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1. INTRODUCTION TO MATLAB

1.A. Basics of MATLAB - Palm - Chapter 1

1. MATLAB(Current Directory, Workspace, Command Window, File) interface

When you double click MATLAB you will have a number of windows present. The configuration of all windows in your
MATLAB version may be different but the names are all the same.

The very top of the MATLAB window is our toolbar. It has similar buttons such as File, Edit, etc. Below this is your
current directory. This lists the current folder that you are operating in. The window in the upper right is the Current
Directory as well which lists all the files currently in the folder. In this example I have an error.jpg file, a mypi.m and
test pi.m file. Note that a .jpg is a picture file and a .m file is a MATLAB script file. The window directly to the right is
the Workspace. This lists all the current variables in the workspace. The lower left window is my Command History. It
contains the history of all of my inputs into the Command Window. The command window is where I can use MATLAB
like a calculator. If I type the following command

>> x = 1

into the command window, MATLAB will create a variable 1 and save it into x. Everytime I type in x it will now use 1
as the value. Thus, if I type in

>> y = 2*x

the variable y will be evaluated as 2*x where x = 1 thus 2*1 = 2 and y will be 2.

2. Order of operations
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MATLAB works just like your calculator does. Thus, you need to make sure parentheses are in the correct spot. For
example

>> x = 1/(2+1)

will set x = to one third. However,

>> x = 1/2+1

will set x = 0.5 + 1 = 1.5. Try this in MATLAB to see the difference. It is important to remember PEMDAS (Parentheses,
Exponents,Multiplication/Division, Addition/Substraction) That is, MATLAB evaluates those operators in that order.

3. Learn format of output

There may be times when you need to see more than 4 significant digits. For example,

>> x = sqrt(2)

will output x = 1.4142. However it may be beneifical to see more significant digits. To do that simply type

>> format long g

into MATLAB. Then when you type ’x’ into MATLAB you should see 13 digits. To return to normal output simply type

>> format short g

4. What variables do I have?

Sometime through your coding you will have alot of variables in your workspace. For example it you type

>> x = 2

>> y = 2*x

>> z = xˆ2

In order to see all of your variables you can simply type

>> whos

into MATLAB. This will output all variable names in your workspace, their size, the number of bytes they are taking up
and the class which is also known as type. Another way to see the current variables is to simply look at the workspace
window.

5. Variable Types

There are numerous types of variables that MATLAB can handle. Think of them as different currencies. For example I
could give you a number which is known as a double

>> x = 42

or I could give you a set of characters known as a char.

>> s = ’Hello World’

If I then type in

>> whos

into MATLAB I see that I have a variable x with a size of 1x1, using 8 bytes, and a class of double. I also will have a
variable s with a size of 1x11, and a class of char. The size of s is 1x11 because I have 11 characters in the variable. The
space is included. The number of bytes is equal to 2*11 or 22. That is because MATLAB needs 2 bytes for every letter
and thus needs 22 bytes to represent that number. A double always needs 8 bytes. That is, the number 42 needs 8 bytes,
the number 6789 needs 8 bytes. The name double comes from the fact that numbers are converted to binary which is of
base 2. If I wish to convert variables from one type to another I use the functions num2str and str2num.

>> x = 1

>> y = num2str(x)

The code above will convert the variable x to a string and save it in y. Note that if you type whos into MATLAB x will
still be a double but y will be a string. Try using str2num to see what happens.

Note that the reason why MATLAB uses 2 bytes per character is because it uses the unicode UTF-16 standard. Remember
that 2 bytes is 16 bits hence UTF-16. How many characters can UTF-16 represent? Check out the entire list here.

http://www.fileformat.info/info/charset/UTF-16/list.htm

Obviously there are other formats such as UTF-7 and UTF-8 which stand for 7 and 8 bit respectively. They all have their
strengths and weaknesses.
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6. Scripting

Alot of times you will have to compute something such as the number of seconds in a day. This can be easily accomplished
by typing.

>> seconds min = 60

>> seconds hour = 60*seconds min

>> seconds day = 24*seconds hour

However, if you make a mistake you will have to clear everything

>> clear

and start over. This can be very tedious. Thus scripting was invented.

(a) Open a File...

To open a file you can simply click File → New → Blank M-File. Once the file is open you must save the file by
clicking File → Save. You can also type

>> edit filename.m

into MATLAB and it will create a file called filename.m. If you then return to the MATLAB window notice that you
will have the file filename.m in your current directory. If you type

>> ls

into MATLAB you should also see your filename displayed there as well. With the script open you can then create a
script.

(b) Example Script

Below is a simple script calculating the number of seconds in a day. The first three lines clears the workspace, the
command window and closes all open figures. Note that the % is a comment that can be used to make notes in your
script.

clear

clc

close all

%%%This is a comment

seconds min = 60

seconds hour = 60*seconds min

seconds day = 24*seconds hour

(c) Execute Script

There are three ways to execute a script.

i. Hit the play button from the top of the editor

ii. Hit F5 on the keyboard

iii. Type
>> filename
in the command window. When you type filename in the command window, MATLAB will search for a file called
filename.m and execute the contents of the script. If the file does not exist, MATLAB will throw an error.

7. Directories

Further along you may download a file from the internet and open it in MATLAB. When you do this the file will be opened
in a editor in MATLAB. However, when you attempt to run this script, MATLAB will ask you whether or not you would
like to change the current directory. If you do this the current directory at the top toolbar will change to the location of
the file you just downloaded. Note that if you then run another file you will have to change the directory again. I urge
you to try and organize your files such that everything makes intuitive sense.

8. Help!

If at any point you ever lose your way simply type
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>> help

into MATLAB. If you know of a function but you forget what it does or how to use it simply type

>> help <variable name>

for example

>> help num2str

will list what num2str does and how to use it.

9. Functions Learned

whos

clear

clc

format long g

ls

num2str, str2num

disp

1.B. Arrays - Palm - Chapter 2

1. Inputting Arrays

Whenever you type a variable into MATLAB

>> x = 1

MATLAB will create an array. The variable x currently is a 1x1 array. That is it has 1 row and 1 column. It is possible
however to create a vector of numbers.

>> x = [1 2 3 4]

This will create a vector with 1 row and 4 columns. It is possible to make the same vector with only 1 column by using a
semicolon.

>> x = [1 ; 2 ; 3 ; 4]

This will create a variable with 4 rows and 1 column. It is also possible to create a column vector by using the transpose
value.

>>x = [1 2 3 4]’

The ’ will transpose the vector. In order to create a matrix you simply combine the semicolons and spaces.

>> A = [1 2 ; 3 4]

This will create a 2x2 matrix. It is also possible to create rules for vectors. For example, say you want all even number
from 2 to 100. This can be accomplished by using the form

2. Linspace vs. Increment

start:increment:end

>> x = 2:2:100

The line above will start at 2, increment by 2 and stop when it hits 100. You can also use the linspace command which
uses the form

linspace(start,end,number of elements)

>> x = linspace(1,10,5)

The line above will create a vector that starts at 1 and end at 10 but contains 5 elements.

3. Length Command

>> L = length(x)

Length will compute the number of elements in the vector. In this case L will be equal to 5. If you type whos in MATLAB
you will see that x is a vector 1x5 and L is a 1x1 but its value is 5.
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4. Creating Empty Matrices

To create empty matrices you may use the zeros() and ones() command.

>> A = zeros(5,3)

The line above will create a matrix of zeros with 5 rows and 3 columns.

Note that adding matrices is very simple.

>> B = zeros(5,3) + 5

will create a matrix of zeros with 5 rows and 3 columns and then add the number 5 to every element in the matrix.

5. Add/Substract and Multiply/Divide

>> C = A + B

this will then add the contents of A to B. Similar results are seen for substraction. Multiplication is tricky. The following
line will throw an error.

>> C = A*B ← ERROR

The reason is that A is a 5x3 and B is a 5x3. As such the inner matrix dimensions do not match.

>> x = [1 ; 3]

>> A = [1 2 ; 4 5]

>> b = A*x

the lines above are totally valid because x is a 2x1 and A is a 2x2 thus b is a 2x1. Type in whos to verify.

6. Dot Operator

It may be beneficial to compute the square of the numbers from say 1 to 10.

>> x = 1:1:10

will create the numbers from 1 to 10 incrementing by 1.

>> x = xˆ2 ← ERROR

This again will throw an error because x is a 1x10. A 1x10 times a 1x10 does not have the inner matrix dimensions that
match. In order to multiply these matrices you must use the dot operator.

>> x = x.ˆ2

You can also use the dot operator for muliplication and division.

>> y = 2*ones(1,10)

>> z = x./y

This will create a vector of ones (1x10) and then multiply each element by 2. Thus y will be a vector of 2’s. z will then be
every element in x divided by y. Try this out to see if it works.

7. Reference Elements of an Array

Finally you may find yourself trying to use the second row and third column of a matrix.

>> A = magic(5)

will create a 5x5 matrix using the magic algorithm. If you then wish to select the second element and third column you
simply type

>> a32 = A(3,2)

You can also grab the entire column by typing

>> a2 = A(:,2)

which will grab the entire second column.

8. Semicolons!

Notice that when you type

>> x = 0:0.01:100
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MATLAB will spit out a lot of numbers. When creating a script it is common practice to stop the output of computation
by putting a plug on the computation. This is accomplished by using a semi-colon.x

>> x = 0:0.01:100;

will not output anything to the Command Window.

9. Solving Multiple Algebraic Equations

The task of solving the equation below is trivial to do by hand however it is easy to make simple mistakes.

5x− 3y + 4z = 41
12x+ 6y − 7z = −26
−4x+ 2y + 6z = 14

In order to do this by hand we simply type

>> A = [5 -3 4 ; 12 6 -7 ; -4 2 6]

which will create an A matrix of the coefficients of our system. Then

>> b = [41;-26;14]

which will create a vector of the solutions. Finally assuming the form Ax=b we can solve this by multiplying the left hand
side by the inverse of A.

>> x = inv(A)*b

10. Evaluating Functions

Assume you have the function y = x2cos(x/2) and you wish to evaluate the function at x = π/4. That would simply be

>> x = pi/4

>> y = xˆ2*cos(x/2)

However if you wish to evaluate the function over an interval say -pi to pi then you need to use vector math.

>> x = linspace(-pi,pi,100)

which creates a vector of 100 elements from -π to π. Then you can evaluate y using the dot operator.

>> y = x.ˆ2.*cos(x/2)

Note that you do not need a dot operator when dividing by 2 because 2 is a scalar.

11. Other Arrays

There are two other types of arrays. One is a cell array and the other is a structure. I will go over them briefly here.

A structure is a bucket that holds multiple attributes of information. To make a structure you simply type in

>> computers.name = ’Toshiba’

>> computers.CPU = 3.9

This will create a structure called computers. The structure has two attributes, name and CPU. If you would like to add
another element to the structure simply type

>> computers(2).name = ’Lenovo’

>> computers(2).CPU = 2.0

You can then call the structure in two ways. You can list all attributes of an element by typing

>> computers(2)

or you can list all the names of the computers by typing

>> computers.name

Finally you can access the 1 computers CPU by typing in

>> computers(1).CPU

A cell array can be created which contains any all variable type embedded. For example

>> x = [43 56 77]

9



>> s = ’Hello’

>> u = 0

>> computers.name = ’Toshiba’

>> computers(2).name = ’Lenovo’

creates 4 variables. The first is a double with 3 elements. The second is a string with 5 elements. The third is a double
with 1 element and the last is a structure with 2 elements. These can be combined into a cell array by using curly braces
{}.
>> c = {x,s,u,computers}
Note however that the length of c is 4. Furthermore if you wish to access part of the cell array you need to use curly braces.

>> c{1}
will output the contents of the first cell which in this case is x.

Functions Learned

magic, ones, zeros, linspace, length, inv

1.C. Example Problems

1.) Using rules of mathematical precedence, solve for the following with MATLAB (writing it exactly as it is printed). Compare
answers by hand. Did you get the same answer?

a) 81ˆ(3/4)+5*2ˆ2/2-5 b) 12*4/3-8ˆ2/2-15/(5-2)

2.) Suppose that x=4, and y=3. Use MATLAB to compute the following. Check your answers by hand.

a) yx
3

x−y b) x5

y5−1 c)2πx2y d) 4
√
y−2

3x−5

3.) Evaluate the following expressions in MATLAB for the given value of x. Check your work by hand.

a)y = 5x3 x = 3 b)y = 2 sinx7 x = 150 c)y = 6x1/3 + 2x
3 x = 27

4.) Suppose that x=-6-5i and y=4+2i. Use MATLAB to compute the following. Check your work by hand.

a)x+ y b)x/y c)xy

5.) Use MATLAB to calculate the following, and check your answers with a calculator.

a)e−2.32

+ 2.86log10(14) + 6
√

516 b) 5 ln7
2 +

√
52 + 43 c)cos( 3π

8 )(sinh( 3π
4 ))2

6.) The Richter scale is a measure of the intensity of an earthquake. The energy E (in Joules) released by the quake is related
to the magnitude M on the Ricther scale as follows:

E = 104.4101.5M

Use MATLAB to determine how much more energy is released by a magnitude 7.5 quake than a 6.1 quake.

7.) Convert the following strings to numbers using the str2num() function. What happens?

a) ’42’ b) ’hello’ c) ’h’
d) ’4.2’ e) ’4/2’ f) ’cos(pi)’

8.) Convert the following numbers to strings using num2str() function. What happens? Using the length function compute
the length of each string.

a) 42 b) -15 c) exp(1)
d) 4.2 e) 4/2 f) cos(pi)

9.) Using the function exist() test whether or not these variables exist. Note depending on how you save your workspace you
may get different answers however verify the output using whos.

10



a) x b) y c) z

If they do exist using the disp() function print the following to the command window:

Yes the variable exists.

10.) Type this matrix in MATLAB.

A =


2 7 −3 9
−3 5 15 3
4 11 8 13
16 4 −5 −11
5 −2 18 3


Use MATLAB to answer the following questions.

a) Create a vector consisting of the elements in the third column of A.
b) Create a vector consisting of the elements in the second row of A
c) Create a submatrix encompassing the lower right 3x3 matrix only.
d) Find the value of a32.

11.) Given the matrices

A =

3 2 4
1 5 −3
4 −10 0

 B =

11 0 −3
5 −12 4
2 3 1

 C =

 7 15 1
10 3 −2
9 −5 8


Compute the following. Check your work by hand.

a) Compute A+B+C
b) Compute A-B-C
c) Does 5(A + C) = 5A + 5C?
d) Does A*C = C*A?
e) Does (A+B)T = AT + BT ?
f) Does A/B = A./B?

12.) Use matrices to solve for x,y and z.

5x− 3y + 4z = 41
12x+ 6y − 7z = −26
−4x+ 2y + 6z = 14

Check your answer by hand.

13.) Plot the equation below. Use the bounds [-2 2]. Label your axes, make a title, turn on the grid and make the background
of your plot white. Plot a circle where the graph crosses the x axis.

y = 5x3 + 2x2 − 5x− 20

14.) Plot the equation from above. Use the bounds [-2 2]. Label your axes, make a title, turn on the grid and make the
background of your plot white. Plot a circle where the graph crosses the x axis. Is this the same as your answer in problem 13?

15.) Assume that an aircraft is flying at a certain speed (mi/hr) for 4 different legs. Assume that this speed is constant for
a certain amount of time as given by the table below.

Leg 1 2 3 4
Speed (mi/hr) 200 250 400 300
Time (hr) 2 5 2.5 1.2
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a.) Input all the data into a cell array including the table header. For example, the first row should read:

aircraft data = {’Leg’,1,2,3,4};

b.) Compute the distance traveled by the aircraft in each leg using the cell array you defined in part a.
d.) Input all data into a structure assuming the following fields: ’Leg’, ’Speed mph’ and ’Time hr’.
e.) Compute the distance traveled and add a field to the structure from part d called ’Distance mi’

1.D. Functions - Palm - Chapter 3

1. Create a Function

You have already used a number of functions. When you use num2str, linspace or inv. These are all built-in MATLAB
functions that take in a number of arguments and then outputs the result to the workspace. If is possible to create functions
that do whatever you wish. For example, the following function computes the area of a circle.

function out = areac(in)

out = inˆ2*pi;

The first line of the code is the function header. The variable out is the output of the function and areac is the name of
the function and finally in is the name of the input variable. If we try and run this function from the editor MATLAB will
throw an error. This is because the input variable in is undefined. You must run the function from the command window
or a script

>> areac(5)

will compute the area of a circle with a radius of 5.

2. Nested Functions

It is possible to call a function within a function. The function below will use the function areac to compute the volume
of a cylinder.

function out = areacyl(radius,height)

out = areac(radius)*height;

To call this function we then simply type

>> areacyl(5,4)

which will compute the volume of a cylinder with a radius of 5 and a height of 4. Note that the following is also acceptable
as well.

>> r = 5;

>> h = 4;

>> V = areacyl(r,h);

This will save the volume of the same cylinder into a variable V.

3. Multiple Outputs

Finally it is possible to output multiple values. The function below computes the area of a circle and the volume of a
cylinder.

function [Ac,Vcyl] = areacyl(radius,height)

Ac = areac(radius);

Vcyl = Ac*height;
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To call this you would need to use the brackets to accept two variables.

>> [A,V] = areacyl(r,h);

1.E. Example Problems

1. Create a function that has the following function header.

function [mass,volume,weight] = myellipse(name, major axis, minor axis, transverse axis,density)

This function will compute the volume, mass, and weight(on earth) of an ellipse. Furthermore, place an if statement in
the function that will display(using the disp() function) “The ellipse: (blank) is too heavy”, if the ellipse if heavier than 5
kg. (Use SI units for everything)

Experiment with at least 3 different types of ellipses to ensure your function is working properly. Include your inputs and
outputs in your document.

2. Create a function that adds up the entries of a vector. Here is an example function header

function s = mysum(x)

Remember you may not use the function sum() in MATLAB however you may use it to check your answers. Test this on
3 example vectors to ensure your functions are working properly.

3. Create a function that finds the minimum value in a vector. Here is an example function header

function m = mymin(x)

Remember you may not use the functions min() or find() in MATLAB however you may use them to check your answers.
Test this on 3 example vectors to ensure your functions are working properly.

4. Use the method of loops to compute the fibonacci sequence until the number of digits in the sequence is more than 2 (so
100 or bigger). Save the sequence into a vector as you move through the sequence and include it in your document. The
fibonacci sequence can be written using the equation below.

λi+1 = λi + λi−1 (1)

To start the sequence assume that λ−1 = 0 and λ0 = 1. The first three steps of the sequence are shown below.

λ1 = λ0 + λ−1 = 1 + 0 = 1
λ2 = λ1 + λ0 = 1 + 1 = 2
λ3 = λ2 + λ1 = 2 + 1 = 3

(2)

5. Assume I create a structure that chracterizes the properties of an ellipse. Assume that the current fields of the structure
are: name, major axis, minor axis, transverse axis, and density. Create a function that will compute the volume, mass,
and weight(on earth) of all ellipses in the structure and add it to a field called by a similar name and output it to the
workspace. Furthermore, place an if statement in the function that will display “The ellipse: (blank) is too heavy”, if the
ellipse if heavier than 5 kg.

Use the following lines of code to test your function (Notice the difference in units!)

ellipses(1).name = ’Kids ball’;

ellipses(1).major axis = 21.59; %cm

ellipses(1).minor axis = 21.59; %cm

ellipses(1).transverse axis = 21.59; %cm

ellipses(1).density = 3.0; %g/cm3

ellipses(2).name = ’Hindenburg’;

ellipses(2).major axis = 803.8/3.28; %meters

ellipses(2).minor axis = 135.1/3.28; %meters
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ellipses(2).transverse axis = 135.1/3.28; %meters

ellipses(2).density = 1.2; %kg/m3

6. The following website has some useful information about the orbit of the earth:

“http://en.wikipedia.org/wiki/Earth’s orbit”

Assuming the Sun is located at 0,0 and the orbit of the earth is flat (2D). Plot the orbit of the earth around the sun.
Where is the earth right now? Plot a large blue circle where the earth currently is. Assume today is September 3rd, 2014.
Furthermore, plot a large yellow circle where the sun is.

