you have CLα, you can compute the angle of attack needed for cruise.
Make sure to convert α0 to radians before you use the equation below.

α “
CL
CLα

` α0 (162)

The resulting answer will be in radians and needs to be converted to degrees to make sure you are not close to stall.
Typically in cruise, the angle of attack is only a few degrees with perhaps 8 degrees on the high end. If the answer
you receive is higher than that it can mean a few things which may involve a redesign.

1. The simplest way to get more lift is to fly faster. The problem is you need a bigger motor which will increase
your weight which will require more lift and more angle of attack. Flying faster will also change your Reynolds
number.

2. You can increase the aspect ratio of your wing which will make your aircraft more efficient. The problem is
that will increase the bending moment at the root creating the need for stronger materials at the root which
also increases weight. This will also change your mean aerodynamic chord which will change your Reynolds
number.

3. You can increase the area of the wing. This will also increase drag and weight but if the material you are using
has a high lift to weight ratio then adding more wing area might be a good option. Depending on how you
change the aircraft wing shape, the aspect ratio and/or the mean aerodynamic chord might change meaning
you’ll have to recompute the wing lift curve slope as well as the Reynolds number.

4. If you are using a symmetric airfoil it’s possible you could forgo flying upside down and switch to a cambered
airfoil which has more lift.

Regardless of what you do make sure you angle of attack in cruise is low which will reduce drag. It’s optimal to
fly at the aircraft’s highest lift to drag ratio but radio controlled aircraft don’t typically do that. It is also important
to compute the stall speed of your aircraft. You’d like this value to be as small as possible.

Vstall “

d

2W

ρSCLmax
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In this case CLmax is the maximum lift coefficient your aircraft can obtain before stalling. If the stall speed is too
high for your design go back and redesign your vehicle. Once you have redesigned your vehicle to fit within tolerable
limits it’s time to look at some aircraft performance characteristics which include the W/S (wing loading) and the
T/W (thrust to weight ratio).

12.5 Wing Loading and Thrust to Weight Ratio

The wing loading is defined as the weight of the aircraft over the main wing area (W/S). Intuitively though, it is
the amount of lift required per square foot of wing area for your aircraft. If the wing loading is high it means you
have a heavy aircraft with small wings which means you either need very high lift creating devices like flaps and
cambered airfoils or the aircraft needs to fly very fast. You can imagine that warbirds and racers have higher wing
loading then say a glider which has very low wing loading. In this case the aircraft can fly slow because the aircraft
is light with larger wings. At this stage of the design you already know the maximum weight of the aircraft and
the main wing area so it’s simple to calculate. For larger aircraft, there is a standard wing loading for aircraft as
well as another parameter called the wetted wing loading which is the weight divided by the wetted area of the
wing. The wetted area is basically the surface area of the wing. For radio controlled aircraft though the wing cube
loading is used to ensure the aircraft is of the correct type.

WCL “
W

S3{2
(164)

Using the units of ounces for the weight and sqft for the area the table below can be used to ensure that your
aircraft is in the correct ballpark[71].

Type of Aircraft WCL (oz{ft3)

Gliders under 4
Trainers 5-7

Sport Aerobatic 8-10
Racers 11-13
Scale over 15
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After computing your WCL it is possible that for the type of aircraft you’ve designed, your value falls well
outside the limits of the table above. In that case you must redesign your vehicle by changing the shape of the
wings or choosing a different material to lighten up the aircraft. In my experience, if you are designing a racer or
scale aircraft and you wing loading is smaller than above this is typically ok so long as you have enough thrust to
fly fast. In this case you may just have a very fast trainer which isn’t necessarily a bad thing. The danger is when
trying to design a glider with a WCL of over 15. That aircraft will exhibit a very high stall speed and poor lift to
drag ratio (L/D) characteristics. Once you are satisfied with your WCL you can move on to computing the thrust
to weight ration (T/W).

For full-sized aircraft the T/W can range from 0.6 for passenger aircraft all the way up to 1.2 or higher for
get aircraft. For R/C aircraft the same general rule applies. If your aircraft is a trainer with landing gear you
can probably get away with a T/W of 0.6 but I would not recommend it. My recommendation would be to go no
lower than 0.8 which would mean your maximum take off thrust is 80% of your maximum takeoff weight. In this
configuration, the aircraft will accelerate down the runway until just over stall speed at which point the aircraft can
takeoff. If you have strict runway requirements, airborne requirements like vertical flight or loops and snap rolls,
I recommend increasing the size of your motor, ESC, battery, propeller combination to yield a T/W of at least
1.2. In this case, even if your wings are not very efficient, you can fly on thrust alone. You may not exhibit great
aerodynamic performance and still have a high stall speed but worst case you can land the aircraft like a harrier
which I’ve done before.

Once you’ve selected your T/W you need to go find a battery/ESC/motor/propeller combination that yields the
thrust you need. Tiger Motors website is typically very good at listing the motor, propeller and battery combination
to give you a certain amount of thrust. Unfortunately, the hobbyist market is not using standard engineering units
and thrust is reported in grams. My recommendation then is to use the following formula to compute your thrust
required in grams. This assumes that 4.44 N = 1 lbf and that you are on Earth with 9.81 m{s2 of gravitational
acceleration. It’d be nice if the community just reported thrust in lbf but alas that is not the case.