7. Create a function that will plot the trajectory of a sphere. Assume the inputs are the angle from the horizontal in radians
and the speed in m/s. Neglect aerodynamic drag and assume the sphere is thrown on earth. Furthermore, assume the
sphere is launched at time t = 0 and compute the time the ball hits the ground. Experiment with this function and
determine the optimal angle from the horizontal that will throw the sphere the farthest assuming a constant speed. Then
compute the optimal angle that will give the ball the most hang time for a given speed. Is it different than the farthest
distance? Does this make sense?

1.F. Project

By now you must have solved some pretty difficult problems in your other classes. Every engineering problem can be cast into
the form

dependent variable = function( independent variable,parameters)

The example of computing the terminal velocity of a cat is a perfect example of this. Your task it to team up with 2 more
individuals and write a MATLAB code to solve three problems from your other classes.

The first step is to identify three problems that can be solved by hand but have parameters and independent variables that
change. In the cat falling example, our parameters were the area and weight of the cat. We could perhaps keep the size of the
cat fixed but vary the weight. This MATLAB code can then be used to compute the terminal velocity of the cat just by changing
the weight of the cat.

Your deliverable for this assignment will be to write a report detailing your 3 functions. The sections included in your re-
port will be the following

1. Introduction Explain what the problems are. Why do we care? Why is this important? Give some background on this
type of problem.

2. Mathematical Model Explain the theory on how these problems are solved. Include equations in your report. Do not
screenshot equations or just type them in. You are engineers. It’s time to learn how to use Equation Editor. Finally,
include all pertinent data required to run your code. Are there fixed parameters that do not vary? Include them in this
section.

3. Results Explain your inputs to your code and your outputs. Do not copy and paste MATLAB output. Write your results
in normal english. For example, ”When the weight of the cat is 5 lbs the terminal velocity is 50 ft/s. If the weight of the
cat is increased to 10 lbs the terminal velocity of the cat is 80 ft/s”.

4. Appendix MATLAB Code Copy and paste your MATLAB code. This is the only place the word MATLAB should be.
No supporting text required, simply copy and paste your code into this section.

14



1.G. Loops and Logicals - Palm - Chapter 4

1. Logical Operators

For now MATLAB has just been a calculator. Howevever MATLAB is much more than that. One main thing that is done
in MATLAB is to test whether or not something is true. If it is the code does one thing and then if not it does another.
For example

>> x = (1 == 0)

tests whether or not 1 is equal to zero. In this case it is not thus the value of x is false or 0. However it is possible to do
other tests such as

>> x = linspace(0,10,5);

>> t = length(x) > 2

In this case the length(x) is 5 which is greater than 2 thus the value of t is true or 1. Notice that if you type in whos you
will see that t is a logical variable rather than a double. A logical can only be a zero or a 1 thus it only needs 1 byte rather
than 8 bytes. The other logical tests are >=, <=, ∼=. The last is ’not equal to’.

2. If/Else/End Statements

If/else/end statements are called logical statements. They are typically used in a script. The basic structure of an if
statement is as follows

if statement

execute this block of code if true

else

execute this block of code if false

end

For example the block of code below is a script that uses the if/else/end structure to do one thing or the other. Note that
this function takes one input but has no outputs.

function logicals(N)

x = linspace(0,10,N);

if length(x) > 5

disp(’The vector is longer than 5’)

else

disp(’The vector is shorter than or equal to 5’)

end

Try coding this example and see what it does for different values of N.

3. For Loops

A for loop has the following structure

for index = start:increment:end

end

The block of code above will create an index that starts at the variable start, increments by increment and stops at end.
For example the code below will add up the numbers from 1 to 10

I = 0;

for idx = 1:1:10

I = I + idx;

end
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4. While Loops

A while is used when you don’t know how far you are looping. For example, assume you want to loop until the square of
a number exceeds 100. Then you would need a while loop. The code below will stop when the square of the index exceeds
100. Note that you will have to keep track of the index rather than the for loop which does it intrinsically.

I = 0; idx = 1;

while idx*idx <= 100

I = idx;

idx = idx + 1;

end

Running the script above will stop when idx = 11 since 11 squared is greater than 100. The value of I will be 10 however
since the code will break out of the loop before I is set to 11. Try it out and see for yourself.

1.H. Example Problems

1. Use your script from last week to plot the fibonacci sequence as a function of iteration number. Include the figure in your
word document however make sure your graph looks pretty (i.e. label your axes, add a grid, etc). The fibonacci sequence
can be written using the equation below.

λn+2 = λn+1 + λn (3)

To start the sequence assume that λ1 = 0 and λ2 = 1.

2. Simulate the system below for three different values of ∆x. Use 1,0.5 and 0.1. However simulate the system until xn+1 == 5.
Let x(1) = 0 and y(1) = 1.

yn+1 = (1− 2∆x)yn
xn+1 = xn + ∆x

(4)

Create a figure and plot y on the y-axis and x on the x-axis. Include all three lines on your figure. Remember to plot each
line in a different color and for this example you will need to add a legend. Again make your plot look nice and include it
in your document.

3. Make a 3-Dimensional object of your choosing using mesh just like I did in my youtube video. You can make an ellipse, or
a bowl, or a cup, or a ball, a pyramid, etc. Any 3-dimensional object. Again, make the graph look nice and include your
figure in your document.

4. Using your function from problem 1, Homework 3 edit the function to plot the ellipsoid that is read in using mesh(). That
is, in your for loop create a figure and mesh an ellipsoid. Label your axes, make the background white, create a title with
the name of the ellipse and set the viewport to [-27,30]. Use the view() command. The run script will be the same as
problem 1 from the previous homework thus your function should create two ellipses in this example.

5. I have uploaded an excel spreadsheet with information about all planets in the solar system including Pluto (As far as I’m
concerned it’s still a planet). Edit your function in problem 2 Homework 3 to read in the excel spreadsheet and loop through
all planets and plot the orbits of all planets. You should end up generating a plot with 9 orbits. There is no need to plot
the location of the planets in this example. This function will have no outputs or inputs. It merely needs to generate a plot.

6. Using your function from problem 3 Homework 3 edit the function to make a movie of the ball traveling through the air.
Name the movie file M for my convenience and make it the output of the function. There should only be one output (the
movie file M).
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1.I. Advanced Plotting - Palm - Chapter 5

1. 2-Dimensional Plots

Here we will focus on plotting. We already know how to evaluate functions using the dot operator. For example, the code
below will evaluate the trajectory of a projectile launched at 45 degrees.

theta = pi/4;

V = 10;

vy = V*sin(theta); vx = V*cos(theta);

timestep = 0.1;

t = 0:timestep:3;

x0 = 0; y0 = 0;

x = x0 + vx*t;

g = 9.81;

y = y0 + vy*t - (1/2)*g*t.ˆ2;

To plot this function we merely use the plot command.

>> plot(x,y)

Running this command from the command window will open a default plot with a blue line. However, the plot will be
pretty mundane. The code below will make the figure look alot better.

% Close all other figures then, create a figure and name it Trajectory

close all

fig = figure(’Name’,’Trajectory’);

% Set the background of the figure to white.

set(fig,’color’,’white’)

% Change the fontsize of the figure to 18

set(axes,’FontSize’,18)

% Plot x and y with a red dashed line with a line width of 2

plot(x,y,’r–’,’LineWidth’,2)

% Turn on the grid

grid on

% Label the axes and make the font size 18

xlabel(’X (m)’)

ylabel(’Y (m)’)

title(’Trajectory of a Ball’);

Running the code above produces the figure below.

Notice, that the projectile falls through the ground. It is beneficial to restrict the axis so as to only see the plot when the
ball hits the ground. Extra code must be added to find when the ball hits the ground. The code below computes when the
ball hits the ground and then restricts the axis to this window. In addition, the maximum height is computed.

tground = 2*vy/g;

tmax height = tground/2;

17



0 5 10 15 20 25
−30

−20

−10

0

10

X (m)

Y
 (

m
)

Trajectory of a Ball

xground = x0 + vx*tground;

ymax = y0 + vy*tmax height - (1/2)*g*tmax heightˆ2;

axis([0 xground 0 ymax])

The result of the code above creates the figure below.

2. 3-D Plotting

MATLAB can also plot in three dimension. Let’s assume for example we wish to plot a helical pattern. The equation of a
helix can be done by creating a linear equation for the z-coordinate and a circular pattern for the x and y coordinates.

theta = 0:0.01:(6*pi);

x = cos(theta);

y = sin(theta);

z = linspace(-1,1,length(theta));

plot3(x,y,z)

After including grids, and labels the figure below is created.

3. Meshing

Meshing can be used to plot 3D surfaces as well as 3D solids. The code below creates a 3D surface and then meshes the
figure shown below. The line meshgrid is used to create an array from the 1-D x and y vectors.

x = linspace(-5,5,100);

y = linspace(-5,5,100);

[xx,yy] = meshgrid(x,y);

zz = xx.ˆ2 + yy.ˆ2;

mesh(xx,yy,zz);
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Note again, that extra code was added to create a grid and labels, etc.
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It is also possible to create 3-D solids using a stacking algorithm. That is, it is possible to stack 2-D objects on top of each
other. The code below plots a 2-D square in 3-dimensions.

x = [-1 1 1 -1 -1];

y = [-1 -1 1 1 -1];

z = [0 0 0 0 0];

plot3(x,y,z);

Stacking more squares on top of each other you can create a rectangular prism. However, if you stack smaller and smaller
squares it is possible to make a pyramid. The code below creates a pyramid using a stacking algorithm. Note that the [ ]
brackets are used to create empty vectors. The last line of code is used to orient the camera to view the pyramid at an
elevation of 30 degrees and an azimuth of -27.

radius = 1;

xx = [ ];yy = [ ];zz = [ ];

while radius >= 0

xx = [xx;radius*x];

yy = [yy;radius*y];

zz = [zz;z];

z = z + 1;

radius = radius - 0.1;

end

mesh(xx,yy,zz)
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4. Animating

Animating is actually very simple. The code below animates the ball flying through the air assuming you have the x and
y values defined from above.

for idx = 1:length(x)

cla;

plot(x(1:idx),y(1:idx),’b-’,’LineWidth’,2)

hold on

plot(x(idx),y(idx),’bs’,’MarkerSize’,10)

axis([0 xground 0 ymax])

drawnow

end

The way this code works is by intelligently using cla and drawnow. cla clears the current figure. The lines inbetween cla
and drawnow serve to plot the ball at the current position in the loop. Drawnow is then used to create a frame such that
you and I can see it in real time. That is, every loop in the for loop creates a frame. A movie is really just a sequence of
frames plotted one after the other.
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2. INTRODUCTION TO ENGINEERING AND COMPUTERS

2.A. Computers

Students are expected have a basic understanding of their computer. For example, they should be able to logon to Sakai(https://ecampus.southalabama.edu),
navigate to assignments and download their assignment. Most operating systems will download this file to either the Downloads
folder or the Desktop. I encourage all students to create a folder title ME228 with all pertinent documents inside. Each as-
signment must be completed in MATLAB however all text and figures must be placed into a WORD document. The document
must the be converted to a PDF by clicking File>Save&Send>Create PDF Document>Create PDF. Once your document is
converted to a PDF you must upload your document to a PDF. Obviously having a WORD processor and MATLAB on your
computer is required for this course.

2.B. Mathematical Modeling and Engineering Problem Solving - Chapter 1

1. General Formulation of Engineering Problems The general formulation of an engineering problem has 4 parts.
Problem Definition, Mathematical Model, Computer Code and Implementation. The flow of the steps is shown in the
figure below. Notice that determining the Mathematical Model involves Theory and Data. Every problem starts with the

Problem
Definition

Mathematical
Model

Computer
Code

Implementation

Theory

Data

definition of a problem. Using this problem a mathematical model is created to solve the problem. This mathematical
model will require data and theory. Using this mathematical model a computer tool will be created. The code is then
implemented to analyze the problem defined and make decisions based on the output of the model.

2. Example Problem

Problem Definition: How do I get on top of my roof?

Mathematical Model is the angle of the Ladder.

Problem Definition: A round ball is launched straight into the air. The initial velocity, mass and initial height are given.
If air drag is neglected what is the maximum height of the ball and what is the final time before it hits the ground.

The mathematical model is this case takes the form

Dependent variable = f(independent variable, parameters, forcing function)

In the example above our independent variable is time. The parameters are v0,m, and y0. These are the initial velocity,
mass and height of the ball. The forcing function is gravity or −mg. The theory associated with this system is Newton’s
equation of motion and the data are the givens. Here Newton’s equation of motion can be solved to obtain the height of
the ball at time t.

y(t) = y0 + v0t− (1/2)gt2 (5)

A computer tool can be used to plot the location of the ball as a function of time. The code can then be implemented in
order to obtain the maximum height of the ball and the time the ball hits the ground.
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3. False Assumptions

John takes TJ = 6 min to wash a car and Mark takes Tm = 8 min to wash a car. How long does it take to wash the car
together. It is not 6 or 7. To solve this assume it’s a velocity problem.

VJ =
1 car

TJ min
Vm =

1 car

Tm min
(6)

We can then add the velocities together to equal 1 car where TJM is the time it takes to wash 1 car.

VJTJM + VMTJM = 1car (7)

Solving for TJM and substituting in TJ and TM yields

TJM = (
1

TJ
+

1

TM
)−1 (8)

So the solution is the same as 2 resistors in parallel. People assume it’s like a series problem and you just divide by 2 but
that’s not true. Both people operate independently and thus the time decreases.

2.C. Approximations and Round Off Errors - Chapter 3

1. Significant Figures

Significant Figures or Digits is the number or amount of information we have to convey a number. For example, take a look
at your phone or your watch. What time is it? My watch says 13:11 PM. That is it is the 13th hour of the day, the 11th
minute of the hour. How many seconds on the minute is it? I don’t know. My watch doesn’t tell me. Next time you get
into your car look at how many miles your car has. Mine says 67,611.1, that is pretty accurate but what if I converted that
number to feet? 5280 feet = 1 mile so 67,611.1 = 356,986,608 feet. Where did the decimal place go? Certainly I haven’t
traveled exactly the many feet. The reason is because I don’t have enough significant digits. What about pi? How many
decimal places can you list? How many does your calculator list? The fact is we all make approximation and computers
are no different. They hold a certain number of digits in its memory to represent a number. The goal is that the number
has enough numbers to be accurate as well as precise.

2. Accuracy and Precision

Accuracy: how closely a computed or measured value agrees with the true value Precision: how closely multiple measure-
ments agree with each other

Let’s go back to the watch again. How accurate is your watch? My watch says 1:17PM, according to Google it is 1:18:22
PM. So my watch was off by 1 minute and 22 seconds. My phone says 1:18PM so my phone is only off by 22 seconds.
Thus, my phone is more accurate then my watch but this is because my phone is automatically synchronized with the
world clock. However, both my watch and my phone are arguably just as precise.

3. Error Definitions

Let’s assume for the moment that I am 6’0” tall. I go to the doctor and the doctor tells me I am 72.25”. Using the equation
below we can determine the absolute error in my doctor’s measurement.

absolute error = |actual − computed| (9)

6 feet is 72 inches thus the absolute error is 0.25”. Sometimes however it is not enough to compute the absolute error. For
example, assume you are measuring a 1000 foot building. Does it really matter that you are off by a quarter of an inch?
It might matter given the circumstances but it matters a lot more when you are measuring a 2 foot long beam to put in
your house. Thus, the percent error is defined as such to account for the difference in scale.

percent error = 100 ∗ absolute error/actual (10)

Thus the percent error in my height is 0.347%. Notice, that I only saved four significant digits since my measurement was
only accurate to 4 significant digits.
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4. Computer Representation of Numbers

Computers although powerful have the same fundamental problem as above. Let’s assume for the sake of this argument
that you have a book in your hand and a pencil. You are only allowed to write two numbers on each page. Some one
asks you what 5 times 5 is. You open up page 1 and write the number 5 on page 1. Then you turn to page two and
write the number 5 on page 2. You then compute 5 times 5 in your head and arrive at the number 25 and write 25 on
page three. The same person then says what is 25 times 5. You again compute in your head that 5 times 25 is 125. You
turn to page 4, you pause and scratch your head, you can only write down two numbers, what should you do? Your most
logical result is to throw out the 1 and write down 25. You then say that 25 times 5 is 25. This is how a computer works.
The person asking you questions is a mouse and/or keyboard. The signals from the mouse and keyboard are sent through
the motherboard to the Central Processing Unit (CPU) much like your brain. The motherboard is like your entire body
connecting everything together. Think of it as your central nervous system. When you computed 5 times 5 you did that in
your head but note that your brain has long term and short term memory. The short term memory is like the computers
RAM or Random Access Memory. The long term memory is like the Hard disk drive or Harddrive (HDD). The pages
in your book are different locations or hexadecimal addresses the computers harddrive. So then how does the computer
actually compute? Well let’s start with how we represent numbers in base 10. If I write 5 in base 10 I would have

0× (101) + 5× (100) (11)

the number 25 would then be

2× (101) + 5× (100) (12)

You can now see why the number 125 is impossible to represent if I can only hold two digits. If I could hold 3 digits I
could represent 125 using this equation

1× (102) + 2× (101) + 5× (100) (13)

Fractions are simple too. Say we return to my height of 72.25”. In base 10 that would be

7× (101) + 2× (100) + 2× (10−1) + 5× (10−2) = 72.25 (14)

We however have adopted base 10 so easily that we just leave off the 10x and just report the numbers. Wouldn’t it be
great if we could just get computers to do this? It would only have to represent the number 0-9 and then it would be able
to represent any number in the number line provided it could store that many significant digits. The problem with this
is in the circuitry. Computers are either on (1) or off (0). This means they can’t represent the number 0-9 they can only
represent the numbers 0 and 1. Most computers operate on +5V for on and -5V for off. Thus if the computer receives
+5V it is a 1 and -5V for an off. So if 0-9 (10 numbers) is base 10, what is 0-1 (2 numbers)? That’s base 2 which is called
binary. The conversion from binary to base 10 is difficult so let’s just start with a few examples. Say I want to convert
1012 to base 10. The subscript 2 indicates base 2. Well that would be

1× (22) + 0× (21) + 1× (20) = 5 (15)

This number above is 3 bits of data. 8 bits equals 1 byte. 8 bytes is equal to 64 bits. So if you have a 64 bit machine
it means that the computer is capable of reading 64 bits of data. My computer represents all number uses 8 bytes or 64
bits. MATLAB on the other hand using floating point precision. So, the 0-51st bit is used for fractions, 2−1 all the way
to 2−51, the 52st bit to the 62nd bit is used for the exponent except it is biased by 1023 thus the maximum number that
MATLAB can predict is 21024. Finally, the 63rd bit is the sign of the number.

Thus a number would be represented using the formula below.

(−1)(bit63)(1 +

52∑
i=1

bit52−i2
−i)× 2e−1023 (16)

where e is determined by bits 52-63. The maximum number can be computed by noting that the exponent has 11 bits.
The maximum exponent number represented by 11 bits is 211−1 = 2047. The biased exponent is then 2047−1023 = 1024.
Note that if you type 21024 in MATLAB you will get Inf. However if you type 21023 ∗ 1.99999 you will get the value of
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realmax. The largest number is still 21024. The smallest number is actually 2−1022. This is represented with a 1 in the
exponent field such that e=1 and e-1023 = -1022. It is actually possible to get smaller numbers on a computer by using
denormalized numbers. That is when using denormalized number the exponent is assumed to be zero. Thus e=0 and the
number can be as small as 2−1023. However, with this representation it is possible to truncate the equation above to the
following denormalized version

(−1)(bit63)(
52∑
i=1

bit52−i2
−i)× 2−1023 (17)

Thus the smallest number is actually 2−1023 ∗ 2−52. Again, MATLAB will return a zero if you type this number in but
2−1023 ∗ 2−51 ∗ (1.999)−1 is pretty close.

5. Computer Representation of Characters

Numbers are all well and good but I also want to be able to write text. So if I write ’hello’ how does my computer represent
it? Well back in the 1960s when binary representation was first coming out they came up with the American Standard or
Character Information Interchange (ASCII). If you take the upper/lower case alphabet (26*2), plus punctuation like ? or
# and some non-printing characters like backspace or del you find that you need something like 100 characters. In binary
that means you need 7 bits which leads to 27 − 1 = 127. In order to organize the characters properly the mathematicians
decided to make the letter ’A’ = 65. The reason why can be explained by computing the binary equivalent for A.

A = 6510 = 10 000012

B = 6610 = 10 000102

C = 6710 = 10 000112

. . .
etc, etc, etc

(18)

Similary, lower case ’A’ is ’a’ or 97. Again converting to binary leads to

a = 9710 = 11 000012

b = 9810 = 11 000102

c = 9910 = 11 000112

. . .
etc, etc, etc

(19)

Thus, it is really easy to compute the letters based on the binary number. If you’d like to put a string together you can
just combine binary numbers. For example, let’s convert ’cat’ to binary.

c = 9910 = 11 000112

a = 9710 = 11 000012

t = 11610 = 11 101002

(20)

What’s really cool is that if you want to capitalize the word ’cat’ in binary you simply need to decrement the second bit
to 0 thus ’CAT’ in binary is simply 10 000112, 10 000012, 10 1101002. In MATLAB/Octave it is really easy to check your
work when performing these actions. To get the ASCII code simply type
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double(′inert letter here′) (21)

Try it out and see what you get for different letters. You can also do strings like your name for example.

double(′carlos′) = 9910, 9710, 11410, 10810, 11110, 11510 (22)

Even cooler you can convert from decimal to binary using the dec2bin function thus you can type

dec2bin(double(′carlos′)) =

11 000112

11 000012

11 100102

11 011002

11 011112

11 100112

(23)

Note, you can also convert to characters by typing in a number from 0 to 127 using the char function. For example if I
type char(33) I get the exclamation point. Try a few and see what you get.

char(33) = ! (24)

So for a long time this was all well and good but then people wanted to be able to represent other characters like latin,
greek, roman for computation. Well 127 characters wasn’t enough but 8 bit computers came out and then we had 255
characters. At the time this was enough for every language. The problem is that the Norwegians adopted a different
standard rather than ASCII, the Japanese came up with their own multibyte data structure. This was fine back in the 70s
because typically back then you would just print your document and fax it or mail it. Imagine if you write something in
ASCII and send the binary file to someone using a different format. It’s like speaking a different language they wouldn’t
understand. Well this didn’t matter until the late 70s early 80s when the World Wide Web opened up and then suddenly
people are reading languages in different binary format.

6. Unicode Format - UTF

So what did people do? They adopted the Unicode format which is a variable length format. Currently UTF-8 is the
most standard (circa 2015) which uses 1-4 8 bits strings = 8-32 bits = 1-4 bytes per number. Using this variable length
format you can represent all characters you can imagine. All 1,112,064 characters in all the human languages. However,
MATLAB/Octave said they do not need 32 bits of information so Octave decided to use 8 bits (255 characters) and
MATLAB decided to use 16 bits (65,535 characters). In MATLAB you can test this by typing uint16 for example

x = uint16(′g′) = 10310 = 2 bytes (25)

yields the number 103 using 16 bits or 2 bytes. You can also similarly use the 8 bit standard using the function uint8

x = uint8(′g′) = 10310 = 1 byte (26)

The standard character format in MATLAB is the character which uses 2 bytes. Octave’s standard for characters is 1 byte.
This is just what happens when you have multiple people writing different code. MATLAB as it is however allows you to
use multiple different formats should you so desire. Some examples include ’UTF-7’,’UTF-8’,’UTF-16’ or ’ISO-8859-1’ to
name a few.

3. ROOT FINDING METHODS

3.A. Bracketing Methods - Chapter 5

1. Graphical Approach

It is possible to obtain the root of a function by simply plotting it and zooming in on the graph. If we return to our
example where we simulate the ball flying through the air and zoom in on the graph we see that the ball collides with the
ground around 10 meters. This results in a time of 1.4142.
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Numerical computation of the point where the ball hits the ground is equal to 10.194 meters which corresponds to a time
of 1.4416. Thus graphically we were not off by very much. However, this does not help us very much when it comes to
finding a better solution.

2. Bisection Method

The best way to describe the bi-section method is the shower heat problem. When you jump in your always turn the knob
all the way up to heat the water up. But you jump in and it’s way too hot. So you turn it down. More than likely it’s
too cold now. So you turn it back but not as much as before. You repeat this turning back and forth until you dial in the
right temperature. This is much like the bi-section method.

When you looked at the graph and searched for the root you inherently looked for where the line changed sign. That is
when the value of y went from positive to negative you picked off the point. It is possible to do this while using a stepping
algorithm. That is we can start at an initial guess of t = 1. y(t = 1) = vyt− (1/2)gt2 = 2.166 > 0. Since y is greater than
0 we can try a new guess such that t1 = t0 + ∆t. If we choose ∆t = 0.5 our new guess is then t1 = 1.5. Our height is then
y(t = 1.5) = −0.42965 < 0. Thus our time that we hit the ground must be inbetween 1 and 1.5 seconds. At this point we
can divide our timestep by 2 and compute a new timestep of 0.25. Our new time is then t = 1.25 and y(t = 1.25) = 1.1748
which is greater than zero thus our estimate lies inbetween 1.25 and 1.5. We again half our step such that we compute
our time at t = 1.375 and y = 0.4492. Our value of y is still greater than zero thus we step forward one more time and
get t = 1.5. We know that this value has a height that is less than zero which means our function has switched signs and
we then halve our timestep again to 1/16 and compute t = 1.5− 1/16 = 1.4375. This process repeats itself over and over
again until a convergence criterion is met. A computer code can be used to run the bisection method. The algorithm is
given below.

function ti = bisection()

clc

close all

%Initial guess

ti = 1;

%Initial timestep

dt = 0.5;

%Initial Function Value
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f1 = myfunc(ti);

f2 = f1;

%Set an error threshold

threshold = 1e-2;

%Loop while error is greater > threshold

while abs(f1-0) > threshold

%Step forward until function changes sign

while sign(f2) == sign(f1)

ti = ti+dt;

f2 = myfunc(ti);

end

%If the loop breaks out we change the sign of dt and halve it

dt = -0.5*dt;

%Furthermore we change f1 to f2

f1 = f2;

end

function y = myfunc(t)

V = 10;

theta = pi/4;

vy = V*sin(theta);

a = -9.81;

y = vy*t + (1/2)*a*tˆ2;

Running the code below produces the following table of data. Notice that to get our error to 1e-2 only requires 10 iterations.

Iteration 1 2 3 4 5 6 7 8 9 10
t (sec) 1.5 1.25 1.375 1.5 1.4375 1.469 1.4531 1.4375 1.445 1.441
dt (sec) 0.5 -0.25 0.125 0.125 -0.0625 0.031 -0.016 -0.016 0.008 -0.004
y (m) -0.429 1.175 0.449 -0.429 0.029 -0.196 -0.082 0.029 -0.026 0.0014

3. Bisection Method Alternate Approach

It is possible to simple use an iterative method to solve for the bisection method which students find to be much simpler.
The algorithm is shown below:

(a) Define upper(xU) and lower(xL) bounds

(b) Set initial conditions

∆x1 = (xU − xL)/2 x1 = xL y1 = f(x1)

(c) Perform iterations using the following two iterative equations

xn+1 = xn + ∆xn ∆xn+1 = ∆xn/2

(d) Change the sign of ∆xn+1, if sign(f(xn)) ∼= sign(f(xn+1))
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If you’re looking for a fun game to test out your bi-section skills check out the clock game from the Price is Right.
Here are two really fun links.

Terrible Bi-Section Contestant: https://www.youtube.com/watch?v=oc9H8bo8yg0

Million Dollar Winner: https://www.youtube.com/watch?v=RJw1rlmJ81U

4. The Parachutist

An interesting example that uses the Bi-Section method is the falling parachutist with unknown drag coefficient. If we use
the simplest form of Newton’s Second Law we have

∑
F = ma (27)

where F is the forces on the parachutist. In this example the only forces are gravity and aerodynamic forces. To simplify
this problem we assume Newtonian drag such that Fd = −cv where c is a drag coefficient and v is the velocity of the
parachutist. We can also use the relationship that v̇ = a so that our equation of motion is given as

v̇ + (c/m)v = g (28)

This equation can be solved analytically using methods from Differential equations. I recommend you brush up on your
differential equation skills before you move on. The analytical solution is given below to check your work where v0 is the
initial velocity of the parachutist.

v(t) = v0e
−ct/m + (1− e−ct/m)mg/c (29)

So where does the bi-section method come in? Let’s say that a velocity sensor is put on the parachutist so that v0 is known,
and v(t = 4) is also known.

v0e
−4c/m + (1− e−4c/m)mg/c− v(t = 4) = 0 (30)

In the equation above the only unknown is then the drag coefficient since gravity, and the mass of the parachutist are
known. Since the equation above is in the form v(c) = 0 the equation can be solved using the bi-section method. The
solution is left as an example to the reader.

5. False Position Method

The false position method starts with an initial guess that yields a result that is less than zero and another value that is
greater than zero. A line is then connected between the two and where this line intersects the zero line is the new value of
the lower or upper bound depending on the sign of the result. For example, the graph below shows the first iteration of
the example problem above.

Here f(t1) is positive and f(t2) is negative. A straight line is then connected and tr is solved using the equation below
which is derived using the equation of a line.

tr = t2 −
f(t2)(t1 − t2)

f(t1)− f(t2)
(31)

Using the new value of t the sign of f(tr) is computed. Since it is the same as f(t1), tr becomes the new upper bound
and tr = t1. A simple code can also be written to run the false position method and is given below. Running this code
only requires 8 iterations. It is apparent then that this method is faster for the given problem. Doing a simply tic,toc test
yields this result. Note that a tic,toc test must be done numerous times such as a for loop to test for convergence.
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function falseposition()

clc

close all

%Initial guess

t1 = 1;

%Initial timestep

dt = 0.5;

t2 = t1 + dt;

%Initial Function Value

f1 = myfunc(t1);

f2 = myfunc(t2);

fr = f1;

%Set an error threshold

threshold = 1e-2;

%Loop while error is greater than threshold

while abs(fr-0) > threshold

%Compute tr based on f1 and f2

tr = t2 - f2*(t1-t2)/(f1-f2);

fr = myfunc(tr);

%Test to see which bound we will replace

if sign(fr) == sign(f1)

t1 = tr;

else

t2 = tr;
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end

end

Another interesting test is to plot the error as a function of iteration number. The figure below shows this. Notice how
the bisection method is all over the place whereas the false position method is fairly linear.
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3.B. Open Methods - Chapter 6

Open methods are deemed open because they are not guaranteed to converge. The benefit is that if they do converge they
converge much faster than all other methods. That is except for fixed-point iteration.

1. Simple Fixed-Point Iteration

Assume for the moment we are trying to solve

x2 − 2x− 3 = 0 (32)

This equation can be re-written intelligently such that

x =
x2 − 3

2
(33)

Notice that the form of this equation is x = g(x) which can actually be used in an iterative sense. Let us start with an
initial guess of x=0. g(0) = −3/2 Thus we set x=-3/2. We then compute g(−3/2) = −0.375 and again we set x=-0.375.
When then compute g(−0.375). This process is repeated over and over again until our change in x is below a certain
threshold. The code for this iteration method can be seen below.

function xnew = fixed point()

x0 = 0;

xnew = g(x0);
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xold = x0;

thresh = 1e-2;

while abs(xnew - xold) > thresh

xold = xnew;

xnew = (xoldˆ2-3)/2;

end

The pitfalls of this code are that it takes a large number of iterations to converge. The example above requires 79,982
iterations.

2. Simple Fixed Point Iteration Iterative Algorithm

The algorithm goes like this:

(a) Convert the Problem into the SFPI form.

f(x) = 0→ x = g(x)

(b) Use the following iterative method

xn+1 = g(xn)

3. The Newton-Raphson Method

The Newton-Raphson Method is the standard in numerical root solving. Many additions can be made to the Newton-
Raphson Method however the basic algorithm starts with an initial guess xi, the function f(xi), and the derivative of the
function f ′(xi). Then, just like the false position method you create a line between f(xi) and zero using a slope equal to
f ′(xi) and find where this line crosses the y-axis. This point is your new point. This can be seen graphically below and
using the equation

xi+1 = xi −
f(xi)

f ′(xi)
(34)

There is an issue associated with the Newton-Raphson technique and that is convergence. A way to mitigate this issue is
by employing a step size instead of using the entire magnitude of f ′(xi). Thus, the iterative method becomes

xi+1 = xi − α
f(xi)

f ′(xi)
(35)

where α is a step size that is less than 1. It is possible to have this step size be a variable just like in the bisection method.

4. The Secant Method (Numerical Version of Newton-Raphson)

Often times the first derivative of a function is not known. Thus the Newton-Raphson method cannot be used or rather
the first derivative of the function is replaced with f̃ which is the numerical derivative of the first derivative.

5. Error in Newton-Raphson

Just as with the Trapezoidal rule it is possible to obtain an error estimate in the Newton-Raphson method. If we write
the taylor series expansion we have

f(xi+1) = f(xi) + f ′(xi)(xi+1 − xi) + f ′′(ζ)
(xi+1 − xi)2

2!
(36)

The Newton-Raphson method is derived by setting f(xi+1) = 0 and solving for xi+1 assuming that f ′′ = 0.

0 = f(xi) + f ′(xi)(xi+1 − xi) (37)
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Re-arranging the equation above yields the Newton-Raphson method. If instead we assume that xi+1 = xr or rather in
one step we get the correct answer and let f ′′ 6= 0 we would have

0 = f(xi) + f ′(xi)(xr − xi) + f ′′(ζ)
(xr − xi)2

2!
(38)

since f(xr) = 0. The error in our estimate is then the difference between the two estimates where f ′′ = 0 and f ′′ 6= 0 we
would have

0 = f ′(xi)(xr − xi+1) + f ′′(ζ)
(xr − xi)2

2!
(39)

Substituting Ei+1 = xr − xi+1 and assume that ζ = xr.

Ei+1 =
−f ′′(xr)
2f ′(xr)

E2
i (40)

What this means is that if the second derivative of a function is zero the Newton-Raphson technique will compute the
answer in one iteration.

3.C. Example Problems

1. You have hopefully learned 4 different search techniques. The Bisection Method, the False Position Method, Fixed Point
Iteration and Newton-Raphson. The function you defined above should have a zero somewhere between −π to π. If it
doesn’t, change your frequency ω so that it does. Then program ONE of the search techniques you’ve learned and have
the code solve for the zero. Your function header should look like one of the following.

function xest = mybisection(xL,xR,maxIter)
function xest = myfalseposition(xL,xR,maxIter)
function xest = myfixedpoint(x0,maxIter)
function xest = myNewton(x0,alfa,maxIter)

where xL and xR are your initial guesses for bracketing methods, and x0 is your initial guess for the open methods. alfa is
a parameter you can use to make sure your Newton-Raphson method converges properly. maxIter is the maximum number
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of iterations your code will go through. Plot your function from problem 1 and the output of your answer on the same
graph. The code below will plot a square at your solution.

plot(xest,0,’ks’,’MarkerSize’,10)

2. You are designing a spherical tank to hold water for a small village in a developing country. The volume of liquid it can
hold can be computed as

V = πh2 3R− h
3

(41)

where V = volume (m3), h = depth of water (m), and R = the tank radius (m). If R = 3 m, to what depth must the tank
be filled so that it holds 30 m3? Use three iterations of the false-position to determine your answer. Employ initial guesses
of 0 and R.

3. According to Archimedes Principle, the buoyancy force is equal to the weight of fluid displaced by the submerged portion
of an object. In order for the sphere to be in a state of equilibrium the buoyancy force must be equal and opposite to the
force of gravity.

Fb = ρwaterVsubmergedg = ρsphereVsphereg (42)

Assume you have a sphere that is submerged into the water. Determine the height h of the portion of the sphere that is above
water using the bisection method. Use the following values for your computation: R = 1 m,ρsphere = 200 kg/m3,ρwater =
1000kg/m3. Choose an initial height of 2*R(fully outside the water) and a step size of -2*R. Note that the volume of a
sphere is simply

Vsphere =
4

3
πR3 (43)

The volume of the submerged portion is then

Vsubmerged =
4

3
πR3 − πh2

3
(3R− h) (44)

Perform as many iterations required to reach an error of 1e-2.

4. I would like to know the speed for minimum drag for the aircraft that I am currently simulating. Use the Newton-Raphson
technique to solve for this speed. Assume an initial guess of 30 m/s. The drag of an aircraft can be calculated using the
following equations.

D = 1
2ρV

2S(CD0 +KC2
L)

CL = 2W
ρV 2S

(45)

Use the following values in your solution: ρ = 1.225 kg/m3, W = 55 N , S = 0.6558 m2, CD0 = 0.028 and K = 0.0502.
Iterate until the change in your velocity values is 1e-2.

5. The mathematical model of a pendulum is set up with a single degree of freedom. The pendulum can be modeled as a ball
of mass “m”, connected to a rigid massless link of length “L”, as shown in the Figure below. The angle from the vertical
is denoted θ and can attain values from 0 to 2π. The equations of motion are second order and are written in terms of all
parameters in the system and are given by the equation below.

mL2θ̈ +mgLsin(θ) = 0 (46)

It is possible to solve for the analytic solution for small angles. That is, if θ is small the approximation that sin(θ) = θ is
valid. Using this result, the equation above reduces to the following. Note the equation was also divided by mL2.

θ̈ + (g/L)θ = 0 (47)

The equation above is now simply a spring mass system. The analytical solution is then

θ(t) = θ̇0

√
L

g
sin(

√
g

L
t) + θ0cos(

√
g

L
t) (48)
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6. Plot the analytical solution for θ0 = π/4 and θ̇0 = 0. Assume m = 1 kg, g = 9.81 m/s2, and L = 4 m.

7. Use Euler’s integration technique and compute the numerical solution to the simplified expression in equation 47. Plot
the analytical solution on the same graph as the numerical solution. Did you get the same thing? Is your timestep small
enough?

8. Use Euler’s integration technique and compute the numerical solution to the full expression in equation 208. Plot the
analytical solution, the numerical solution from problem 2 and 3 on the same graph. Do they all look the same? Try it
again for θ0 = pi/10. Do they look the same now? What is happening?

9. Bonus: For extra credit create an animation of the pendulum and upload it along with your word document. Look up
movie2avi for help or request a screen cast. (+50pts)

10. Recall the parachutist falling with an unknown drag coefficient. Estimate the drag coefficient using the Newton-Raphson
technique. Choose an appropriate initial guess. Iterate until your percent error is less than 1%

11. Perform the same problem as above except this time use the bi-section method. Create a plot of your g(K) function to
prove that your answer is correct. Have the bi-section method iterate until you are within 1%. Make a plot showing the
error in your newton-raphson estimate, your right bound estimate and your left bound estimate.

4. OPTIMIZATION

4.A. One-Dimensional Unconstrained Optimization - Chapter 13

Often times it is important to find the most efficient or cost effective solution to a particular design. The Newton-Raphson
method depicted below is a widely used method for optimization. Note however that any search method can be adapted for use
in optimization.

1. Classical Optimization

Classically optimization is written in the form like the equation below

find x such that min(f(x)) (49)

A very simple example is where f(x) = x2 − 1. The solution to this equation can be solved by computing where the
derivative ∂f/∂y = 2x = 0. In this case the function is a minimum when x = 0 and the minimum value is negative -1.
Care must be taken however when using this method because finding where the partial derivative is zero is actually finding
a local extrema. For example, if f(x) = −x2 + 8x − 12, the first derivative is zero when x = 4 which yields f(4) = 4
however simple inspection shows that when x = 0, f(0) = −12 which is smaller than 4. This is because the method above
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has found a maximum instead of a minimum. Suppose however that you cannot solve the first derivative? For example,
try and solve for the minimum below

f(x) = 5(2 +
3

x4
)x2 (50)

For problems such as this it is sometimes easier to employ a numerical method. The most widely popular method is the
Newton-Raphson method.