Tgrams “ pT {W qWlbf{453.59 (165)

Remember, when selecting a propulsion system, you will need to go back and update your weight estimate with
the new values you’ve obtained. This may effect your wing area slightly and may even require you to choose a new
motor if you were very off the first time you estimated the weight. This is an iterative process and every step builds
on the previous step. The hope is that each iteration is not very different than the last.

12.6 Stability and Control, Center of Mass, Aerodynamic Center and Static Margin

Stability and Control is a very large section of literature and could be taught over an entire semester. Stability just
ensure the aircraft flies steady and level and is typically broken up into lateral (side to side) and longitdutinal (front
to back) stability. Lateral stability in my opinion is more complex but to ensure you aircraft is laterally stable, just
be sure your aircraft is symmetric about the left and right planes and also be sure that your tail surface provides
adequate yaw stability through the use of a vertical tail or a V-tail if you opted for a combined control surface.
Longitudinal stability involved two more calculations that must be done before the aircraft can be built. These two
parameters are the center of mass and the aerodynamic center. The center of mass is a very simple quantity to
compute by just using the center of mass formula shown below.

xcm “
ÿ xiWi

W
(166)

In the equation above, xi is the distance of a component from a reference point on the aircraft. I typically use the
nose of the fuselage as the reference point. For standard aircraft the motor would have a negative distance from
the reference point and the receiver and battery would have a positive value. The value Wi is then the weight of
each component. Placing servos, receivers and other electronics is a design parameter to move your center of mass
while the fuselage is typically a parameter that must be estimated at this stage. My recommendation is to break
the aircraft into fuselage, tail boom, tail and main wing components and treat each one as a component. You will
notice that moving the main wing and battery drastically changes the center of mass.

The next parameter is the aerodynamic center. The main wing looking from the top is basically a 2D distributed
load. As such the center of lift must be computed. Assuming the main wing is symmetric, the aerodynamic center
will lie on the center line of the aircraft. In this case the problem reduces to a 1D computation. In order to compute
the center of lift along the x-axis (pointing towards the nose) you need to compute the weighted average of the
center of lift of each airfoil. In this case if you have a symmetric airfoil, the center of lift is 1/4 of the chord length.
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If you have a cambered airfoil the center of lift is typically in the 30% range so you can use 25% for a symmetric
airfoil and something slightly larger for a cambered airfoil. Once you determined the center of lift for the airfoil
you can use the equation below for the aerodynamic center of the entire wing[14, 67].

xac “
2

S

ż b{2

0

xaf pyqcpyqdy (167)

The parameter xaf pyq is the location of the center of lift of the airfoil as a function of y. Once you have the
aerodynamic center and the center of mass you can compute the static margin of your aircraft.

Sm “
xac ´ xcm

c̄
(168)

The value of the static margin is not as important as the sign. If measuring from the nose of the aircraft the
aerodynamic center must be behind the center of mass. To explain this think about stable aerodynamic vehicles
like darts, or arrows. Notice that darts and arrows have fletching in the rear to create aerodynamic surfaces farther
back. Unstable vehicles like frisbees and footballs have aerodynamic centers in front of the center of mass in which
case they must spin in order to provide stability just like a bike tire or a dreidel. Using the equation above, if xac
is behind xcm it means that xac is bigger or more positive than xcm in which case your static margin would be
positive.

"

Sm ą 0, stable
Sm ă 0, unstable

*

(169)

If you perform these two calculations and find your static margin to be negative it means that you need to shift
your battery and other components more towards the nose or move your wings backwards. Note that moving your
wing backward will also shift your center of mass so try and move some components forward before shifting your
wings around.

The final stage of this design is Control. Aircraft in flight require 3 control surfaces to provide roll, pitch and yaw
control. These include the aileron, elevator and rudder. It’s possible to fly aircraft without a rudder by performing
a “bank and yank” maneuever and it’s also possible to combine elevators and ailerons into something called elevons.
I’ve even seen some ruddervators. Whatever you decide to do make sure that you can adequately control all three
axes or if one axis is uncontrollable be sure that that axis is stable. I’ve seen some aircraft that only have rudder
and elevator and no ailerons. I find these aircraft hard to control but the idea is you move the rudder to yaw
the aircraft which also rolls the aircraft allowing you to turn. It creates a very slow aircraft but it also reduces
complexity if that is something you’re interested in doing.

12.7 Iteration, Detailed Sketch and Final Checks

This section in my opinion is absolutely essential. It involves going back and making sure that your current design
satisfies your requirements you originally wrote in the first section of this design. Recompute your aspect ratio, and
update your weight estimate based on any calculations you’ve obtained. This may be finding better estimates for
parts or materials. You also need to create a better sketch and determine where EVERY component is going to go
and what sort of support you will need. If you’re building your aircraft out of balsa you will need detailed sketches
on rib, spar and stringer placement. All of these updates will change your weight estimate which will change your
WCL and your T/W. Be sure your WCL and T/W are within tolerable bounds. You also need to go back and
compute you angle of attack during cruise and be sure you are not in a stall regime. Be realistic with your flight
speed as well during cruise. Go back and compute your stall speed. Is it realistic? If not then go back and make
some minor changes. Finally, be sure you aircraft is longitudinally and laterally stable and that you can control
all 3 axes or at least the uncontrollable axes are stable. Once you are certain the aircraft will fly you can begin
purchasing components.