2. Newton-Raphson

The goal of an optimization problem is similar to a root finding problem. The difference is that instead of finding where
f(x) = 0 optimization problems seek to find where f ′(x) = 0. Thus the Newton-Raphson technique can be easily modified
to write

xi+1 = xi −
f ′(xi)

f ′′(xi)
(51)

If the relationship g(x) = f ′(x) is defined then the equation becomes

xi+1 = xi −
g(xi)

g′(xi)
(52)

which is exactly the same equation as the original Newton-Raphson technique using g(x) instead of f(x). The issue is that
if the first derivative does not exist, it means the second derivative also does not exist. Thus, the two derivatives must
both be determined numerically in order to use Newton-Raphson for optimization problems. Typically the second spatial
derivative is replaced such that

f ′′(xi) =
f(xi+1)− 2f(xi) + f(xi−1)

∆x2
(53)

and

f ′(xi) =
f(xi+1)− f(xi−1)

∆x
(54)

The method above is called the secant method.

3. Convergence Criteria

Optimization methods are iterative methods just like everything else in numerical methods. The stop criterion is setup
such that convergence is reached when εa ≤ εs where εs is a user defined parameter whereas εa is equal to the equation
below.

εa =
current estimate− last estimate

current estimate
(55)

4. Gradient Search

Often times computing the second derivative for the Newton-Raphson technique is difficult. Another method which is very
similar is the gradient or steepest descent method.

xn+1 = xn − α∇f(xn) (56)

where α is a number between 0 and 1 which is used to slow down the descent search to ensure the iteration steps to not
diverge.

37



5. Parabolic Interpolation

Although, least squares regression is not covered until section 6.A., it is possible to obtain a close form expression for a
parabola that approximates the equation trying to be optimized. To do this, three coordinates (x0, x1, x2) are taken that
straddle the assumed optimum. The equation below is then used iteratively until the system converges.

x3 =
f(x0)(x2

1 − x2
2) + f(x1)(x2

2 − x2
0) + f(x2)(x2

0 − x2
1)

2f(x0)(x1 − x2) + 2f(x1)(x2 − x0) + 2f(x2)(x0 − x1)
(57)

6. Adaptation of Bi-Section - Grid Search

Notice however that when using the Newton-Raphson method, the second derivative of the function must be known. It is
possible to use the secant method and numerically obtain the second derivative however if the system is well behaved, a
simple grid search can be used to solve the problem.

The bi-section method can be adapted to perform optimization by changing the switch criteria from this

Change the sign of ∆xn+1, if sign(f(xn)) ∼= sign(f(xn+1))

to this

Change the sign of ∆xn+1, if f(xn+1) ≤ f(xn)

The algorithm basically amounts to keep stepping forward until your function becomes smaller. Once it does switch the
sign and halve the distance until the step size is smaller than an exit criteria.

7. Ladder Problem

Assume a ladder is to be used to paint a wall. Unfortunately there is a fence a distance d from the wall with a height of
h. Solve for the minimum distance L of the ladder. Draw a picture to help.

To start solving this problem we define a coordinate system and let the ladder be defined by y = mx + b where b is the
position of the ladder on the wall and −b/m is the x distance from the wall. Obviously m will be negative. Since this is a
minimization problem, the smallest ladder will be touching the fence such that h = md+ b or rather b = h−md
Using the Pythagorean Theorem, we know that L2 = b2 + (b2/m2). Substituting b = h−md into the equation for length
yields

L2 = (h−md)2 + (h−md)2/m2 (58)

Since the height of the fence is known h = 4 m and the distance from the wall is known d = 4 m, the equation above is in
the form find m to min(L(m)). At this point we can use Grid Search, Newton-Raphson or Gradient Search to solve this
problem.

4.B. Multi-Dimensional Unconstrained Optimization

1. Analytic Method

Suppose that we want to minimize

p = −8ρ+ ρ2 + 12T + 4T 2 − 2ρT (59)

Analytically we would simply set the gradient equal to zero.

∇p =

{
∂p
∂ρ
∂p
∂T

}
=

{
−8 + 2ρ− 2T
12 + 8T − 2ρ

}
= ~0 (60)

This yields a system of equations which can be solved using Gaussian substitution or matrix inversion. The solution is
ρ = 3.33 and T = −0.667.
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2. Grid Search

In order to perform grid search in 1 dimensions you simply evaluate the function one step to the left and to the right.
Formally this can be written as f(x0−∆x) and f(x0 +∆x). However in two dimensions, the number of function evaluations
becomes 8. That is, f(x0 +∆x, y0), f(x0−∆x, y0), f(x0, y0 +∆y), f(x0, y0−∆y), f(x0−∆x, y0−∆y), f(x0 +∆x, y0−∆y),
f(x0 − ∆x, y0 + ∆y), and f(x0 + ∆x, y0 + ∆y). The rules are the same, continue to move towards the smallest of the
8 and if you cannot reduce the function size anymore, halve the step size until an exit criteria. This method becomes

large rather quickly. The function evaluations is equal to
D−1∑
i=0

2i+1(D− i) where D is the order. When D = 1 the function

evaluations is 2D = 2, when D = 2 the function evaluations is 2D+4(D-1) = 4+4 = 8, when D = 3 the function evaluations
is 2D+4(D-1)+8(D-2) = 6+12+8=26, D = 4 yields 2D+4(D-1)+8(D-2)+16(D-3) = 8+12+16+16 = 52. That’s alot of
function evaluations. A simple computer program can be programmed to do this but the gradient search is alot better.

3. Gradient Search

The gradient search in multiple dimension is extremely easy to employ and often the easiest to code as well.

~xn+1 = ~xn − α∇f(~xn) (61)

The simplicity lies in the equations ability to handle multiple dimensions much easier than other methods such as Grid
Search or Newton-Raphson.

4.C. Linear Constrained Optimization - Chapter 15

All engineering problems have constraints. Time constraints, storage constraints, load constraints, you name it. It is impossible
to make something too big. At some point there will be diminishing returns and it will be better to make less of something than
more of something. Most problems are non-linear and require the use of Lagrange Multipliers but that is beyond the scope of
this course. Thus, only linear constrained optimization problems will be considered in this course.

1. Gas-Processing Plant

Suppose a gas-processing plant receives a fixed amount of raw gas each week. Gas is processed into two grades regular and
premium. Only 1 type of gas can be processed at one time. The facility is open 80 hrs/week using two shifts and receives
77 m3 of raw gas per week. The regular gas requires 7 m3 of raw gas per tonne and the premium gas requires 11 m3 of
raw gas per tonne. The regular gas requires 10 hrs to produce 1 tonne while the premium gas requires 8 hrs to produce 1
tone. The plant has storage constraints and can only store 9 tonnes of regular gas and 6 tonnes of premium gas. Assume
the company sells all the regular gas produced at the end of the week at $150/tonne and the premium gas at $175 per
tonne. How much regular and premium gas should be made to maximize profit.

If x1 = amount of regular gas and x2 is the amount of premium gas the problem can be set up using the equations to the
left. In order to solve this problem using a Mathematics toolbox however requires problem to be cast into the form shown
on the right where the profit function has been inverted, becomes a minimization problem and the inequalities are cast in
the form of g(x) ≤ 0

Maximize f(x1, x2) = 150x1 + 175x2 Minimize f(x1, x2) = −(150x1 + 175x2)
subject to 7x1 + 11x2 ≤ 77 ⇒ subject to 7x1 + 11x2 − 77 ≤ 0

10x1 + 8x2 ≤ 80 10x1 + 8x2 − 80 ≤ 0
x1 ≤ 9 x1 − 9 ≤ 0
x2 ≤ 6 x2 − 6 ≤ 0
x1 ≥ 0 −x1 ≤ 0
x2 ≥ 0 −x2 ≤ 0

2. MATLAB Solution

Using the form on the right, the equation can be solved using the function fmincon. Unfortunately, this function is not
included in Octave (at least at the time this text was written in 2015). In order to solve this problem by hand, skip to the
next section.
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function Ex15_1

x0 = [1,1];

options = optimset(’LargeScale’,’off’);

[x,fmin] = fmincon(@objfun,x0,[],[],[],[],[],[],@confun,options);

x_o = x

fmax =-fmin

function f = objfun(x)

f = -(150*x(1) + 175*x(2));

function [c,ceq] = confun(x)

c = [7*x(1) + 11*x(2) - 77;

10*x(1) + 8*x(2) - 80;

x(1) - 9;

x(2) - 6;

-x(1);

-x(2)];

ceq = [];

In the function above the first function Ex15 1 sets up the problem. objfun is the objective function to be solved and
confon is the constraints where c contains the inequality constraints and ceq contains the equality constraints.

3. Graphical Solution

In order to solve linear programming problems, the constraints must first be graphed.

The graph has a lot of information on it so let’s walk through this graph slowly. The x-axis is the amount of regular gas in
tonnes and the y-axis is the amount of premium gas in tonnes. The green and magenta lines indicate storage constraints
since the plant can only store 9 tonnes of regular gas and 6 tonnes of premium gas. The blue line shows the time constraint.
Since the plant is only open 80 hrs/week and only 1 gas can be made at a time, the blue line indicates the limits on this
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shortcoming of the factory. The red line is similar only it indicates the volume constraint since the plant only receives 77
m3 of raw gas per week. The green line is a redundant constraint in that if it is removed, the problem stays the same;
however, the other 3 lines create the feasible design space as indicated by the large green space. The intersection of each of
the constraints lines with each other and the x and y-axes are critical design points which designate the Pareto Frontier.
The optimum design choice is one of these 4 points. Each point can be solved for explicitly using Gaussian subsitution and
plugging each coordinate into the profit function. Inspection shows that point C is the optimum design choice. x1 = 4.89,
x2 = 3.89 and Profit = $1413.89.

4.D. Example Problems

1. Solve the ladder problem using Grid Search, Newton-Raphson and Gradient search. Plot the length of the ladder as a
function of the slope.

2. In MATLAB type help fminbnd and help fminsearch. Use the help function to learn how to use these functions and use
them to solve the ladder problem. Compare your results to your own numerical method.

3. Solve the Density and Temperature problem using Grid Search and Gradient Search.

4. You are asked to design a covered conical pit to store 50 m3 of waste liquid. Assume excavation costs at $100/m3, side
lining costs at $50/m2, and cover costs at 25/m2. Determine the dimensions of the pit that minimizes cost. If the slope is
unconstrained and if the side slope must be less than 45o. Here are some equations that might help you

Excavation V olume = πr2h/3

Side Lining Area = πr
√
h2 + r2

Cover Area = πr2
(62)

Create plots of Cost vs. Radius as well as cone angle vs. radius. Solve the minimization problem using the built in
MATLAB function fminbnd. Is the constraint a limiting factor? If so, what is the radius with the constraint?

5. A company makes two types of products, A and B. These products are produced during a 40-hr work week and then
shipped out at the end of the week. They require 20 and 5 kg of raw material per kg of product, respectively, and the
company has access to 9500 kg of raw material per week. Only one product can be created at a time with production times
for each of 0.04 and 0.12 hr, respectively. The plant can only store 550 kg of total product per week. Finally, the company
makes profits of $45 and $20 on each unit of A and B, respectively. Each unit of product is equivalent to a kg.

Create a mesh plot of the objective function and plot all constraint equations on it. Evaluate all limiting cases by
taking a look at your Pareto Frontier. Once you have evaluated which limiting conditions is the minimum use the fmincon
function like we did in class to solve for the solution. Note that fmincon does not exist in Octave so you will have to team
up with someone who owns MATLAB and solve the problem that way. Plot a blue square on the solution of this problem
just as we did in class.

6. You are an engineer planning to airlift Mt = 2000kg worth of supplies to people in need. The supplies are being dropped
at an altitude of 500m. The price of a parachute is given using the equation below

cchute = 200 + 56l + 0.1A2 (63)

where l =
√
r,A = 2πr2 and r is the radius of the parachute. It is possible to put all 2000 kg worth of material into 1

parachute however the parachute must be really big because the velocity that the product strikes the ground must be less
than 20m/s to ensure no one is injured and the product is not damaged. We know from the previous section on Numerical
Integration that a parachute in free fall is governed by the equation below

z̈ + (c/m)ż = g (64)

where z is the altitude, c = 3 is the drag coefficient and g = 9.81 is the gravitational constant on Earth. This equation
can be solved analytically to obtain z(t) to compute when the parachute collides with the ground. The time can then be
substituted into the velocity equation to ensure that the velocity is under 20m/s. However, it is also possible to break
up the single parachute into multiple chutes thereby decreasing the radius of each parachute. The mass of each parachute
than becomes m = Mt/N and the total cost of the mission is Cost = Ncchute. Compute the number of parachutes and
radius of each parachute that minimizes the cost of the entire mission. Create plots to support your answer.
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Hint: If you solve for the velocity analytically you should obtain this equation below

v(t) =
−gm
c

(1− e−ct/m) (65)

integrating one more time yields the position

z(t) = z0 −
gm

c
t+

gm2

c2
e−ct/m (66)

Thus, rather than integrating the equations numerically until the parachute hits the ground you can turn this problem into
a root finding problem to determine when the parachute collides with the ground.

4.E. Project

As you know every engineering problem can be cast into the form

dependent variable = function( independent variable,parameters)

The problem is that alot of times the independent variable can change. So the question is what is the best solution? What is the
criteria for optimal solutions? Cost? Weight? Size? It’s up to you, you are the engineer. Your task is to find an optimization
problem out in the world and figure out what the best solution is. Restrict yourself to a 2-D problem. 1D Problems will not be
accepted. I encourage you to use fmincon in MATLAB if not you can try using a grid search and/or try N-R however N-R in
2D is pretty complex.

Your deliverable for this assignment will be to write a report detailing your optimization problem. The sections included
in your report will be the following:

1. Introduction Explain what the problems are. Why do we care? Why is this important? Give some background on this
type of problem.

2. Mathematical Model Explain the theory on how these problems are solved. Include equations in your report. Do not
screenshot equations or just type them in. You are engineers. It’s time to learn how to use Equation Editor. Finally,
include all pertinent data required to run your code. Are there fixed parameters that do not vary? Include them in this
section.

3. Results Explain your inputs to your code and your outputs. Do not copy and paste MATLAB output. Write your results
in normal english. For example, ”When the weight of the cat is 5 lbs the terminal velocity is 50 ft/s. If the weight of the
cat is increased to 10 lbs the terminal velocity of the cat is 80 ft/s”.

4. Appendix MATLAB Code Copy and paste your MATLAB code. This is the only place the word MATLAB should be.
No supporting text required, simply copy and paste your code into this section.

5. MATRIX SUPPLEMENTALS

5.A. Gaussian Elimination - Chapter 9 and 10

1. Solving Multiple Algebraic Equations

Solving multiple algebraic equations is very simple. For example if we were to solve

x+ y = 2
y − x = 4

(67)

We would simply set x = 2− y and plug this into the equation below yielding y − (2− y) = 4 and thus y = 3 and x = −1.
It is also possible to solve these equations graphically. If the first equation is written in the form y = 2− x and the second
equation is written in the form y = 4 + x the solution to this system of equations is where the graphs intersect.

However, it is also possible to take the first equation and add it to the second equation. This would yield 2y = 6 and thus
y = 3. The second method is known as Gaussian Elimination. This can be written in matrix form using the equation
below

42



−4 −2 0 2 4
−2

0

2

4

6

8

x

y

[
1 1
−1 1

]{
x
y

}
=

{
2
4

}
(68)

This is the general form of A~x = ~b. To use Gaussian Elimination in Matrix form an augmented matrix is formed such that
Ã = [A|b]. This would yield the following equation. [

1 1 2
−1 1 4

]
(69)

Adding the first row to the second would yield [
1 1 2
0 2 6

]
(70)

Dividing the last equation by 2 would yield [
1 1 2
0 1 3

]
(71)

Finally, we take the bottom equation and subtract it from the first. That would yield.[
1 0 −1
0 1 3

]
(72)

The form above is known as reduced row echelon form. The first matrix is the identity matrix and we can use it to directly
solve for x and y. Here it is clear that x = −1 and y = 3.

2. Equations with No Solutions - The Matrix Determinant

Note however that often times the equations have no solution. Take for example the system.

2x+ 2y = 1
x+ y = 1

(73)
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Using the “Naive” Gaussian Elimination technique would yield the following augmented matrix.[
2 2 1
1 1 1

]
(74)

The rref of the matrix above is then [
1 1 0.5
0 0 0.5

]
(75)

Notice here that the last row is all zeros. This doesn’t make sense. 0 does not equal 0.5. In order to visualize what’s
happening we need to look at this graphically. If we plot the first equation in the form y = (1 − 2x)/2 and the second
equation in the form 1− x we can see that the lines below do not intersect. This is why the rref of the augmented matrix
produces a row of zeros. Rather than performing Gaussian Elimination it is sometimes useful to compute the matrix

−4 −2 0 2 4
−4

−2

0

2

4

6

x

y

determinant in order to see if a solution exists. For a 2x2 matrix the determinant of a matrix is given by

det

[
a b
c d

]
= ad− bc (76)

The determinant is a useful property because if the det = 0 the solution does not exist and there will be a row of zeros in
the rref of the matrix. For example, let’s take the first example where

A =

[
1 1
−1 1

]
(77)

The det(A) is then simply 1*1-1*(-1) = 2 thus the solution exists. However, if we take the second example

A =

[
2 2
1 1

]
(78)

the det(A) is 2*1-2*1 = 0 and thus the solution does not exist. This can be helpful when doing systems of multiple variables
like the example below  1 1 2

−1 1 3
2 4 5

xy
z

 =

2
4
5

 (79)
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Using MATLAB we can write det(A) in the command window which returns -8 which means the solution exists. Performing
Gaussian elimination on this problem yields 1 0 0 −0.3750

0 1 0 −0.1250
0 0 1 1.25

 (80)

We can graph this result rewriting each equation in the form. z = (2−x− y)/2, z = (4 +x− y)/3 and z = (5− 2x− 4y)/5.
These are equations of planes and are plotted in MATLAB below. The white ball is the intersection of all three planes

−2
0

2 −2

0

2

−2

0

2

4

y
x

z

and the solution to the system of equations. If instead we take a look at the system below. 1 1 2
−2 −2 −4
2 4 5

xy
z

 =

2
4
5

 (81)

and compute det(A) in MATLAB the system returns 0 which means there is no solution. This system can be plotted as
well in MATLAB. Here it is clear that the red and green planes intersect however the green plane is parallel to the red
plane and thus there is no solution.

3. Eigenvalues(λ) and Eigenvectors(~ν)

Eigenvalues and Eigenvectors are used in a variety of different applications including differential equations. Traditionally
they are used to solve problems of the form A~ν = λ~ν. In order to solve these problems we subtract the right hand side to
achieve the form (A − λI)~ν = 0. The solution is then either (A − λI) = 0 or ~ν = 0. However if the eigenvector is equal
to zero we obtain a trivial solution thus we would like (A − λI) to be zero but it is impossible for this to be true since
the identity matrix is diagonal. Thus, the only way for this solution to hold is for det(A − λI) = 0. The determinant is
a scalar equation and can be solved just like any other quadratic equation. Using the eigenvalue it is possible to solve for
the eigenvector which is not unique but is typically normalized to unity. As an example we will compute the eigenvalues
of the matrix [

1 −2
−2 1

]
(82)

If we compute the determinant of this matrix we find that it is -3 which means the matrix has a solution if paired with a
vector. Computing (A− λI) yields [

1− λ −2
−2 1− λ

]
(83)
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The determinant is then simply (1− λ)2 − 4. Solving this equation is simply and yields two values, -1 and 3. Notice that
the determinant is the product of the eigenvalues. To find the eigenvectors we then simply plug the eigenvalues into the
matrix (A− λI). This yields two matrix equations.[

2 −2
−2 2

]{
vx
vy

}
=

{
0
0

}
(84)

If you notice, the determinant of the matrix is now zero thus the rref is simply[
1 −1
0 0

]{
vx
vy

}
=

{
0
0

}
(85)

Thus we can pick any eigenvector ~ν = [1, 1]T . Doing the same calculation for the eigenvalue of 3 yields an eigenvector of
~ν = [−1, 1]T . If we normalize these vectors and place them in matrix form we can write the eigenvector matrix as

V =

[
−0.7071 −0.7071
−0.7071 0.7071

]
(86)

The interesting property of this matrix is that it can be used to decompose the matrix A into the form A = V ΛV −1 where

Λ =

[
λ1 0
0 λ2

]
=

[
−1 0
0 3

]
(87)

This form is useful for the Matrix Inverse. The last thing to note is that if the determinant of the matrix is zero it means
on of the eigenvalues is also zero.

4. The Matrix Inverse

The last way to solve equation is by using the matrix inverse. If the equation is written in matrix form A~x = ~b the equation
can be multiplied by a special form of A called the inverse such that A−1A = I where I is the identity matrix. The equation
is then ~x = A−1~b. For a 2x2 matrix the solution for the matrix inverse is

A−1 =
1

det(A)

[
b −c
−d a

]
(88)
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Notice, that if det(A) is equal to zero the inverse does not exist. This applies to all size matrices. However, for matrices
with bigger dimensions analytical solutions do not exist. Using the augmented matrix it is possible to solve for the inverse
of a matrix. For example. Let’s assume we are trying to solve for the inverse of the matrix.[

1 3
4 2

]
(89)

The augmented matrix to find an inverse involves putting the identity matrix on the right-hand side such that Ã = [A|I][
1 3 1 0
4 2 0 1

]
(90)

With this augmented matrix Gaussian Elimination can be performed. First the first row is multiplied by 4 and then
substracted from the second equation yielding [

4 12 4 0
0 10 4 −1

]
(91)

You can then divide the bottom equation by 10 and the top equation by 12.[
1/3 1 1/3 0
0 1 2/5 −1/10

]
(92)

Then subtract the second equation from the first and then multiply the top equation by 3.[
1 0 −1/5 3/10
0 1 2/5 −1/10

]
(93)

Thus our inverse is [
−1/5 3/10
2/5 −1/10

]
(94)

Using this matrix you can solve any problem of the form A~x = ~b. For example,[
1 3
4 2

]{
x
y

}
=

{
1
1

}
(95)

The solution is then simply, {
x
y

}
=

[
−1/5 3/10
2/5 −1/10

]{
1
1

}
=

{
1/10
3/10

}
(96)

We can also compute the rref of the augmented matrix to check the solution.

rref(

[
1 3 1
4 2 1

]
) =

[
1 0 1/10
0 1 3/10

]
(97)

Finally, it is also possible to compute the inverse of the matrix using the eigenvalue, eigenvector form. Remember the
eigenvector, eigenvalue form is A = V ΛV −1. The interesting property about the matrix V is that V −1 = V −1. Thus
A−1 = V Λ−1V −1. The computation of Λ−1 is trivial and can be done using the equation below.

Λ−1 =

[ 1
λ1

0

0 1
λ2

]
(98)

5.B. Example Problems

1. Write a MATLAB code that computes the inverse of a matrix using gaussian elimination. Your function header should
look like this

function invA = myinv(A)

where A is your input matrix of any size. Test it with three random matrices. Provide the answer in your assignment.
You may not use inv(),rref() or ˆ(-1). You may use the eye() function to create the identity matrix. In your function check
that the determinant of the matrix is not equal to zero using the det() function. If the determinant is equal to zero return
a matrix of zeros and display ’The inverse of the matrix is undefined’.
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2. Using your inverse routine from above write a routine that will solve a system of equations. For example, use it to solve
the system of equations below.

2u+ v = −3
u− 5v = 2

(99)

Come up with two more random systems of equations including one with three variables (u,v and w) and use your routine
to solve it. All system of equations can be written in the form

A~x = ~b (100)

Using the form above your function header should look like the following header.

function x = my sys solve(A,b)

6. REGRESSION AND INTERPOLATION

6.A. Least Squares Regression - Chapter 17

1. Linear Regression

Linear Regression attempts to fit a line to a function f such that

y = f(x) ≈ a0 + a1x (101)

The solution of the coefficients a0 and a1 are found by minimizing the square error between the actual value of y and the
estimated value. That is,

min[

N∑
i=0

(yi − a0 − a1xi)
2] (102)

The easiest way to solve this is by using gaussian elimination. First let Y be a vector of all actual values yi, X be a vector
of all actual values xi and let A = [a0 a1]T .

Y = [1 X]A (103)

We can then say that H = [1 X]. The problem above has been solved by Gauss. The idea is to obtain the least squares
estimate of A using the form Y = HA. The solution is

A∗ = (HTH)−1HTY (104)

Notice how A has been replaced with A∗ this is because HTH is a 2x2 matrix. The problem has been reduced from a
system of N points to a 2x2 system and thus information has been lost because the order of the system has been truncated.

2. Polynomial Regression

The benefit of using the formula above is that it can be extended to include polynomials. That is assume we are trying to
fit

y ≈ a0 + a1x+ a2x
2 + ...anx

N (105)

Using Gauss’ formula we can write

Y = [1 X X2 ... XN ]A (106)

where A = [a0 a1 a2 ... aN ]T . Notice that our problem is still in the form Y = HA and thus we can still use the formula
above for linear regression.
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3. Basis Function Regression

It is even possible to use the method above to fit a function using basis functions. For example assume we are trying to fit

y ≈ a0 + a1f1(x) + a2f2(x) + ...anfN (x) (107)

Again this problem can simply be written as

Y = [1 F1 F2 ... FN ]A (108)

and solved just as before.

4. Goodness of Fit

Often times it is beneficial to compute the goodness of fit which is a number that represents how well the regression curve
fits the data. To do this we must first compute the values of y computed by the regression line. This is very simple once
you have computed H, and A∗.

Ỹ = HA∗ (109)

This is equation gives you the y-coordinates as computed by the regression line. Using this it is possible to compute the
total residuals or the error in the fit and the measured/given data.

Sr =

N∑
i=1

(Yi − Ỹi)2 (110)

This value will get bigger when the error between the fit and the data are large. However, notice that this value changes
with the number of data points. If there are more data points the error can get quite large which doesn’t necessarily help.
Instead what we do is compute the error between the mean of Y which is denoted as Ȳ .

St =

N∑
i=1

(Yi − Ȳ )2 (111)

and then use Sr and St to normalize everything and compute r which is the correlation coefficient.

r =

√
St − Sr
St

(112)

This number can only assume values between 0 and 1. If the value of r is 1 then the fit is said to be perfect. If the value
of r is 0 the fit is not good.

6.B. Example Problems

1. Write a routine that will use Polynomial Least Squares regression. The routine will have a function header like this

function coeff = myregression(Y,X,N)

where Y is the vector of sampled point yi and X is a vector of independent points xi. N is the order of the fit. When N =
0, the fit is zero order, when N = 1 the fit is linear and when N = 2 the fit is quadratic. For the data below plot the data
given on a figure and compute the least squares fit. Note, you will have to plot the data to figure out which order to pick.
Pick an order that reduces to the least square error to a minimum. Once you have the fit, plot the fit on the graph and
put the least square error in the title.

In modeling an oil reservoir, it may be necessary to find a relationship between the equilibrium constant of a reaction and
the pressure at constant temperature.
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K − value Pressure
7.5 0.635
5.58 1.035
4.35 1.435
3.55 1.835
2.97 2.235
2.53 2.635
2.2 3.035
1.93 3.435
1.7 3.835
1.46 4.235
1.28 4.635
1.11 5.035
1.0 4.435

2. Write a routine that will compute a 2nd-order planar fit. That is, assume the form

z = a0 + a1sin(2x) + a2sin(2y)

Use Gauss’ equation to solve for the coefficients and create a mesh of the solution. The data will be provided in a text file
with columns x,y and z. First plot the data using blue stars. These can be used to solve for the coefficients a0, a1 and a2.
To create a mesh use the following code.

xest = linspace(-pi,pi,100);

yest = linspace(-pi,pi,100);

[xx,yy] = meshgrid(xest,yest);

zz = a0 + a1*sin(2*xx) + a2*sin(2*yy);

mesh(xx,yy,zz)

Your results should have 1 graph with the provided data and the mesh. You need to also include your coefficients in your
answer as well.

3. The data below describes the growth of a population following a logistical model. This system is non-linear however the
equation can be converted to a linear system.

y = 1
1+eax+b

z = 1/y − 1
zz = ln(z)

Use the equations above to solve for the coefficients a and b and plot the solution on the same graph.

X Y
−1.0 0.05
−0.8 0.08
−0.6 0.14
−0.4 0.23
−0.2 0.35
0.0 0.50
0.2 0.65
0.4 0.77
0.6 0.86
0.8 0.92
1.0 0.95
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6.C. Interpolation - Chapter 18

1. Linear Interpolation

The simplest form of interpolation is by creating a line in between points x1 and x0 such that

y∗ = f(x∗) = f(x0) +
f(x1)− f(x0)

x1 − x0
(x∗ − x0) (113)

1 2 3 4
1

1.5

2

2.5

3

3.5

4

X

Y

y0=f(x0)

x0 = x1 = 

y1=f(x1)

(xstar,ystar)

2. Polynomial Interpolation

Note that the problem can be explicitly derived using Linear Regression. That is we are trying to solve the problem
f(x) = a0 + a1(x − x0). If this problem is set up the solution would yield a0 = f(x0) and a1 = slope. Thus it is possible
to extend the interpolation method to higher order polynomials. Our polynomial is then

f̃(x) = a0 + a1(x− x0) + a2(x− x0)2 + ...aN (x− x0)N (114)

Note however that in order to interpolate using the equation above your need N+1 data points. For example, in order to
fit a line the method requires two points to solve for a0, a1. In order to fit a quadratic the method requires three points to
solve for a0, a1 and a2.
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1 2 3 4
0

1

2

3

4

5

X

Y
y=a0+a1(x-x0)+a2(x-x0)^2

ystar=a0+a1(xstar-x0)+a2(xstar-x0)^2

3. Linear Splines

Splines are a way to approximate the curve with more than one model. For example, if you have a curve that looks fourth
order you could fit the entire data set as fourth order polynomial or you could simply fit the line to 4 linear polynomials.
In certain situations this would actually create a better fit. The equation for linear splines is simply

f̃(x) = f(xi−1) +mi−1(x− xi−1) xi−1 ≤ x ≤ xi (115)

where

mi−1 =
f(xi)− f(xi−1)

xi − xi−1
(116)

4. Quadratic Splines

The equation for quadratic splines gets a little more messy so the derivation is left for the student. Instead rules are listed
to help you with the derivation. The basic formula of a quadratic spline is

f̃(x) = aix
2 + bix+ ci xi−1 ≤ x ≤ xi (117)

The rules for quadratic splines are then

(a) The function values of adjacent splines must be equal to each other

aix
2
i + bixi + ci = ai+1x

2
i + bi+1xi + ci+1 (118)

(b) The first and last function must pass through the end points

a1x
2
0 + b1x0 + c1 = f(x0)

anx
2
n + bnxn + cn = f(xn)

(119)

(c) The first derivative of adjacent splines must be equal to each other

2aixi + bi = 2ai+1xi + bi+1 (120)
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(d) The second derivative of the first spline at x0 = 0
a1 = 0 (121)
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5. 2-D Interpolation

It is often the case that rather than your system being of the form y = f(x) you have an equation of the form z = f(x, y).
In this case you need to use 2-D interpolation and here we will discuss linear 2-D interpolation called bi-linear interpolation
for short. This interpolation scheme is three separate interpolations. Assume you are trying to interpolate z∗ = f̃(x∗, y∗)
where xi−1 ≤ x∗ ≤ xi and yi−1 ≤ y∗ ≤ yi. The equations to solve for z∗ is then

zU = f(xi−1, yi) +
f(xi, yi)− f(xi−1, yi)

xi − xi−1
(x∗ − xi−1) (122)

zL = f(xi−1, yi−1) +
f(xi, yi−1)− f(xi−1, yi−1)

xi − xi−1
(x∗ − xi−1) (123)

z∗ = zL +
zU − zL
yi − yi−1

(y∗ − yi−1) (124)

The basic solution is simply three linear interpolations to get your solution.
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6.D. Example Problems

1. Write an interpolation program that will create Linear Splines for your data set. You merely need to compute the point
slope form equations for every data point. Use your splines to compute the value of ystar.

function ystar = myinterp(X,Y,xstar)

Note, X is a vector of data points and Y is a vector of sampled points occuring at the values of X. Test your code using
the table of data below. Let xstar = 1.5, 3.5 and 5.5. Again make your code general enough to handle any number of data
points.

K − value Pressure
7.5 0.635
5.58 1.035
4.35 1.435
3.55 1.835
2.97 2.235
2.53 2.635
2.2 3.035
1.93 3.435
1.7 3.835
1.46 4.235
1.28 4.635
1.11 5.035
1.0 4.435

2. Edit your code from problem 1 and use polynomial interpolation instead of linear splines. Use the entire data set to
compute the polynomial fit. Feel free to use an expansion point. It is entirely up to you. Your function header will look
like this.

function ystar = interpoly(X,Y,xstar,N)

All inputs are the same except N is now the order of the approximation. Thus if N=0 you use a zero order method and if
N=1 you use a linear approximation. Test your code using the data below and set N=1, did you get something different
than problem 1? Explain why if so. Then set N=2. What do you get? Test it using the same values of xstar in problem 1.
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3. Problem 2 from last weeks homework could technically be used as a 2-D polynomial interpolation method.

z = a0 + a1sin(2x) + a2sin(2y)

In this problem, you were given X,Y, and Z and you found A∗. Use this fit to compute z∗ for x∗ = 1, y∗ = 1 and compare
it to a simple 2-D linear interpolation method. Explain the difference in your answers.

7. NUMERICAL CALCULUS

7.A. Taylor Series - Chapter 4

1. First Order Approximation - Euler’s Method

Euler’s Method of Integration is a method used to integrate equations of motion. Because the method is first order, Euler’s
method tends to be largely inaccurate. The basic idea of Euler’s Method is to approximately determine a function f while
only knowing ḟ = df

dt . That is, it is beneficial to integrate ḟ to obtain f . If we plot a general plot of f(t) we obtain the
graph above.

f

tt2t1

f2

f1

df/dt

f2-f1
t2-t1

Here, the blue line is the analytical equation for f . Using this graph it is possible to write that

ḟ1 ≈
f2 − f1

t2 − t1
(125)

if we then use the relationship that t2 = ∆t+ t1 we can write that

ḟ1 ≈
f2 − f1

∆t
(126)

Note that in the limit as ∆t→ 0 we have

lim
∆t→0

f2 − f1

∆t
= ḟ1 (127)
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thus as we reduce our timestep in our measurement we create a more and more accurate representation of f . Returning
to our approximate equation for ḟ we can rearrange this equation to write.

f2 ≈ f1 + ḟ1∆t (128)

Thus the value of f2 can be estimated if the derivative and the initial value are known. It is simple to extrapolate to
another timestep such that

f3 ≈ f2 + ḟ2∆t (129)

Thus as long as the derivative of f and the initial condition is known, f can be numerically integrated using the recursive
algorithm.

fi+1 ≈ fi + ḟi∆t (130)

2. The Series

Recall that Euler’s method uses a simple approximation for the derivative using simple forward differencing. That is,

df

dt
≈ fi+1 − fi

ti+1 − ti
(131)

We then said that f(ti+1) = f(ti) + ḟ(ti)∆t. This is a first order approximation to the function f. It is possible to create
higher order approximations using more terms such that

f(ti+1) ≈ f(ti) + f ′(ti)∆t+ f ′′(ti)
∆t2

2!
+ f ′′′(ti)

∆t3

3!
+ ...+ f (N)(ti)

∆tN

N !
(132)

3. Error

The Taylor series always contains error since it is impossible to compute an infinite series. The easiest way to derive the
error is by way of logical extension. If we write the zero order approximation to f we have

f(ti+1) ≈ f(ti) (133)

our error would then be

R0 ≈ f ′(ti)∆t+ f ′′(ti)
∆t2

2!
+ f ′′′(ti)

∆t3

3!
+ ...+ f (N)(ti)

∆tN

N !
(134)

however graphically we can show that in fact our error can simply be written as

R0 = f ′(ζ)∆t (135)

using the graph below.
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tt2t1
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h

where ζ is a number between B and A. It is easy to extend this to R1 = f ′′(ζ)∆t2/2! or generally

RN =
f (N+1)(ζ)∆tN+1

(N + 1)!
(136)

4. The Non-linear Parachutist

Let’s return to the parachutist. In that problem we had

v̇ + (c/m)v = g (137)

Since the drag was Newtonian the analytical solution could be obtained using simple differential equation techniques.

v(t) = v0e
−ct/m + (1− e−ct/m)mg/c (138)

However, if Bernoulli drag is used instead the equations of motion become

v̇ + (c/m)v2 = g (139)

This unfortunately has no analytical solution. The solution then is to solve the problem numerically using Euler’s method.
If the initial condition is known v0 the problem reduces to the following equations

v̇0 = g − (c/m)v2
0

v1 = v0 + v̇0∆t
v̇1 = g − (c/m)v2

1

v2 = v1 + v̇1∆t
...

v̇N = g − (c/m)v2
N

vN+1 = vN + v̇N∆t

(140)

Provided the timestep is small enough the solution will converge to the actual solution.
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7.B. Newton-Cotes Integration - Chapter 21

1. The Standard Reimmann Sum

The standard Reimmann sum can be used to integrate equations. For example, assume for the moment that the velocity
of a ball in free-flight is equal to v(t) = v0 + at. In calculus it is shown that the area under the curve v(t) is equal to the
position. That is,

x(t) = x0 +

t∫
t=0

v(t)dt ≈ x0 +

N∑
i=1

v(ti)∆t (141)

The position is merely the integral of the velocity curve. In addition, the position can be approximated by the area under
the curve using a series of rectangles to approximate the area under the curve. Note that the equation above is a similar
representation or for Euler’s method. That is, Euler’s method is a first order method for integrating equations of motion
and a Reimmann sum is a zero-order method for obtaining the area under the curve.

2. Car Example

So let’s say we’re driving our care and we take a few measurements as we head to work. We also note the time when we
take the measurement.

V = [30, 35, 0, 0, 50, 50, 0] mph
T = [10, 15, 16, 17, 20, 25, 30] min

(142)

The solution to this problem is then given by using the Reimann Sum. Note that we are using the left Reimann sum since
we assume that the initial velocity and time are both zero.

X = V0(T0 − 0) + V1(T1 − T0) + . . .+ VN (TN − TN−1) (143)

X = (30 ∗ (10− 0) + 35 ∗ (15− 10) + 0 ∗ (16− 15) + 0 ∗ (17− 16) + 50 ∗ (20− 17) + 50 ∗ (25− 20) + 0 ∗ (30− 25))/60 (144)

Which results in about 14.58 miles. We divide by 60 because our time is in minutes and our velocity is in miles/hour. This
solution can be visualized in the graphic below.
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Notice though that there is quite a bit of error. It is possible to reduce the error by taking more measurements thus
reducing ∆t.

3. Round-Off Error

The equation above has a very fundamental term in the equation above and that is the timestep (∆t). The solution
becomes more approximate as the timestep decreases. This reduction in the timestep and the increase in accuracy is
known as round-off error. As the timestep becomes smaller and smaller you reduce the amount of round off error in your
system because more decimal places are used in the approximation. Note, however that there is a limit to how small you
can make the timestep. If the timestep is reduced to levels below the threshold of your computer you will find that the
error in your estimate actually begins to increase. This limit is known as the limit of precision. That is, the CPU cannot
be more precise given the timestep you have chosen and the value of your error begins to rise.
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However, in our example above with the car driving, we cannot decrease ∆t because we only have a discrete set of
measurements. Instead we can increase the order of our method.

4. Trapezoidal Rule

Similar to the Reimmann Sum the trapezoidal rule sum individual Trapezoids instead of rectangles. The area of a trapezoid
is given by (1/2)(b1 + b2)h. Where b is the base and h is the width. For our integration of functions we have

I ≈
N∑
i=1

1

2
(f(ti) + f(ti + ∆t))∆t (145)

Note that the Standard Reimmann sum is a zero order approximation whereas the trapezoidal rule is a linear or first order
approximation. Because the trapezoidal rule is a first order approximation, errors are still produced but they are not as
bad.