12.8 Computer Aided Design (CAD)

This section is optional but sometimes it’s just nice to have a CAD view of your aircraft especially if you are 3D
printing parts or perhaps getting some component machined out of aluminum. Some CAD programs are even so
powerful they will compute bending loads, center of mass and even drag. Use whatever tools are at your disposal
to help you in the design.
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12.9 Purchase Components

I wanted to write an entire section on purchasing component to go over a few common mishaps. First, if you are
using a LiPo battery be sure to familiarize yourself with the dangers of LiPo batteries. I’ve almost caught my entire
lab on fire by charging a damaged LiPo but all batteries can technically catch fire. Please be careful. Furthermore,
be sure you purchase an ESC with the right current rating. If you overload an ESC with too much current it will
also catch on fire. The servos you buy have a torque rating. Be sure your servos can overcome the aerodynamic
torque estimated in flight. Generally servos are sized by the size of the aircraft so you can just purchase servos that
are designed for your particular size aircraft. The motor you purchase is going to need a mounting point. Consider
designing a motor plate or even a firewall depending on the type of aircraft. When purchasing materials make sure
to get them from a good brand. Companies like Flite Test sell really good double plated foam that is designed for
RC aircraft. Purchasing Dollar Tree foam board is totally acceptable but just understand that after a crash or two
the foam board won’t work anymore. Also consider what type of glue you are planning on using. Certain types of
glue can actually melt foam and hot glue can melt certain types of foam as well. CA glue is very good for balsa but
will melt foam. Two part epoxy is strong but it weighs more than CA glue and takes a long time to set compared
to other types of glue. Also be sure to be lenient on glue where you can. Glue just adds weight and that will reduce
your performance. Finally, make sure your receiver supports the number of servos you plan on using and be sure
that your transmitter and receiver are compatible. All of my aircraft use Spektrum technology but you may opt to
use a different type of protocol.

Finally, when all components come in be sure to test them. DOA stands for dead on arrival and so many
components come DOA. Before you spend the time to install all your components in your aircraft and then throw
the aircraft in the air make sure you test every component and be sure it works. I also suggest weighing each
component on a small scale and updating your weight estimate to ensure everything is within tolerable bounds.

12.10 Building

Once you have all necessary resources to build your aircraft I recommend starting with the fuselage or main wing
and then installing all componets. I recommend taking pictures of your build in case you need to reference them
later. Go slow. If you break something it will be expensive. Also remember that if the aircraft looks good it
flies good. This means that gluing all components properly and having the aircraft be as smooth as possible will
translate to better flight performance.

12.11 Flying

Before you fly I recommend finding a pilot will more experience than yourself to check out the aircraft and make
sure the aircraft has been built properly. You may even want to discuss your initial design before you even begin
building to make sure there are no major critical issues. If you want to fly the aircraft yourself I suggest flying an
aircraft using a simulator. My recommendation is the free program CRRCSim[72]. It is not a great simulator by
any means but it will at least familiarize yourself with aircraft controls. Before you fly make sure to build yourself
a pre and post flight check list. I’ve included my pre and post flight check list that I use before every flight test.

12.11.1 Day Before Flight Checklist

1. Assess the weather to ensure acceptable flight conditions

(a) No strong winds (insert windspeed conditions)
(b) No rain or lighting

2. State and confirm the purpose of the flight test - Set clear goals the aircraft should complete before test
3. Check for damage to the plane and if the moving parts are secured including motor and electronic speed

control and all components
4. Check for a full battery charge on plane and controller; charge all electronics if not fully charged
5. Perform Ground Safety Check List
6. Take note of items that need to be repaired even if the flight test is not implemented

12.11.2 Ground Safety Check List

1. Ensure that propellor is off
2. Turn on TX
3. Connect battery to aircraft
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4. Ensure all control surfaces are operational and moving the correct way
5. Spin up motor and be sure that motor is spinning the correct way
6. Perform a range check where pilot moves control surfaces with 50% or more throttle while walking away from

aircraft. Ensure that pilot can move at least 300 feet away without any dropouts.
7. Remove battery and install propeller
8. Reconnect battery.
9. Using safety glasses, apply full throttle to TX and ensure that adequate thrust is generated to fly aircraft.

Leave full throttle applied for at least 30 seconds to be sure no component. fails. Better to fail on the ground
than in the air.

12.11.3 Preflight Checklist

1. Perform all “Day Before Flight” Checks
2. Perform Ground Safety Checks
3. Check for any damage to any components including the battery
4. Install Prop
5. Turn on TX
6. Plug in main battery
7. Confirm flight time and range distance
8. Clear obstructions and make sure there is clear space for takeoff and landing
9. Arm TX if the TX has an arm switch
10. Ensure all control surfaces are operational and moving the correct way
11. Apply throttle and fly
12. Upon landing do everything in reverse order

12.11.4 Post Flight checklist

1. Check plane for any damage
2. Check all moving parts are still secured
3. Check for battery overheating, discoloration, warping, or swelling
4. Check battery usage with a voltmeter
5. Check if the plane is able to power on again
6. Have PIC (pilot in command) give a post flight assessment
7. Put batteries in LiPo storage

13 Numerical Integration Techniques

13.1 Linear Dynamics

The nonlinear dynamics formulated above can be placed into standard nonlinear affine form as shown below after
much simplification of terms

9⃗x “ f⃗px⃗q ` g⃗px⃗qu⃗ (170)

where u⃗ is the control input which could be the forces and moments from reaction wheels or thrusters. The equation
above can be linearized to give the equation below.