5. Car Example Returned

Let’s return to the car example. Instead of adding rectangles let’s use trapezoids and add them together using the
trapezoidal rule. The graphic below depicts the solution using trapezoids. Notice how much error is reduced when using
trapezoids instead of rectangles. I’ve placed the Reimman Sum and Trapezoidal rule problem side by side to show the
benefit.
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The solution of adding the triangles is realized in the equation below.

X = 1
2 (V0 + V1)(T1 − T0) + 1

2 (V1 + V2)(T2 − T1) + . . .+ 1
2 (VN + VN−1)(TN − TN−1)

X = 1
2 ((0 + 30)(10− 0) + (30 + 35)(15− 10) + (30 + 35)(15− 10)+

(35 + 0)(16− 15) + (0 + 50)(20− 17) + (50 + 50)(25− 20) + (50 + 0)(30− 25))/60

(146)

The solution to using the trapezoidal rule is 15.71 miles which is alot different than the Reimman sum solution.

6. Compute Truncation Error of Trapezoidal Rule

The trapezoidal rule is not perfect though. The figure below shows the inherent problem of using the trapezoidal rule for
functions with a second derivative. That is, the order of the system is larger than 2.
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1.5

2

I = 3

t

f

Here the green shaded region can be defined as the area of the trapezoid. The blue line is the analytical solution thus the
white region is the error created by the trapezoidal rule. In a general sense the truncation error can be written using the
following equation below.
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ETi =

b∫
a

f(t) dt− 1

2
(b− a)(f(a)− f(b)) (147)

As noted previously it is possible to write f(t) as a taylor series expansion and evaluate the first integral. Doing this yields
the equation below.

ETi =
−1

12
f ′′(ζ)(b− a)3 (148)

Remember from Chapter 4 that ζ is a number in between the interval a,b. The total error than for the trapezoidal rule is
then just the sum of all errors. Note that ∆x = (b− a).

ET =

N∑
i=1

ETi =

N∑
i=1

−1

12
f ′′(ζ)∆x3 (149)

Making the substitution that ∆x = (B −A)/N where A and B are x1 and xN respectively the total error is written as

ET =
−1

12N2
f̄ ′′(B −A)3 (150)

Here f̄ ′′ is the average second derivative over the interval A,B.

7. Simpson’s 1/3 and 3/8 Rule

Clearly it is possible to fit a polynomial much like the RK2 techniques and the taylor series expansion. Fitting second
order and third order polynomials yields Simpson’s 1/3 and 3/8 rule.

I ≈=

N∑
i=1

1

6
(f(ti) + 4f(ti + ∆t/2) + f(ti + ∆t))∆t (151)

I ≈=

N∑
i=1

1

8
(f(ti) + 3f(ti + ∆t/3) + 3f(ti + 2∆t/3) + f(ti + ∆t))∆t (152)

8. Improper Integrals

Improper integrals pose a problem for numerical integration becase there is a ∞ in the integral. For example,

I =

∞∫
0

f(t)dt (153)

Numerically, ∞ does not exist. A computer can represent a very large number but it cannot represent ∞. Thus, the
solution is to convert the integral to two integrals.

I =

B∫
0

f(t)dt+

∞∫
B

f(t)dt (154)

In order to remove the∞ in the second integral a change of variables is done such that x = 1/t. Going through the change
of variables yields the following equation.

I =

B∫
0

f(t)dt+

1/B∫
0

1

x2
f(1/x)dx (155)

Now the two integrals above can be evaluated with two separate numerical integration schemes.
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7.C. Integration of Equations - Chapter 22

1. Richardson’s Extrapolation

Recall that the error from the trapezoidal rule is given by

ET =
−1

12N2
f̄ ′′(B −A)3 (156)

We know that moving to a higher order method can increase the accuracy. However because of the law of diminishing
returns it is not always practical to move to a higher order method. Thus it is useful to write the actual computed value
as a ratio from 1 increment to another. That is it is possible to write

I = I(N1) + E(N1) (157)

where I(N1) is the solution of the trapezoidal rule for N1 intervals. Because of the method certain errors are accrued as
we’ve seen and is given as E(N1). Now it is equally valid to assume that N2 = 2N1 then

I = I(N2) + E(N2) (158)

Thus, I(N1) + E(N1) = I(N2) + E(N2). The ratio of errors can then be written as

E(N1)

E(N2)
=

(
N2

N1

)2

(159)

substituting this into our two equations of I and solving for E(N2) we have

E(N2) =
I(N1)− I(N2)

1−
(
N2

N1

)2 (160)

we can then plug this into the equation involving N2 and collect terms to arrive at

I =
4

3
I(N2)− 1

3
I(N1) (161)

Remember that N2 = 2N1. The result of this derivation is that is possible to compute I(N2) and I(N1) and obtain a more
accurate result of I. It can be shown that if I(N1) is of O(∆x2), I is O(∆x4). Essentially you have increased the order of
the method without actually using another method.

2. Romberg Integration

Romberg Interpolation is simply an extension of Richardson’s Extrapolation.

Ij,k+1 =
4kIj+1,k − Ij,k

4k − 1
(162)

j is the interval number and k is the order of the method. The trapezoidal method is of order 1 thus k = 1. When k = 1
and j = 1, Romberg integration reduces to

I1,2 =
4I2,1 − I1,1

4− 1
(163)

Here I2,1 is I(N2) using the trapezoidal rule. I1,1 is I(N1) using the trapezoidal rule. I1,2 is the equivalent of I(N1) using
a second order method. The power of Romberg Integration is that it does not stop there. It is possible to increase k and j
until you get the estimate you like. For example, the table below shows the flow of Romberg Integration to compute I1,4.

Interval First Order Second Order Third Order Fourth Order
N1 I1,1 −→ I1,2 −→ I1,3 −→ I1,4

N2 = 2N1 I2,1 ↗ I2,2 ↗ I2,3 ↗
N3 = 2N2 I3,1 −→ I3,2 ↗
N4 = 2N3 I4,1 ↗
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This shows that it is possible to obtain accuracy on the order of ∆x8 by only using methods that have accuracy on the
order of ∆x2.

3. Gauss Quadrature

7.D. Example Problems

1. Create an empty function that will compute a sine wave of the form

y = Asin(ωx) (164)

Your function header will be as follows

function y = myfunction(x,w,A)

where x can be a scalar or a vector, A is the amplitude of your wave and w is the frequency of your sine wave. Test your
function by plotting it from a value of −π to π. Make sure to use enough data points such that the figure is smoothly
plotted. As always label your axes and make it as pretty as possible.

2. Take your function from problem 1 and compute the Taylor Series expansion. Find a way to have MATLAB compute the
Taylor series at any arbitrary point x. Your function header will look like this.

function yest = mytaylor(x,w,A,N)

where x is the input variable which can be a vector or a scalar, w is the frequency of the sine wave, A is the amplitude
and N is the order of your Taylor Series expansion. Choose an expansion point of zero to make the math simple. Starting
with your plot from problem 1, add 3 more lines showing a Taylor Series expansion of order 1,3 and 5. You should have
4 lines on your graph. The first should be the output of myfunction, the other three should be the output of your taylor
series expansion.

3. Assume I have a NACA 0012 airfoil across a wing. The total lift can be given using the equation below

L = 2

b/2∫
0

L′dy (165)

where L′ is the lift per unit span. Let L′ = 1
2ρV

2cCl where ρ is the atmospheric density, 1.225 kg/m3, c is the chord
0.3125 m, and V is the velocity, 20 m/s and b is the span of the wing, 2.04 m. Let cl the lift coefficient be defined using
the equation below where Cl0 = 1.0

Cl = Cl0
√

1− (2y/b)2 (166)

Use the trapezoidal rule to compute the total lift across the wing. Plot the lift as a function of span from -b/2 to b/2.

4. Write a loop that will compute the taylor series expansion for exp(x) from -2 to 2. How many orders does it take to get
within 10% of the true value? How many orders does it take to get within 1% of the true value. Make plots of exp(x)
along with your two fits. Then create plots of percent error between your two fits to prove that the taylor series expansion
converges.

5. The solution to the integrand below is shown. Write a computer code that will use Simpson’s 1/3 Rule to compute the
integral (dt = 0.01). When transforming the integrand use (dx = 0.001). Furthermore, split the integral at t = 100.
Compute the absolute error between the analytical solution and the numerical solution.

I =

∞∫
0

1

t2 + 1
dt = π/2 (167)

6. Using Romberg integration, compute I1,4 for the equation below starting with the Trapezoidal Rule. Let n1 = 10. Compute
the error for all estimates (Ij,k). Note in order to compute the error you will need to compute the solution to this equation
analytically.
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I =

π∫
0

(5 + 3 sin x)dx (168)

7. Determine the distance traveled for the following data:

t (minutes) 0 1 2 3.25 4.5 6 7 8 9 9.5 10
v (m/s) 0 5 6 5.5 7 8.5 8 6 7 7 5

You may use a computer code to solve this or simply solve it by hand. It is up to you, however you must use the trapezoidal
rule.

8. Integrate the following equation by hand. In addition, write a computer code to compute the integral with the Standard
Reimmann Sum (dx = 0.01,dy = 0.01). Compute the absolute error between your analytical solution and your numerical
solution.

1∫
−1

2∫
0

(x2 − 2y2 + xy3)dx dy (169)

Finally, create of Mesh of the equation above. That is, use the mesh() function in MATLAB and generate a plot that
shows the surface from x = [-1,1] and y = [0,2]. Label all your axes and include the figure in your homework.

9. Consider the differential equation below:

ÿ = −2ẏ − y (170)

Euler’s method is an iterative method that can be used to solve differential equations. The iterative equations are shown
below.

ẏn+1 = ẏn + (−2ẏn − yn)∆t
yn+1 = yn + ẏn∆t
tn+1 = tn + ∆t

(171)

Write a MATLAB code that will use Euler’s method to compute y until t is equal to 10 seconds. The function header is
shown below.

function myEuler(deltat)

Assume deltat is the timestep ∆t. Let t(1) = 0, y(1) = 2 and ẏ(1) = -2; Run the function for smaller and smaller timesteps
until your graph does not change. Put in your report what timestep you chose and why. Obviously include your final graph
in your homework assignment.

7.E. Numerical Integration Methods - Chapter 25

1. Truncation Error in Euler’s Method

The inherent problem associated with Euler’s method is the assumption that the derivative is linear in between the interval
∆t. That is, Euler’s method assumes the slope ḟ1 is constant over time 1 to 2.

f2 ≈ f1 + ḟ1∆t (172)

However, the taylor series expansion clearly states that f can be approximated as an expansion of multiple terms. The
equation below is the taylor series expansion starting at f(t0).

f(t1) ≈ f(t0) + ḟ(t0)∆t+
f̈(t0)

2!
∆t2 + ...+

f (N)(t0)

N !
∆tN (173)
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Notice that Euler’s method is merely the first two terms. Thus we can write that the error accrued by Euler’s method is

ET =
f̈(t0)

2!
∆t2 + ...+

f (N)(t0)

N !
∆tN (174)

This type of error is called Truncation Error and is a direct result of truncating the higher order terms (HOTs) in the
taylor series expansion.

2. Taylor Series Approximation to Euler’s Method

Note however, that it is extremely easy to include higher order terms in Euler’s method. That is we can simply include
three terms instead of just two and suddenly Euler’s method becomes second order.

f(ti+1) ≈ f(ti) + ḟ(ti)∆t+
f̈(ti)

2!
∆t2 (175)

The issue with this method is that the second derivative must be know. Often this derivative is not known and the method
cannot be used. To mitigate this a class of higher order methods is typically used.

3. Heun’s Method

Heun’s method is derived such that p1 = 1, q11 = 1, and a1 = a2 = 1/2. Heun’s method is then given using the equation
below.

yk+1 = yk + φ∆t
φ = 1

2 (k1 + k2)
k1 = f(tk, yk)

k2 = f(tk + ∆t, yk + k1∆t)
ẏ = f(t, y)

(176)

This can also be represented graphically as shown below.

tk+1tk

yk+1

yk

yL

k1

k2

φ
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4. Runge-Kutta

Runge-Kutta techniques are a class of higher order integration methods. They all have the same form using the equation
below.

yk+1 = yk + φ∆t
φ = a1k1 + a2k2 + ...+ ankn

k1 = f(tk, yk)
k2 = f(tk + p1∆t, yk + q11k1∆t)

k3 = f(tk + p2∆t, yk + q21k1∆t+ q22k2∆t)
...

kn = f(tk + pn∆t, yk + qn1k1 + ...qnnkn−1)
ẏ = f(t, y)

(177)

The coefficients an and qn must be solved using the taylor series expansion. The number n is the order of the method.
Thus if n = 2 the order of the method is quadratic and is called an RK2 technique.

5. Runge-Kutta-4

The Runge-Kutta-4 (RK4) algorithm is the standard in numerical simulations. This method uses 4 function calls and is
computed using the equation below.

yk+1 = yk + φ∆t
φ = 1

6 (k1 + 2k2 + 2k3 + k4)
k1 = f(tk, yk)

k2 = f(tk + ∆t/2, yk + k1∆t/2)
k3 = f(tk + ∆t/2, yk + k2∆t/2)
k4 = f(tk + ∆t, yk + k3∆t)

ẏ = f(t, y)

(178)

Again, the RK4 method can be represented graphically as shown below.

tk+1tk

yk+1

yk

k1

k2

φ

tk+1/2

k2

k3

k3 k4

67



6. Shower Problem

Let’s return to our shower problem from the bi-section method except this time we want to model the rise in temperature
as a function of time. Let’s assume the problem is first order as shown below where

Ṫ + τT = τTc (179)

where τ is a time constant and Tc is a commanded temperature. Again the solution to this equation is simple and can be
determined using differential equation techniques to achieve the solution below

T (t) = T0e
−τt + Tc(1− e−τt) (180)

The solution to this equation is shown below. Notice the rise time in the graph here which is dictated by τ .

Now what if we make the problem a bit more complex and let Tc = kθ where θ is the angle of the shower knob. This would
mean our equations of motion become

Ṫ + τT = τkθ (181)

So what’s θ? Well we would like to turn the knob bigger when the water is too cold and turn it down when the water is
too hot. Something like this

θn+1 =

{
θn + 2, T < Tc
θn − 2, T > Tc

}
(182)

So if the water is too cold we turn the knob 2 degrees and if it’s too hot we turn it down 2 degree. To make it more
complicated we only check every 5 seconds and if the water is within 5 degrees we stop changing the temperature. So what
does that analytic solution look like? Well this would require Euler’s method or RK4. Let’s do Euler’s method first, let
θ0 = 0 deg, k = 5 F/deg, τ = 2 /sec and T0 = 0 and ∆t = 0.1 s. Let, Tc = 100 F .

Ṫ0 = τkθ0 − τT0

T1 = T0 + Ṫ0∆t

Ṫ1 = τkθ1 − τT1

T2 = T1 + Ṫ1∆t
...

ṪN = τkθN − τTN
TN+1 = TN + ṪN∆t

(183)
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The code for this is a bit more complex but it’s left out as an exercise. If the timestep is sufficiently small (0.1 seconds)
Euler’s method will converge to the solution and produce the result below.

Notice that every 5 seconds we turn up the temperature until we arrive at 100 degrees. You can see that this doesn’t really
have an analytical solution. We can then do the same thing for the Runge Kutta Method. Here our iterative method
becomes

k1 = τkθ − τT0

k2 = τkθ − τ(T0 + k1∆t/2)
k3 = τkθ − τ(T0 + k2∆t/2)
k4 = τkθ − τ(T0 + k3∆t)

φ = (1/6)(k1 + 2k2 + 2k3 + k4)
T1 = T0 + φ∆t

...

(184)

The solution using the iterative method above is the same the difference is that we can increase the timestep and still
get good results. The figure below shows the solution using Euler’s and RK4 using a much larger timestep (0.8 seconds).
Notice that RK4 still converges and Euler’s method begins to have abnormal oscillations.
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7. Camera Tracker

Assume you’d like to track a moving target. We will restrict ourselves to a ball being launched vertically such that
z(t) = z0 + v0t− 0.5gt2. The camera is always pointed towards the object but requires an elevation angle command.

θc = tan−1(z/xs) (185)

where xs is the horizontal distance from the camera and the ball. Let’s let the dynamics of the elevation angle be determined
using the equation below

θ̈ =
T − cθ̇
J

(186)

where J is the moment of inertia of the camera and c is a friction coefficient which models the bearing the camera sits on.
In order to track the object properly we need to apply proportional feedback control such that

T = −kp(θ − θc) (187)

Thus our equation of motion becomes

θ̈ =
−kp(θ − θc)− cθ̇

J
(188)

Again, if θc is a constant the solution becomes

θ(t) = (α1cos(ωt) + α2sin(ωt))eσt + θC (189)

where α1 and α2 are determined using initial conditions and σ ± ωi is the solution to the characteristic equation when
solving the differential equation. If θ0 = θ̇0 = z0 = 0, v0 = 20 m/s, J = 0.1kg −m2, kp = 20, c = 1, xs = 40 m, and
θc = 45degrees the analytic solution is shown below.
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It looks like our camera over shoots by a bit but that dynamics can be tuned easily in our simulation to obtain the desired
response. Now, if θC is not constant the solution is not analytic and the solution must be obtained numerically. The easiest
way to solve this system of equations numerically is to put the equation in first order form. To do this we set x1 = θ and
x2 = θ̇. Thus ẋ1 = θ̇ = x2 and ẋ2 = θ̈ = −cθ̇/J − kp(θ− θc)/J = −cx2/J − kp(x1− θc)/J . This can be put in matrix form
to yield the equation below

{
ẋ1

ẋ2

}
=

[
0 1

−kp/J −c/J

]{
x1

x2

}
+

{
0

kp/J

}
θc (190)

This can be written in more compact form as ~̇x = A~x + Bu where A and B are matrices. The great thing about this
equation is that the solution to this equation if u = 0 is simply ~x(t) = eAt~x0 where ~x0 is the initial condition vector. If
this matrix form is used for Euler’s method the iterative sequence becomes

ẋ0 = Ax0 +Bu0

x1 = x0 + ẋ0∆t
ẋ1 = Ax1 +Bu1

x2 = x1 + ẋ1∆t
...

ẋN = AxN +BuN
xN+1 = xN + ˙xN∆t

(191)

hence why the matrix form equation is so powerful. The A and B matrices are constant and thus the iterative method is
extremely simple. If the iterative method is used to compute the solution where θc is not constant the solution can be seen
in the figure below.

71



Notice the slight lag in the camera which is just a product of active feedback.

7.F. Example Problems

1. A hockey puck is sliding across the ice. The equations of motion are defined using the equation below.

v̇ + (c/m)v = 0 (192)

Solve the equation analytically and using Euler’s method. Then plot the two equations side by side. Let c = 2, m = 1 and
v0 = 5 m/s.

2. Let a parachute be falling from 500 meters. The equations of motion of a parachute can be simplified using the equations
below

v̇ + (c/m)v = g (193)

Solve the equation analytically and using Euler’s method. Then plot the two equations side by side. Let c = 2, m = 1 and
v0 = 0 m/s and of course g = 9.81 m/s2.

3. Code the Camera Tracking problem using the RK4 method.

4. The mathematical model of a spring mass damper is set up with a single degree of freedom. The mass can be modeled as a
cube of mass “m”, connected to a spring and damper. The distance from the wall is defined simply as “x”. The equations
of motion are second order and are written in terms of all parameters in the system and are given by the equation below.

mẍ+Bẋ+ kx = 0 (194)

It is possible to solve for the analytic solution for spring mass dampers. The general equation is given below.

x(t) = e(−ζwnt) (Csin(wdt) +Dcos(wdt)) (195)

where

wd = wn
√

1− ζ2 wn =
√

k
m ζ = B

2mwn

C = ẋ0+ζwnx0

wd
D = x0

(196)
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(a) Plot the analytical solution for x0 = 5 m and ẋ0 = 50m/s. Assume m = 1 kg, k = 100 N/m, and B = 2 N − s/m.
Simulate the system for 10 seconds.

(b) Use Euler’s First Order Method, Heun’s Method and Runge-Kutta-4 method to compute the numerical solution to
the full expression in equation 194. Plot all equations on top of each other for a timestep of 0.1 (Remove Euler’s
Method from the plot if it does not converge). Do they all look the same? Why not? What if you make your timestep
0.01? What happens now?

(c) Compute the absolute error for all methods in problem 2 and plot the error on the same graph for a timestep of 0.1
(Removing Euler’s Method if it does not converge) and a timestep of 0.01. Is the error the same for all methods?
Which method is the best?

7.G. Parameter Estimation Problem

This assignment will dive down the realm of ”parameter estimation” Your task is to measure the length of a string without
using a ruler. To do this you will need to create a penduluum. I will provide supplies for you to build a pendulum. Once your
pendulum is built you need to hold a protractor behind the pendulum and video tape the pendulum oscillating. You can also
just hold a piece of paper behind the pendulum provided it contains angle lines on it.

Open the video in windows movie maker on your computer (you may have to download this) On a Mac you have numerous
free video editing programs iMovie, Cheese, Handbrake, Blender. I’m not sure which one will be the best so we may just have
to figure this out the day of the lab.

With the video open write down the time and angle as you parse through each frame in the video.

1. Create a plot of the angle vs time using the data you obtained from your experiment.

2. The equations of motion for a pendulum have been derived in class. Use RK4 to simulate your pendulum. The initial
angle can be measured from your video, assume the initial angular velocity is zero and assume gravity is 9.81 m/s2.

3. Your task then is to change L until your data and your graphs match up. Once you have converged on a value for L go
measure your pendulum and comment on how close your estimated length was to your actual length.

YOU MAY AGAIN WORK WITH YOUR GROUP (MAX THREE MEMBERS) TO COMPLETE THE ASSIGNMENT. I
recommend building the experiment together and sampling the data together. YOU MUST THEN WRITE YOUR OWN LAB
REPORT ABOUT THE ASSIGNMENT.

7.H. Eigenvalue Problems - Chapter 27

1. Error Propagation in Euler’s Method

Recall that Euler’s method is first order thus Euler’s method assumes that the first derivative is linear in between timesteps.
For high order systems, this is not necessarily the case. Let us return to the equation for f2. In many systems the derivative
is simply ḟ = af . Using this result the equation for f2 simplifies to

f2 ≈ f1(1 + a∆t) (197)
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Similarly

f3 ≈ f2(1 + a∆t) (198)

Substituting f2 into this equation reduces f3 to

f3 ≈ f1(1 + a∆t)2 (199)

There is a pattern here.

fN ≈ f1(1 + a∆t)N−1 (200)

This equation is the stability criterion for Euler’s method. It says that if |1 + a∆t| > 1 the system will blow up and tend
to infinity. Thus, not only will the system not converge but it won’t even be bounded. Thus care must be taken to choose
a timestep small enough to ensure that this value is less than 1. Try simulating v̇ = −2v to see the affect of the timestep.

2. Application to Differential Equations

Euler’s method has a unique property in that it convertes a continuous differential equation such as the one below

ÿ + 2ẏ + 4y = 0 (201)

into a discrete differential equation like the form below.

yn+1 = yn + ẏn∆t
ẏn+1 = ẏn + (−2ẏn − 4y)∆t

(202)

We’ve done this problem a million times but what we haven’t done is placed Euler’s method into the following form.{
yn+1

ẏn+1

}
=

[
1 ∆t
−4∆t (1− 2∆t)

]{
yn
ẏn

}
(203)

In this form it is possible to use vector algebra to compute the solution to the differential equation.

~yn+1 = A~yn (204)

the solution to the differential equation is simply
~yk = Ak~y0 (205)

An interesting result is to compute the stability of Euler’s method. In order to do that we decompose the matrix A into
the eigenvalue, eigenvector form A = V ΛV −1. It is easy to show that Ak = V ΛkV −1. Furthermore, the computation of
Λk is

Λk =

[
λ1
k 0

0 λ2
k

]
(206)

What you should immediately notice is that if the eigenvalues of the matrix A are bigger than one, Euler’s method will
not converge.

3. Solution to ODEs using Eigenvalues

It is possible to use matrices and eigenvalues to solve ODEs. Take for instance a penduluum with 1 degree of freedom.
This system is second order as given by the equation below:

mL2θ̈ +mgLsin(θ) = 0 (207)

In order to solve this equation you need two initial conditions θ(t = 0) = π/4 and θ̇(t = 0) = 0. Once you have that
information you can solve it. This equation unfortunately is non-linear but it can be linearized by assuming sin(θ) ≈ θ
which yields

θ̈ +
g

L
θ = 0 (208)
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To solve this you assume that θ = cest. Substituting this equation leads to the chracteristic equation where s = ±i
√
g/L.

This yields the following equation for θ(t).

θ(t) = c1e
i
√
g/Lt + c2e

−i
√
g/Lt (209)

If you open any physics textbook you’ll see a slightly different solution for a pendulum. This is because introductory
physics texts use Euler’s formula

eix = cos(x) + isin(x) (210)

Thus the equation for θ(t) can be simplified to

θ(t) = c1(cos(
√
g/Lt) + isin(

√
g/Lt)) + c2(cos(

√
g/Lt)− isin(

√
g/Lt))

θ(t) = (c1 + c2)cos(
√
g/Lt) + (c1 − c2)isin(

√
g/Lt)

θ(t) = Acos(
√
g/Lt) +Bsin(

√
g/Lt)

(211)

Where A = c1 + c2 and B = i(c1 − c2). The values of c1 and c2 are irrelevant and thus most textbooks will simply report
the final equation for θ(t). In order to solve for A and B we use the initial conditions θ(t = 0) = π/4 = A thus A = π/4
since the sin(0) = 0. It is easy to check that B = 0 since θ̇(t = 0) = 0 and thus θ(t) = π

4 cos(
√
g/Lt). Using g = 9.81m/s2

and L = 4.905m yields θ(t) = π
4 cos(

√
2t).

It is possible to convert the system to matrix form by letting x1 = θ and x2 = θ̇ which leads to ẋ1 = x2 and ẋ2 = θ̈ = −g/L.
This can be put in matrix form as shown in the equation below:{

ẋ1

ẋ2

}
=

[
0 1
−g/L 0

]{
x1

x2

}
(212)

or in more compact form ~̇x = A~x. The solution to this equation can be obtained the same way as we did before. If we
assume that the solution ~x(t) = eSt~c where S is a matrix of unknowns and ~c is a vector of constants we can plug this into

the equation above noting that ~̇x(t) = SeSt~c.

~̇x−A~x = 0
SeSt~c−AeSt~c = 0
eSt(S −A)~c = 0

(213)

The last equation leads to a few results. First we could have eSt = 0 or ~c = 0 but this would leave to a solution of the
form ~x(t) = 0 thus the only solution is that S = A which leads to the general form of differential equations ~x(t) = eAt~c.
The coefficients in ~c are then found by using the initial conditions ~x(t = 0) = ~x0 = e0~c and thus ~x0 = ~c.

~x(t) = eAt~x0 (214)

In the pendulum example problem we have ~x0 = [θ0, θ̇0]T . The question then becomes, how do you compute an exponential
of a matrix? The easiest way to compute this is to decompose A into it’s eigenvalue form where A = V ΛV −1. Plugging
this into our equation for ~x(t) yields

~x(t) = eV ΛV −1t~x0

~x(t) = V eΛtV −1~x0
(215)

This relationship can be derived by noting that V is invertible and Λ is diagonal. Remember that Λ has the following form

Λ =

λ1 . . . 0
...

. . .
...

0 . . . λN

 (216)
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thus eΛt can be written like

eΛt =

e
λ1t . . . 0
...

. . .
...

0 . . . eλN t

 (217)

If we then write V = [~v1 . . . ~vN ] and V −1~x0 = [a1 . . . aN ]T we can write ~x(t) in the following form

~x(t) = [~v1 . . . ~vN ]

e
λ1t . . . 0
...

. . .
...

0 . . . eλN t



a1

...
aN

 = [~v1 . . . ~vN ]


a1e

λ1t

...
aNe

λN t

 (218)

Carrying out the last matrix multiplication leads to a very powerful result as given by the equation below.

~x(t) = a1~v1e
λ1t + . . .+ aN~vNe

λN t =

N∑
n=1

an~vne
λnt (219)

This result says that a general solution to a differential equation is a summation of a dynamic systems individual mode
shapes given by eλnt.

4. Example Eigenvalue Solution

An example of this can be done by analyzing the double spring mass damper system as shown in the figure below.

Here we have two degrees of freedom that is x1 and x2. The velocities of the masses are then ẋ1 and ẋ2. The accelerations
are found by doing a free body diagram which results in the equations below. The derivation of the equations below are
left as an exercise to the reader. 

ẋ1

ẍ1

ẋ2

ẍ2

 =


0 1 0 0

(−k1 − k2)/m1 0 k2/m1 0
0 0 0 1

k2/m2 0 −k2/m2 0



x1

ẋ1

x2

ẋ2

 (220)

This can easily be put into the form ~̇x = A~x. The solution to this equation is then simply ~x(t) = eAt~x0. Using values
k1 = k2 = 200N/m and m1 = m2 = 1kg along with initial conditions ~x0 = [2, 0, 0, 0], the solution can be plotted using the
MATLAB programming language.

The basic code required to plot the solution is shown below.

x0 = [2;0;0;0];

k1 = 200;k2 = 200;

m1 = 1;m2 = 1;

A = [0 1 0 0;(-k1-k2)/m1 0 k2/m1 0;0 0 0 1;k2/m2 0 -k2/m2 0];
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Position (m) vs Time (sec) Velocity (m/s) vs Time (sec)

t = 0:0.01:1;

x = zeros(4,length(t));

for idx = 1:length(t)

x(:,idx) = expm(A.*t(idx))*x0;

end

plot(t,x)

This problem can also be solved using the eigenvalue solution. Since there are four mode shapes the solution is given by

~x(t) = a1~v1e
λ1t + a2~v2e

λ2t + a3~v3e
λ3t + a4~v4e

λ4t (221)

The solution to obtaining the eigenvalues and eigenvectors for a 4x4 matrix by hand is beyond the scope of this course.
Thus a numerical solver will be used to obtain the eigenvalues and eigenvectors. Using the parameters previously defined
our A matrix is

A =


0 1 0 0
−400 0 200 0

0 0 0 1
200 0 −200 0

 (222)

Using the function [V,L] = eig(A) in MATLAB produces the following result

L =


22.9i 0 0 0

0 −22.9i 0 0
0 0 8.74i 0
0 0 0 −8.74i

 (223)

where the diagonal components are the four eigenvalues. Notice that the eigenvalues are actually complex eigenvalues
which means there are actually only two mode shapes and four eigenvalues. The two sets of mode shapes are complex
conjugates of each other. The eig() function in MATLAB also produces the eigenvectors

V =


−0.04i 0.04 −0.06i 0.06i

0.85 0.85 0.52 0.52
0.02i −0.02i −0.10i 0.10
−0.53 −0.53 0.85 0.85

 (224)
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where each column of the V matrix is an eigenvector of the system. Note again that the real components of columns 1 and
2 are the same while the imaginary components are different. The same is true with columns 3 and 4. The a coefficients
are solved by using the formula ~a = V −1~x0. This can also be solved by simply using a numerical solver.

~a =


19.5i
−19.5i
4.63i
−4.63i

 (225)

Using these coefficients, eigenvalues and eigenvectors it is possible to write the solution of the system.

~x(t) = 19.5i


−0.04i

0.85
0.02i
−0.53

 e22.9it − 19.5i


0.04i
0.85
−0.02i
−0.53

 e−22.9it + 4.63i


−0.06i

0.52
−0.10i

0.85

 e8.74it − 4.63i


0.06i
0.52
0.10i
0.85

 e−8.74it (226)

Remember that if Euler’s formula is used the two exponent’s will be combined to produce sines and cosines. Still, this
result is very powerful because it tells you the two fundamental frequencies associated with this system. This solution can
also be implemented easily in a numerical program such as MATLAB.

[V,L] = eig(A);

a = inv(V)*x0;

xEigen = zeros(4,length(t));

for idx = 1:length(t)

for n = 1:4

xEigen(:,idx) = xEigen(:,idx) + a(n)*V(:,n)*exp(L(n,n)*t(idx));

end

end

plot(t,xEigen)

7.I. Example Problems

1. Euler’s method has a unique property in that it convertes a continuous differential equation such as the one below

ÿ + 2ẏ + 4y = 0 (227)

into a discrete differential equation like the form below.

yn+1 = yn + ẏn∆t
ẏn+1 = ẏn + (−2ẏn − 4y)∆t

(228)

We’ve done this problem a million times but what we haven’t done is placed Euler’s method into the following form.{
yn+1

ẏn+1

}
=

[
1 ∆t
−4∆t (1− 2∆t)

]{
yn
ẏn

}
(229)

In this form it is possible to use vector algebra to compute the solution to the differential equation.

~yn+1 = A~yn (230)

First, take your function from before spring break

function myEuler(deltat)
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and edit it to use the matrix form of Euler’s method. Do the same thing you did last time where you vary the timestep
until the graph does not change. However, this time compute the eigenvalues of the matrix A. What do you notice about
eigenvalues of the matrix as the timestep gets smaller? What happens to the eigenvalues when the timestep is too big and
the graph goes unstable?

2. Simulate the multi body system derived in this chapter. Use the following data below.

m1 = 2;
m2 = 3;
k1 = 50;
k2 = 100;
x1(t=0) = 5;
xdot1(t=0) = 0;
x2(t=0) = 10;
xdot2(t=0) = 0;

You will create the solution to the differential equation using three different methods.

(a) RK4

(b) z(t) = expm(A*t)*z0 - The analytical solution

(c) z(t) = V*expm(L*t)*inv(V)*z0 - Eigenvalue solution

where V is the eigenvalues and L is the eigenvectors. You can use the eig function

For plotting, plot all velocities (xdot1 and xdot2) for all three solutions on the same graph. All lines should be on
top of each other.

In addition plot all positions (x1 and x2) for all three solutions on the same graph. Again, all lines should match.

LIST THE EIGENVALUES OF THE A MATRIX IN YOUR REPORT. Explain what the eigenvalues mean in your
own words. How many eigenvalues are there? Why are there so many? How many degrees of freedom does your system
have?

7.J. Numerical Differentiation - Chapter 23

1. Numerical Differentiation

Recall that the taylor series expansion for f(x) is

f(x1) = f(x0) + f ′(x0)∆x+ f ′′(x0)∆x2/2! + ...+O(∆3) (231)

If the equation above is truncated to first order it is possible to solve for f ′(x0)

f ′(xi) ≈
f(xi+1)− f(xi)

∆x
(232)

The equation above is known as the first order approximation to the first derivative. There are other ways to compute the
first derivative. The equations below are known as backward differencing and midpoint differencing.

f ′(xi) ≈
f(xi)− f(xi−1)

∆x
(233)

f ′(xi) ≈
f(xi+1)− f(xi−1)

2∆x
(234)

Note that the equations above only work for the first derivative. Assume however I have a function f(x) and 3 data points
x0, x1, x2. How would one obtain f ′′(x1) using finite differencing. First assume that ∆x = x2 − x1 = x1 − x0 to make the
math easier so x2 − x0 = 2∆x. First we start by writing f(x2) using a 1st order expansion about x1.
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f(x2) = f(x1) + f ′(x1)∆x (235)

Then using that equation the first order derivative is derived as shown below

f ′(x1) ≈ f(x2)− f(x1)

∆x
(236)

The next step involves estimating f(x0) using x1 as the expansion point.

f(x0) = f(x1)− f ′(x1)∆x (237)

Note the minus sign. This equation can be used to get the backward differencing equations.

f ′(x1) ≈ f(x1)− f(x0)

∆x
(238)

Using the forward and backward finite differencing equations the midpoint formula can be derived as shown

f ′(x1) ≈ f(x2)− f(x0)

2∆x
(239)

Then, we estimate f(x2) using a second order expansion about x1.

f(x2) = f(x1) + f ′(x1)∆x+
f ′′(x1)

2!
∆x2 (240)

Using the equation above, substituting in the midpoint differencing formula and solving for f ′′(x1) yields the equation
below.

f ′′(x1) ≈ f(x2)− 2f(x1) + f(x0)

∆x2
(241)

2. Higher Order Differentiation

The equations above were simply first order approximations to the first and second derivatives. It is possible to truncate the
taylor series to second order and solve for the first derivative. Thus the second order approximation to the first derivative
is

f ′(xi) =
−f(xi+2) + 4f(xi+1)− 3f(xi)

2∆x
(242)

Note that these methods show a perfect example of truncation error and roundoff error. Assume for the moment that we
would like to differentiate (x3) at x = 2. It is easy to see that the analytical solution is just 12. However if we use the first
and second order approximations and plot the error as a function of our increment we get the following graph.
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Notice here that we can directly see that increasing our timestep reduces our round-off error. We can reduce our truncation
error by using a higher and higher order method however we will always hit our limit of precision.

3. Bicycle Sensor

Let’s say I’d like to know my speed and distance while riding a bike. The easiest thing to do would be to install a sensor
on the fork and the tire. When the sensor on the fork is in sync the main controller saves the time this happens in the
form

Tsync = [T1 . . . TN ] (243)

The task is then to extract velocity and distance from this equation. The first order derivative of velocity can be written
in the form

Vi =
xi+1 − xi
Ti+1 − Ti

=
∆x

Ti+1 − Ti
(244)

The question is what is ∆x? ∆x is the distance the wheel travels during one click which is simply the circumference of the
tire so we arrive at the equation below.

Vi =
2πr

Ti+1 − Ti
(245)

To obtain the distance travelled we can apply the standard Reimmann Sum to the velocity equation above we obtain

xN = x0 +

N∑
i=0

Vi∆Ti =

N∑
i=0

2πr

Ti+1 − Ti
∆Ti =

N∑
i=0

2πr (246)

where N is the number of times the sensor passes the main fork. Notice now that the sum does not depend on i thus the
distance is simply
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xN = x0 +N2πr (247)

Which means we now have a method to determine velocity and distance traveled. As an example, try and verify the
velocity and distance travelled using the timestamps below. Assume you’re riding 14 inch tires.

T = [0, 1.1320, 4.1921, 6.4561, 8.3252, 10.0598] sec
V = [6.4758, 2.3955, 3.2377, 3.9219, 4.2260] ft/s

X = [0, 7.3304, 14.6608, 21.9911, 29.3215, 36.6519] ft
(248)

4. Problems with Derivatives

Let’s say I have a GPS sensor on an airplane traveling 800 ft/s. This GPS sensor gives me two measurements. First the
position in feet (Not really but we can just assume this for classroom example purposes).

X = [x1 . . . xN ] (249)

The GPS is also timestamped and thus returns the time coordinate

T = [t1 . . . tN ] (250)

This seems like a simple problem. Just differentiate it and get

Vi =
xi+1 − xi
ti+1 − ti

(251)

The problem is real sensors have noise. So I can’t actually know what X is really and instead I obtain X̂ which is my
sampled measurement or output from the GPS sensor. Let’s assume that my GPS is accurate to 25 ft. I can model this as:

X̂ = X +N(0, 25) (252)

where N(0, 25) is a random uniform number with a mean of zero and a standard deviation of 25 ft. If we return to our
numerical derivative we obtain

V̂i =
x̂i+1 − x̂i
ti+1 − ti

(253)

Ok so how bad is this? Let’s compute the error between Vi and V̂i.