∆ 9⃗x “ A∆x⃗` B∆u⃗ (171)

where ∆x⃗ “ x⃗´ x⃗e and x⃗e is an equilibrium point. In this formulation A “ Bf⃗{Bx⃗. and B “ Bg⃗{Bx⃗

13.2 Euler’s Method

The equations of motion above can be integrated using Euler’s method which is a crude first order method to
approximate the time series solution [73]. Note that this method is prone to a significant amount of instability
unless the timestep is very small.

x⃗k`1 “ x⃗k ` 9⃗xptk, x⃗kq∆t
9⃗xptk, x⃗kq “ f⃗px⃗kq ` g⃗px⃗kqu⃗k

(172)
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13.3 Runge-Kutta-4

The RK4 algorithm is the standard in numerical integration and is given in the equation below [73]. The derivative
of the quaternions is the same in RK4 as it is in Euler’s method. This method is superior to RK4 in that it will
converge faster as a function of timestep.

k⃗1 “ 9⃗xptk, x⃗kq

k⃗2 “ 9⃗xptk ` ∆t{2, x⃗k ` k⃗1∆t{2q

k⃗3 “ 9⃗xptk ` ∆t{2, x⃗k ` k⃗2∆t{2q

k⃗4 “ 9⃗xptk ` ∆t, x⃗k ` k⃗3∆tq

k⃗ “ 1
6 pk⃗1 ` 2k⃗2 ` 2k⃗3 ` k⃗4q

x⃗k`1 “ x⃗k ` k⃗∆t

(173)

13.4 Discrete Dynamics

It is often useful for modern computers to write the equations of motion in discrete form....

14 State Estimation

14.1 Sensor Measurement

During the standard estimation procedure, it is assumed that measurements are made that relate to the state or
the state is directly measured. If the state is directly measured like star trackers no special formulation need to
made. However, other sensors such as Sun sensors, magnetometers and horizon sensors measure a vector in 3-D
space. In general a measurement ȳk can be expressed by the nonlinear equation shown below where x⃗ is the state
vector.

ȳk “ h⃗px⃗kq ` ν⃗k (174)

The vector ν⃗k is noise associated with the sensor [10, 9]. If the system is linearized about some equilibrium point
the measurement equation can be written as

ȳk “ hkx⃗k ` ν⃗k (175)

where hk “ Bh⃗{Bx⃗. It’s easy to see here that in the case of the star tracker the matrix hk is just the identity matrix.
The noise vector ν⃗k is assumed to be gaussian white noise while the covariance covpq is given by the equation below
using the expectation operator Epq.

covpν⃗kq “ Epν⃗kν⃗
T
k q “ Rk (176)

If a measurement is made by a Sun sensor or similar where a vector in 3-D space can be compared to a known
inertial reference vector the measurement update can be given as

r̄Bk “ TBIpq⃗kqr⃗Ik ` ν⃗k (177)

where r̄Bk is a measurement in the body reference frame at time tk. The angular velocity measurement in particular
can be denoted as ω̄k. Measurements are typically polluted with bias and white noise. For example, the angular
velocity measurement can be given as

ω̄ “ ω⃗ ` b⃗` η⃗g (178)

where b⃗ is a bias that has dynamics given by
9⃗
b “ η⃗b. The vectors η⃗g and η⃗b are standard Gaussian white noise

vectors. Typically white noise can be filtered out using lowpass filters, complimentary filters or even Kalman Filters
while bias can just be substracted. Thus, the estimate for the angular velocity can be written as

ω̃ “ ω̄ ´ b̃ (179)

where b̃ is the estimate of the bias.
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14.2 Linear Least Squares

In order to understand the nature of a Kalman filter, the linear least squares solution is shown below. Assume for
the moment that M independent measurements are made such that Ȳ “ rȳ1, ..., ȳM sT .

Ȳ “ Hx⃗` V⃗ (180)

In this case H “ rh1, ...,hM sT and V⃗ “ rν1, ..., νM sT . The vector V⃗ is a vector of error values between your
measurements and the actual truth signals Y “ Hx⃗. Absent of all measurement and model noise there would
be a unique solution to this problem to solve for the vector x⃗. The matrices Ȳ and H are known and are the
measurements and the output equation relating the measurements to the state values in x⃗ respectively. Because
of measurement and model noise, a unique solution is not possible. That is, the problem is overconstrained since
typically the number of measurements is larger than the number of unknowns. Take the linear example as shown
in the figure below.

Figure 23: Linear Regression Example

In this case the ordinate axis is the output Y and the abscissa is the independent variable that characterizes
the matrix H. The black dots then are the measurements Ȳ while the trend line is the estimate Ỹ “ Hx̃. In this
case the residuals Ŷ “ Ỹ ´ Ȳ is the distance between the trend line in red and the black dots (the measurements).
For this linear example, the unknowns would be the slope and intercept. It is clear here that there exists no linear
solution x⃗ that goes through all black data points. Thus, the equation below can be constructed.

Ȳ “ Hx̃` Ŷ (181)

This implies that the trendline Ỹ would go through all data points if Ŷ were zero. Thus the solution to this problem
was originally found by Gauss [74] and involved minimizing the residuals between Ȳ and Ỹ (the estimated Y values).
To do this, a cost function is generated such that

J “
1

2
Ŷ T Ŷ (182)

Substituting in the equation Ŷ “ Ȳ ´Hx̃ and minimizing the cost function BJ{Bx̃ “ 0 results in the solution below.

x̃ “ pHTHq´1HT Ȳ (183)

Note that the equation above only works if the number of measurements M is greater than or equal to the number
of unknowns N . If not, the solution will always be rank deficient and no solution will be found. This is called
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an under constrained problem. In this there are an infinite number of solutions that satisfy Ȳ “ Hx⃗ even in the
presence of modeling errors. In order to get around this issue Lagrange’s method of optimization is used [41]. For
problems like this the residuals between the estimate Ỹ and the measured signals Ȳ can be easily made to be zero.
Thus minimizing the residuals is trivial since the solution will still be an infinite number of solutions. Therefore a
constraint can be placed where Ȳ “ Ỹ “ Hx̃. In order to find a unique solution then the requirement is placed
to minimize the estimate x̃. In this case, the cost function to be minimized is given by Lagrange’s extension to
optimization as shown below

L “
1

2
x̃T x̃` λT pȲ ´ Hx̃q (184)

The cost function above utilizes the method of Lagrange multipliers in order to satisfy the constraint that the
solution must pass through all measurements again only if the number of measurements M is less than the number
of unknowns N . In the equation above the vector x̃ must be solved and so must the Lagrange multipliers λ. The
solution to the problem above requires BL{Bx̃ “ 0 and BL{Bλ “ 0. Carrying out the partial derivatives and solving
for the estimate yields the following equations.

x̃ “ HT pHHT q´1Ȳ (185)

Note, it is standard practice in state estimation to have at least as many measurements as unknowns. In this case
M “ N and Gauss’ solution is sufficient.

14.3 Weighted Least Squares

The weighted least squares solution is found by setting the cost function equal to J “ 1
2 Ŷ

TWŶ where W is a
positive definite and symmetric weighting matrix. The solution then is shown below.

x̃ “ pHTWHq´1HTWȲ (186)

In the standard Kalman Filter approach, the weighting matrix is given by the inverse covariance of the error
r “ Erv⃗v⃗T s. Placing this into a matrix yield W “ R´1 where R “ diagprr1, ...rM sq. The weighted least squares
solution then reduces to

x̃ “ pHTR´1Hq´1HTR´1Ȳ (187)

14.4 A Priori Knowledge of the State Vector

If a priori knowledge is obtained via other means or in the case of the standard Kalman Filter from integration of
the state, it is possible to obtain an updated estimate of the state based on the previous state estimate and the new
sensor measurements. First, the a priori estimate x̃´ is written as

x̃´ “ x⃗` w⃗ (188)

where w⃗ is model noise associated with the error in the state estimate. The covariance of this noise is also denoted
as a matrix and defined below.

covpw⃗q “ Epw⃗w⃗T q “ q (189)

In this case it is desired for the updated measurement to be some linear combination of the a priori equation and
the measurements such that

x̃ “ ΛȲ ` Γx̃´ (190)

The matrices Λ and Γ have an added constraint which can be shown by assuming the a priori measurement is
perfect x̃´ “ x⃗ and the measurements Ȳ “ Y “ Hx⃗. In this case, we must have the updated estimate equal the
truth signal. x̃ “ x⃗. Rearranging the equation above yields

x⃗ “ ΛHx⃗` Γx⃗ (191)

which means that pΛH ` Γq “ I Again using the method of lagrange multipliers the cost function to be minimized
is given as

L “ Er
1

2
x̂T x̂` λT pI ´ ΛH ´ Γqs (192)

where x̂ “ x̃´ x⃗ and again E is the expectation operator. Remembering that q is the covariance of the model noise
and r is the covariance of the measurement noise, the solution to the minimization problem is given by the equation
below.

x̃ “ pHTR´1H ` q´1q´1pHTR´1Ȳ ` q´1x̃´q (193)

Note that this solution assumes that Epw⃗v⃗T q “ 0. Measurement and model noise are uncorrelated.
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14.5 Complimentary Filter

Looking at the equation for the A priori knowledge it is possible to formulate the complimentary filter. First, the
measurements are assumed to be identical to the state vector such that hk “ I. From here a few extremes are shown
below. First, assume that the measurement error is very low such that the covpν⃗q ăă 1 while the model noise w⃗ is
very large approaching infinity. In this case, q´1 “ 0. Substituting this into the weighted apriori equation yields

x̃ “ averagepȲ q (194)

which essentially states that the estimate completely believes the sensor measurement. If instead we assume that
the model noise is perfect such that covpw⃗q ăă 1 and the sensor noise is approaching infinity, then R´1 “ 0. This
yields the following equation.

x̃ “ x̃´ (195)

Thus it can be seen that there is a sliding bar between believing the apriori estimate or the sensor measurement.
As such it is possible to develop a much simpler filter. First a constraint is placed on q and R such that

pHTR´1H ` q´1q “ I (196)

This causes the update law to reduce to the following

x̃ “ HTR´1Ȳ ` q´1x̃´ (197)

If only one measurement is investigated the equation collapses to the following.

x̃ “ r´1ȳ ` q´1x̃´ (198)

The constraint also collapses to
r´1 ` q´1 “ 1 (199)

If q´1 “ s and r´1 “ 1 ´ s the update law simplifies to

x̃ “ p1 ´ sqȳ ` sx̃´ (200)

Here it is clear that if s “ 1 the new estimate will be equal to the old estimate meaning that the sensor noise is
approaching infinite. If s “ 0 it means that the new estimate is equal to the sensor measurement meaning the
model noise is approaching infinity. This is a simple crude first order filter that can be used when only a simple
understanding of covariance is known.

14.6 Sequential Linear Estimator

In the above two scenarios, it is assumed that all measurements from 1 to M are known at the same time instant
t and thus the least squares estimate can be done “all at once”. For discrete time sensors on board a spacecraft
this is not possible. For example, if we take the weighted least squares solution assuming we have a 0th batch of
measurements, the estimate of x̃ would be

x̃0 “ phT0 w0h0q´1hT0 w0ȳ0 (201)

If we then waited ∆t seconds for a new set of measurements we would have to obtain a new estimate of x̃ which
could be done using the equation below

x̃1 “ phT1 w1h1q´1hT1 w1ȳ1 (202)

This solution however would only take into account the new measurements. Thus, if larger matrices were constructed
like H “ rh0,h1s the solution for x̃ becomes the same as it was in Equation 186. This process would be tedious if
these matrices were computed over and over again. This is because the matrices would continue to grow larger and
larger over time and eventually overflow the memory management system on the computer. Thus, a method for
updating the state vector every time a new measurement is obtained must be derived. To do this the two equations
are substituted into equation 186. Then a covariance matrix is used such that p “ phTwhq´1 which never grows in
size. Using that simplification and making use of a estimation gain matrix k, the estimation algorithm is as follows:

1. The first measurement is obtained ȳ0
2. Compute the matrix p0 “ phT0 w0h0q´1
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3. Obtain the estimate for x̃0 “ p0h
T
0 w0ȳ0 (Notice that if you use the equation above this is the same solution

as the weighted least squares estimate)
4. Every time a new measurement, ȳk, is obtained use the recursive least squares update law shown in the

equation below.

kk`1 “ pkh
T
k`1rhk`1pkh

T
k`1 ` w´1

k s´1

pk`1 “ r1 ´ kk`1hk`1spk
x̃k`1 “ x̃k ` kk`1pȳk`1 ´ hk`1x̃kq

(203)

In the special case where the weighting matrix wk is equal to a constant w and the state vector is directly measured
such that hk is also identity, the sequential linear estimator gives the following simplified steps.

1. The first measurement is obtained ȳ0
2. Compute p0 “ w´1

3. Obtain the estimate for x̃0 “ ȳ0 (this is a fault of hk being identity)
4. Every time a new measurement, ȳk, is obtained use the recursive least squares update law shown in the

equation below.

kk`1 “ pkrpk ` w´1s´1

pk`1 “ r1 ´ kk`1spk
x̃k`1 “ x̃k ` kk`1pȳk`1 ´ x̃kq

(204)

14.7 The Continuous Time Complimentary Filter

In the above section a discrete sequential least squares update law was formulated. In that derivation it is assumed
that the state estimate is held constant in between state measurements. It is possible however to integrate a model
of the state dynamics and use that estimate in between state measurements. The is the start of a Kalman Filter.
To formulate the Continuous Time Complimentary Filter the dynamics of the system are written such that

9⃗x “ f x⃗` gu` mw⃗
y⃗ “ hx⃗

(205)

where the initial conditions are x⃗0 and w⃗ is a modeling noise term where Erw⃗w⃗T s “ q just as was defined in the a
priori estimation section. The model dynamics are set up such that

9̃x “ f̃ x̃` g̃u` γ⃗
ỹ “ hx̃

ȳ “ hx⃗` v⃗
(206)

where again ȳ is the state measurement and v⃗ is noise associated with the sensor where Erv⃗v⃗T s “r. The term γ⃗ is
added as a psuedo control which can be whatever we want. The idea is for u to be the control input to drive x⃗ Ñ x⃗c
while the psuedo control is for the observer dynamics to drive ỹ Ñ ȳ. The model dynamics are going to deviate in
between sensor measurements so if the observer dynamics are designed properly the estimate can converge to the
measurement. Of course, this means your estimate is only as good as your measurement noise but it is a start. To
design the psuedo control law, measurement feedback is used in the same form as standard unity feedback control
laws such that γ⃗ “ bfkŷ where ŷ is the difference between the estimate and the measurement. The closed loop
dynamics can then be written as

9̃x “ pf̃ ´ khqx̃` g̃u` kȳ (207)

Looking at this equation it’s hard to see the effect of the observer. Thus the error dynamics must be investigated
where x̂ “ x̃´ x⃗. For the simple case it is assumed that f “ f̃ and g “ g̃. The closed loop error dynamics can then
be written as

9̂x “ pf ´ khqx̂` kv⃗ (208)

in this case the solution to this equation is

x̂ptq “ x̂0e
pf´khqt ` η⃗ (209)

where the term η⃗ is a function of the noise term kv⃗. In this case, if k is chosen to be large, the error dynamics will
be very fast but the noise term will be very large. If k is chosen to be very small the error dynamics will be slow
but the error term will not be a prevalent. The issue with this filter of course comes with how to tune the gain
matrix k which is what the Kalman filter seeks to address.
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14.8 The Continuous Discrete Kalman Filter

In the case of the continuous discrete Kalman Filter, the model dynamics are integrated just as in the complimentary
filter. The only difference is instead of using a continuous observer the state estimate is updated every time a new
measurement is obtained much like the sequential least squares technique. First, let’s write the model dynamics
as before without the observer and the measurement equations are written such that the measurement is taken at
timestep tk and thereafter every ∆t.

9̃x “ f̃ x̃` g̃u
ỹ “ hx̃

ȳk “ hkx⃗ptkq ` v⃗k

(210)

The update equation is written using the continuous observer dynamics used for the complimentary filter only in
this case the update is discrete.

x̃`
k “ x̃´

k ` kkpȳk ´ hkx̃
´
k q (211)

In this case x̃`
k is the estimated state after the update while x̃´

k is the estimate before the update. The equation for
the covariance update and the Kalman Gain matrix are identical in that the derivation is formulated just as it was
before. The equations are shown below again only ` and ´ is used to denote the matrices before and after update.

kk “ pkh
T
k rhkp

´
k h

T
k ` rs´1

p`
k “ r1 ´ kkhksp´

k

(212)

In the sequential linear estimator however, the covariance matrix was set using a weighted least squares approach.
In this case the covariance matrix is set such that p “ Erx̂x̂T s. Taking a derivative of this equation and substituting
in the closed loop error dynamics yields the covariance propagation equation shown below.

9p “ f̃p ` pf̃T ` mqmT (213)

The final Continuous Discrete Kalman Filter then goes like this.

1. Integrate the model dynamics in Equation 210 and the covariance dynamics in equation 213

2. When a measurement is received, the Kalman Gain matrix is computed using equation 212.

3. Equation 212 is also used to update the covariance matrix

4. Finally, equation 211 is used to update the state vector estimate and then the process repeats.

An example figure is shown below for a first order system. In this figure the blue stars represent discrete sensor
measurements with some noise. Everytime the sensor is updated the model performs and update and instantaneously
changes to a new value. The model then integrates (incorrectly due to model mismatch) until a new sensor
measurement is obtained. In this case the model is so inaccurate it makes more sense to update the sensor more
frequently or perform some sort of adaptive control algorithm to estimate the plant dynamics.
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Figure 24: First Order Kalman Filter Example

14.9 Kalman Filter for Spacecraft Dynamics

Attitude estimation involves a combination of attitude determination and state estimation. Assuming at time
t “ t0 the attitude estimation algorithm is performed and an estimate of the quaternion is obtained as q̃0. If
discrete regular angular velocity (ω̄k) measurements are made every ∆t seconds, the quaternion can be estimated
by simply integrating the attitude equations of motion. Even if perfect sensor measurements are made, it is
possible to integrate these equations of motion over time and the quaternion q⃗ will be much different than the
estimated quaternion q̃. Thus, the attitude estimation algorithm can run again to obtain a new absolute quaternion
measurement. The equations of motion are integrated and when a new sensor measurement is obtained the estimated
state is updated based on the estimated covariance combined with and estimate of model errors and sensor errors.
Finally, it is possible to create an Extended State Kalman Filter (EKF) which can estimate sensor inaccuracies
simply by finding the least squares solution between the sensor measurements and state estimates. The sections
that follow details the Kalman Filter for Spacecraft Dynamics as well as the extended state version which estimate
bias values in the rate gyro.

First, the 4-dimensionality of the quaternion renders the above Kalman filter formulation to be impossible mostly
because the quaternion derivative is a 4 by 1 matrix while the angular velocity vector is a 3 by 1. Furthermore,
the quaternion derivative is not linear and cannot be expressed as the linear matrices in the previous section. As
such the Kalman Filter must be updated somewhat. The derivative of the state 9⃗q is cumbersome and follows the
reference in [12]. First the angular velocity measurement is substituted into the derivative of quaternions where the
Ωpq and χpq identity is used to separate out the white noise parameter.

9⃗q “
1

2
Ωpω⃗qq⃗ “

1

2
Ωpω̄ ´ b⃗´ η⃗gqq⃗ “

1

2
Ωpω̄ ´ b⃗qq⃗ ´

1

2
χpq⃗qη⃗g (214)

At this point an error quaternion is created using the difference between q⃗ and q̃. Recall that the error quaternion
is given by the equation below. The full equation is shown in 49.

δq⃗ “ q⃗ C q̃´1 (215)

The derivative of this difference quaternion is beyond the scope of this report but can be found in [75].

9δq⃗ “

"

0
´Spω̃qδϵ⃗

*

`
1

2
Ωpδω⃗qδq⃗ (216)

where δω⃗ “ ω⃗ ´ ω̃ and δϵ⃗ “ ϵ⃗´ ϵ̃. Recall that ω̃ “ ω̄ ´ b̃. The second term in the equation above can be expanded
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using the equations in Section 14.1. Note that δω⃗ simplifies to ´δ⃗b´ η⃗g and 9δq⃗ “ r 9δq0, 9δϵ⃗sT .

9δq⃗ “

"

0
´Spω̃qδϵ⃗

*

´
1

2

#

´δϵ⃗T δ⃗b

δq0δ⃗b` Spδϵ⃗qδ⃗b

+

´
1

2

"

´δϵ⃗η⃗g
δq0η⃗g ` Spδϵ⃗qη⃗g

*

(217)

In order to proceed further, small angle approximations are made such that |δq⃗| ăă 1. The latter 3 variables in
the quaternion are further approximated as δρ⃗ “ δϵ⃗. In order to fit in with the standard Kalman filter, the state
vector x⃗ “ ρ⃗ and thus the state dynamics 9δx⃗ can then be written as

9δx⃗ “ 9δρ⃗ “ ´Spω̃qδd⃗´
1

2
δ⃗b´

1

2
η⃗g (218)

In order to extract the attitude quaternion from the approximated state the following equations are used.

δϵ⃗ “
δρ⃗?

1`δρ⃗T δρ⃗
q0 “ 1?

1`δρ⃗T δρ⃗
(219)

14.10 Extended State Kalman Filter

As shown in the previous section, a Kalman filter can be used to estimate the state. The standard Kalman
filter however can be extended to include the bias of the angular velocity measurement. Thus the state vector is
augmented to be x⃗ “ rq⃗, b⃗sT . Since the derivative of the bias is the white noise vector, the difference state vector
after much simplification is shown below.

9δx⃗ “

#

9δρ⃗

δ⃗b

+

“

„

´Spω̃q ´ 1
2I3x3

03x3 03x3

ȷ "

δρ⃗

δ⃗b

*

`

"

´ 1
2 η⃗g
η⃗b

*

(220)

In this formulation δ⃗b “ b⃗´ b̃. The derivative is then δ
9⃗
b “ η⃗b ´ 0. It is assumed that the derivative of the estimate

is zero and thus is only updated when sensor measurements are made. The states equation above can be reduced
to the state space form shown below.

9δx⃗ “ Aδx⃗` η⃗ (221)

15 Helpful Aircraft Equations

Mach Number and Reynolds Number

M8 “ V
a8

Re “
ρV c̄
µ8

(222)

Total Velocity

V “
a

u2 ` v2 ` w2 (223)

Angle of Attack and Sideslip

α “ tan´1
`

w
u

˘

β “ sin´1
`

v
V

˘ (224)

Lift Drag and Moment

Lift pLq “ 1
2ρV

2SCL
Drag pDq “ 1

2ρV
2SCD

Roll Moment pLq “ 1
2ρV

2SbCl
Pitch Moment pMq “ 1

2ρV
2Sc̄Cm

Y aw Moment pNq “ 1
2ρV

2SbCn

(225)

Lift and Drag Coefficients

CL “ CL0 ` CLαα
CL “ CLαpα ´ α0q

CD “ CD0 ` CDαα
2

CD “ CD0 ` kCL
2

(226)

Non-dimensional Angular velocities

p̂ “ pb{2V
q̂ “ qc̄{2V
r̂ “ rb{2V

(227)

Pitch Moment equation

Cm “ Cm0 ` Cmαα ` Cmδeδe ` Cmq q̂ (228)

Cm0 “ CMAC ` CL0x̄sm
x̄sm “

xcg

c̄ ´ xacW

c̄

Cmα “
`

CLα,W ` St

S CLα,t
˘

x̄sm ´ VHCLα,t
VH “ ltSt

Sc̄

Cmδe “
`

CLtδe
St

S

˘

x̄sm ´ VHCLtδe
Cmq “ 2CLαt

l2

c̄2

(229)
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Max Lift to Drag Ratio (Only valid if CL0 “ 0)

αmax,L{D “

c

CD0

CDα
(230)

Lift to Drag when T “ 0 (Sum of Forces still zero)

D
L “ tanpαq

Lcospαq `Dsinpαq “ W
(231)

Airfoil and Wing Aerodynamics

xac “ c{4 a “ a0
1`

a0
πeAR

AR “ b2

S

(232)

Standard Atmosphere

ρ “ 1.225 kg{m3 “ 0.00238 slugs{ft3

µ8 “ 1.81x10´5 kg{pm´ sq
a8 “ 331.3 m{s

(233)

General Notes

1. In trim or steady and level or cruise q “ 0, Cm “

0,L “ W , T “ D

2. For symmetric airfoil CMAC “ 0 and CL0 “ 0 thus
Cm0 “ 0

3. For a flat plate all symmetric properties apply but
a0 “ 2π

4. Tail surfaces are always assumed to be flat plates

5. For longitudinal problems, β “ 0 so v “ 0 (side
velocity)
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