Vi − V̂i =
x̂i+1 − x̂i
ti+1 − ti

− xi+1 − xi
ti+1 − ti

=
x̂i+1 − x̂i − xi+1 + xi

ti+1 − ti
(254)

If we substitute in equation 252 we obtain

Vi − V̂i =
xi+1 +Ni+1 − xi −Ni − xi+1 + xi

ti+1 − ti
=
Ni+1 −Ni
ti+1 − ti

(255)

Ok so let’s substitute real number in here and obtain the maximum error remembering that GPS updates at 4 Hz = 0.25
sec

|Vi − V̂i|max =
|Ni+1 −Ni|max

0.25sec
(256)

So what is |Ni+1 − Ni|max. Well, the maximum of Ni is 25 ft which means that max of |Ni+1 − Ni|max = 25 ft which
leads to

|Vi − V̂i|max =
25 ft

0.25 sec
= 100ft/s (257)

Remember, we were flying at 800 ft/s and we could be off by as much as 100 ft/s! That’s over 12.5%. Notice however that,
the velocity error is independent of flight speed so what would happen if we were riding a bike and our speed was say 10
ft/s? This would mean our velocity measurement was off by an order of magnitude.
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5. Filters

We’ve shown in the previous derivation that derivatives introduce alot of noise in the measurement. So what do we do?
The easiest thing to implement is what’s called a complimentary filter. It is a simplification of the Kalman Filter created
by Rudolf Kalman in 1960. The basic derivation goes like this, assume the input signal is ŷ and the output filtered signal
is ỹ. This is the setup for all types of filters. In this setup we use the equation below

ỹi+1 = σŷi+1 + (1− σ)ỹi (258)

This may seem simple and it is but it’s pretty powerful. Remember that the system is iterative so

ỹ1 = σŷ1 + (1− σ)ỹ0

ỹ2 = σŷ2 + (1− σ)ỹ1

ỹ3 = σŷ3 + (1− σ)ỹ2

...
ỹN = σŷN + (1− σ)ỹN−1

(259)

Notice that in this equation ỹ0 cannot be defined thus a separate equation is used for the initial condition.

ỹ0 = ŷ0 (260)

With this setup we can now show some examples. Let’s assume that σ = 1. In this scenario ỹi = ŷi which means the signal
is not filtered. If σ = 0, ỹi+1 = ỹi. Since ỹ0 = ŷ0 it means that that ỹi = ŷ0. However, if we return to the example where
we have our GPS sensor on board and set σ = 0.03 we obtain the following result. The other thing we can do of course is
simply average the result.

Now averaging the result would be easy when the speed is constant but airplanes rarely fly at constant speeds. What if
the speed was more sinusoidal reflecting the changes in flight speed from atmospheric winds.

83



In the graph you can see that averaging the result does not simply capture the changes in the velocity of the airplane hence
why the complimentary filter is so useful.

7.K. Driving Lab Experiment

Your task is to team with two other lab partners and go for a ride around the town or get some coffee or just run an errand.
Here are the rules.

1. The driver is responsible for one thing and that is driving. Do not take your eyes off the road or text while driving. You
must be safe at all times and get all of your passengers to and from your destination safely. For this assignment the driver
must own a vehicle with a functioning odometer and speedometer. I would recommend resetting your trip meter. If your
car does not have a trip meter you must write down the initial mileage of your vehicle before you depart.

2. Passenger number 1. Your task is to read off the drivers speed every 10 seconds on the departure leg and every 30 seconds
on the return leg. I would bring a pencil and paper or your computer with excel open and write down the time in intervals
of 10 seconds on the departure leg and 30 seconds for the return leg. While the car is driving you can then write down the
speed by looking at the speedometer and writing the speed in mph. I would recommend converting mph to miles/second
so that your units will match up.

3. Passenger number 2 is responsible for measuring the distance traveled in units of 0.1 miles using the odometer. I would
recommend synchronizing watches with passenger number 1 and passenger number 2 so that your time vectors line up.
Your table should have time in one column and position in increments of 0.1 miles in another column.

Once all of this data is compiled you need to generate the following plots.

1. Velocity versus time

2. Position versus time

3. Use first order differentiation and compute velocity versus time using part b. Plot this alongside part a and compare your
results. For the down leg and the return leg. Which is more accurate?
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4. Use the trapezoidal rule to compute position versus time using part a and plot it alongside part b. Compare your results
with the down leg and the return leg. Which is more accurate?

NOTE ALL THREE OF YOU MUST COMPLETE THE ASSIGNMENT. YOU MAY TAKE DATA AND HAVE FUN
TOGETHER BUT EVERYONE MUST STILL COMPLETE THE LAB.

7.L. Output Error Method

1. Output Error Method

Newton-Raphson works great when you have one output and one variable trying to be determined using a direct correlation.
For example, let’s assume I place an aircraft in a wind tunnel and I vary the wind tunnel speed while changing the angle
of attack such that Lift is equal to Weight. I have a load sensor on board that measures Drag such that I can plot Drag as
a function of velocity. Explicitly I would have D = f(V ). Using this function, I could compute the drag coefficient using
the simple formula.

Di =
1

2
ρV 2

i SCDi (261)

The subscript i is in the formula above because I have multiple velocity and drag readings. The method defined above
is typical for operators in a wind tunnel. Using the drag as a function of velocity you can obtain the drag coefficient
as a function of velocity. Using the drag coefficient I could also find the speed for minimum drag using the standard
Newton-Raphson technique.

Vi+1 = Vi −
f ′(Vi)

f ′′(Vi)
(262)

The issue is that you can only obtain the drag coefficient and nothing else using a wind tunnel. The reason for this is that
the aircraft in the wind tunnel is static and you can only measure certain coefficients at a time. For example, you could
measure lift as well and estimate the lift coefficient but let’s assume you want damping coefficients. To do this you need to
use the output error method. Let’s assume instead that I actually fly the airplane and instead of measuring velocity and
drag, I measure time and distance. Thus I have x = f(t). Here, I want to find the drag coefficient but notice that I do not
have have the drag anymore. Thus, I can’t use Newton-Raphson technique explicitly but with some massaging I can cast
the problem into a better form. First if we assume the aircraft flies in one dimension I can write the equations of motion
of the aircraft to be

¨̃x = − 1

2m
ρ ˙̃x2SC̃D (263)

Notice, here that suddenly our drag coefficient pops up. What we can do then is create an initial guess for our drag
coefficient, then use a numerical integration technique to get an estimate for x. Using this we can actually create an error
estimate as a function of time.

Ẽ(t) = x(t)− x̃(t) (264)

from here we can create an average error square estimate such that

J =
1

N

N∑
i=1

|Ẽ(ti)|2 (265)

Let’s recap all we’ve done. We now have an error estimate J which is a function of our drag estimate C̃D. Formally
we have J = f(C̃D). Typically J is called a cost function. If we choose C̃D that is the same as the actual value of CD
then we would have a cost of 0. This is our ideal situation. It might be tempting to simply use a root finding method
but in fact we actually want to minimize J. Often times we cannot reach a zero cost given modeling errors, truncation
errors, sensor errors, and round off errors. However we can still estimate CD using the recursive algorithm as defined in
the Newton-Raphson method.

C̃D,i+1 = C̃D,i −
J ′(C̃D,i)

J ′′(C̃D,i)
(266)
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Note that the first and second derivatives of the cost function must be computed numerically. This is a very involved
process with multiple parts from this course. This entire method is called the Output Error Method.

2. Example

This assignment will involve the students splitting into groups to write codes that perform the Output Error Method. The
Output Error Method is a way to solve for unknowns where there is no analytical solution available. For example, let us
examine the parachute in free fall. The equations of motion are

z̈ = −g +
1

2m
ρż2SCD

This equation can be simulated on a modest computer assuming all parameters are known. Assume for the moment that the
data z(t) has been given in a table format. Then assume that the initial conditions and all parameters except CD are given:

z0 = 100 m ż0 = 0 m/s g = 9.81 m/s2 ρ = 1.225 kg/m3 S = 1 m2 m = 10 kg

The question then is how to solve for the drag coefficient CD. To do this the output error method is used.

(a) The method starts with an initial guess C̃D.

(b) This initial guess can be used to obtain z̃.

(c) The total error between the computed value z̃ and the measured data from the input file z can be computed using
the equation below.

E =
1

N

N∑
i=1

(z(ti)− z̃(ti))2 (267)

The goal then naturally is to perform an optimization technique and compute C̃D such that the error drops to zero
or at least a minimum.

(d) To minimize this problem the Newton-Raphson technique is used such that

C̃D,i+1 = C̃D,i −
E′(C̃D,i)

E′′(C̃D,i)
(268)

Obviously the first and second derivatives will need to be computed numerically.

To solve this problem the students will break into groups of 6 or 7. Each member of the group will have to complete one of
the codes below. Built in MATLAB functions are allowed unless noted specifically in the text. Note that the group may
opt to work as a team on certain sections of the code.

(a) function [t,z] = readdata(filename), this function will use the dlmread() command to read the text file of data provided
and return the t vector, z vector and the timestep used to generate the data.

(b) function ploteverything(t,z,ztilde), this function will take a vector t, z and ztilde and plot everything in a nice pretty
graph

(c) function zdot = Derivs(t,z,CDtilde), this function will compute the derivative of z for a given value of CDtilde.
Remember that z will be a vector containing z and ż thus zdot will be a vector containing ż and z̈

(d) function [ttilde,ztilde] = RK4(CDtilde), this function will take a value of the drag coefficient and use the RK4 method
to compute the height of the parachute as a function of time. Note that you need to make sure you use the same
timestep as the one used in the data set provided. You may not use the ode45() function.

(e) function E = compute error(CDtilde,z), this function will compute the total error between the estimated height ztilde
and the actual height z.

(f) function fprime = Eprime(CDtilde,z), this function will compute the first derivative of the error function at the value
of CDtilde. Remember that you will have to choose the value of ∆.

(g) function fdblprime = Edoubleprime(CDtilde,z), this function will compute the second derivative of the error function
at the value of CDtilde. Again you must choose ∆
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(h) function main(), this function will perform the optimization. I have written this part of the code for you.

function main()

filename = ’drc data.txt’;

[t,z] = readdata(filename);

CDtilde = 0.1;

Ei = compute error(CDtilde,z);

while abs(Ei) > 1e-2

CDtilde = CDtilde - Eprime(CDtilde,z)/Edoubleprime(CDtilde,z);

Ei = compute error(CDtilde,z);

end

[ttilde,ztilde] = RK4(CDtilde);

ploteverything(t,z,ztilde);

The winning team must solve for CD and email the instructor a graph showing z and ztilde on top of each other. The first
team to correctly email the instructor with the value of CD and the correct graph will get a prize. Ready go!

8. FINITE DIFFERENCE/ELEMENTS METHOD

1. Boundary-Value Problems

The heat equation on the other hand is a boundary value problem. Here we represent the pipe without time such that
T = f(x) instead of time.

d2T

dx2
− h′(T − Ta) = 0 (269)

Thus the difference between boundary value problems and initial condition problems is really the independent variable.
To solve this we set T = Cesx + Ta. We substitute this equation into the equation above and obtain the characteristic

equation and solve for s = ±
√
h′. This yields the analytical solution T (x) = Ae

√
h′x +Be−

√
h′x + Ta. Again the boundary

conditions can be used to solve for A and B. For example, T (x = 0) = 40 and T (x = L) = 200. Note that solving for A
and B yields a system of equations. The solution to A and B has been left for the reader.

Now, in order to solve this equation numerically you must replace all derivatives with finite difference approximations.
Below is a center first order approximation of the second derivative.

Ti+1 − 2Ti + Ti−1

∆x2
− h′(Ti − Ta) = 0 (270)

or

− Ti−1 + (2 + h′∆x2)Ti − Ti+1 = h′∆x2Ta (271)

If the rod is discretized into 6 beads (∆x = 2 and L = 10 m) such that T (0) = T0 = 40 and T (L) = T5 = 200, letting
h’=0.01 and Ta = 20 yields a system of equations

2.04 −1 0 0
−1 2.04 −1 0
0 −1 2.04 −1
0 0 −1 2.04



T1

T2

T3

T4

 =


40.8
0.8
0.8

200.8

 (272)

which can be solved with any numerical solver. In this case T = [65.970, 93.778, 124.538, 159.480]. Note, this can also be
done using an iterative method. If the candidate equation is written such that

Ti =
Ti−1 + h′∆x2Ta + Ti+1

2 + h′∆x2
(273)
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The problem above evolves into a Simple Fixed Point Iteration Problem where the output is computed for every location
i along the rod and the solution is used to compute the next solution. The code required to implement the Simple Fixed
Point Iteration technique is shown below.

x = 0:2:10;

Tguess = 0*x;

Tguess(1) = 20;

Tguess(end) = 200;

Ta = 20;

hprime = 0.01;

for iter = 1:100

for idx = 2:length(Tguess)-1

Tguess(idx) = (Tguess(idx-1) + hprime*delxˆ2*Ta + Tguess(idx+1))/(2+hprime*delxˆ2);

end

end

The benefit of this code over solving the system using A~x = B is that the number of beads can be arbitrarily increased
without any change to the code. The solution to the code above can be plotted alongside the analytical solution and is
shown in the equation below. Note that the solution below has 11 beads rather than 6 beads.

8.A. Partial Differential Equations - Chapter 29

1. Overview of PDEs

All equations we’ve dealt with thus far involves functions of one dimension f(t) (initial value problems) or f(x) (boundary
value problems). In engineering, problems are rarely one-dimensional and usually involve multiple independent variables
f(x, y, z, t) (spatially and temporally varying wind field for example). Most systems encountered in engineering are second
order and can be expressed using the equation below.

A
∂2u

∂x2
+B

∂2u

∂x∂y
+ C

∂2u

∂y2
+D = 0 (274)
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If B2 − 4AC < 0 the equation is elliptic. If B2 − 4AC = 0 the equation is parabolic and if B2 − 4AC > 0 the equation is
hyperbolic.

2. Elliptic Equations

The 2-D heat transfer governing equation is

kx
∂2T

∂x2
+ ky

∂2T

∂y2
+Q =

2h

t
(T − T∞) (275)

where k is the thermal conductivity, T is the temperature, Q is the heat source, h is the convection coefficient and t is the
plate thickness. If the plate is insulated on its lateral surfaces(top and bottom), kx = ky = k and Q = 0, the governing
equation becomes

∂2T

∂x2
+
∂2T

∂y2
= 0 (276)

In the general form this means that A = 1, B = 0, C = 1 and C = 0 thus B2 − 4AC = −4 < 0 which means the equation
is elliptic. In order to solve this equation the system is discretized into a set of grid points. Then the partial derivatives
can be approximated using central difference formulas.

Ti+1,j − 2Ti,j + Ti−1,j

∆x2
+
Ti,j+1 − 2Ti,j + Ti,j−1

∆y2
= 0 (277)

If ∆x = ∆y the equation reduces to

Ti+1,j + Ti−1,j + Ti,j+1 − 4Ti,j + Ti,j−1 = 0 (278)

Assume you start with grid point i = 1 and j = 1. The equation is then

T2,1 + T0,1 + T1,2 − 4T1,1 + T1,0 = 0 (279)

If boundary conditions are used such that T0,j = 75o, Ti,0 = 0o, T4,j = 50o and Ti,4 = 100o (assume a 3x3 grid) the
equation above reduces to

T2,1 + 75 + T1,2 − 4T1,1 + 0 = 0
T2,1 + T1,2 − 4T1,1 = −75

(280)

Note that when boundary conditions are given this is known as Dirichlet boundary conditions, that is the temperature is
held constant. If instead the sides are insulated it means the heat flux (∂T/∂x) is zero. Thus the derivative is given instead
of the value. This is known as a Neumann condition.

Repeating equation 280 for all 9 grid points yields a system of the form A~x = b where A is a 9x9 matrix. This can then
be solved by any numerical solver just like the single dimension boundary value problem.

The solution is shown in the matrix below

T (x, y) =

43.0000 33.3000 33.8900
63.2100 56.1100 52.3400
78.5900 76.0600 69.7100

 (281)

This can be plotted in MATLAB using the function below

x = 1:3;

y = 1:3;

[xx,yy] = meshgrid(x,y);

Tsolution = [43 33.3 33.89;63.21 56.11 52.34;78.59 76.06 69.71];

mesh(xx,yy,Tsolution)
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Notice that MATLAB matrices are top to bottom so make sure you enter the solution in correctly otherwise you will get
incorrect results.

3. Gauss-Seidel Method

Just as in the single dimensional heat equation the process of creating the matrices above is very tedious when performing
this by hand. Thus it is beneficial to create a routine that can iterate until convergence. Taking equation 278 and
rearranging for Ti,j yields

Ti,j = (Ti+1,j + Ti−1,j + Ti,j+1 + Ti,j−1)/4 (282)

This again can be easily implemented into a numerical solver just as before. The code has been left out so that the reader
may attempt to create this code as an exercise however the error between the iterative solution and the solution from above
even after 10 iterations is on the order of 10−3 as shown by the mesh plot of the error below. Of course this is specific to
the initial guess but the iterative method is still robust to changes in grid size. This is known as the Gauss-Seidel Method.
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4. Derivative Boundary Conditions

If derivative boundary conditions are introduced we no longer have the value of T at the boundary. Instead we have the
value of the derivative. In order to incorporate the derivative boundary the central difference equation is written for the
boundary point such that

T1,j + T−1,j + T0,j+1 + T0,j−1 − 4T0,j = 0 (283)

Notice that the variable T−1,j has been introduced which is outside the boundary. However this variable can be used to
substitute the derivative into the finite difference equations.

∂T0,j

∂x
=
T1,j − T−1,j

2∆x
(284)

The equation above can be solved for T−1,j and substituted into the 0, j equation to yield

2T1,j − 2∆x
∂T0,j

∂x
+ T0,j+1 + T0,j−1 − 4T0,j = 0 (285)

The equation above can be used for all nodes with a derivative boundary condition to solve for the heat flux in a plate.

5. Vibrating String

Another elliptic equation is the vibrating string which can be solved in a similar fashion.

T
∂2v

∂x2
−m∂2v

∂t2
= 0 (286)

In the equation above, T is the tension in the string and m is the mass per unit length of the rod. v(x, t) is the amount
of deflection in the string as a function of space and time. Notice that in this equation the time derivative is second
order. Thus Euler’s method is not accurate enough to compute the time derivative and a higher order method such as a
Runge-Kutta-4 scheme must be used in order to converge to the solution.

6. Parabolic Equations

An example parabolic equation is again a heat equation however here the equation is a function of x and time. The equation
is given below

k
∂2T

∂x2
=
∂T

∂t
(287)

Just as before the spatial derivative is approximated using central finite differencing however a superscript has been added
to denote the time variable. That is T 3

1 is the value of temperature at the first node at time t = 3.

T li+1 − 2T li + T li−1

∆x2
=
∂2T

∂x2
(288)

Similarly Euler’s Method can be used to approximate the time derivative of T.

∂T

∂t
=
T l+1 − T l

∆t
(289)

If equations 289 and 288 are substituted in equation 287 and rearranged for T l+1
i the Finite Difference Method equation

becomes

T l+1
i = T li + λ(T li+1 − 2T li + T li−1) (290)

where λ = k∆t
∆x2 . Note, just like Euler’s method, there are limits on stability for this method. In Carnahan et al. 1969 it was

proved that the system is stable if ∆t ≤ ∆x2

2k . The iterative method above thus combines the time dependent and spatially
dependent portion of the rod. Thus, let us return to the simple static case we saw in section 1 where the rod is discretized
into 6 beads (∆x = 2m and L = 10 m) such that T (0) = T0 = 40 and T (L) = T5 = 200. However, in this case let’s assume
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that the rod has no heat at all except at the end points such that T = [200 0 0 0 0 200]. The iterative procedure above is
used to propogate the system forward to see how the heat in the rod evolves over time where k′ = 0.49cal/(s− cm−o C).
Again the code has been removed and left for an exercise to the reader. The temperature distribution as a function of time
is shown in the figure below.

This can also be visualized in three dimensions where a mesh plot is created. Here the x axis is the length of the rod, the
y axis is the time variable and the z axis is the temperature along the rod. It is clear that the temperature in the rod is
slowly heating up to 200oC.

7. Crank-Nicolson Method

The Crank-Nicolson method is an implicit method rather than an explicit method. That is, rather than computing the
next time step forward one at a time for each spatial coordinate, each timestep is computed simultaneously for the entire
rod. The equations are obviously more complex however, it does not have the stability problem that the explicit method
has because the spatial and time derivatives are second order accurate. First, the time derivative is approximated at the
midpoint of time using the equation below.
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∂T

∂t
=
T l+1
i − T li

∆t
(291)

The spatial derivative is then approximated as an average of the forward point l + 1 and the current time point l.

∂2T

∂x2
=

1

2

[
T li+1 − 2T li + T li−1

∆x2
+
T l+1
i+1 − 2T l+1

i + T l+1
i−1

∆x2

]
(292)

Substituting these two equations into equation 287 results in

− λT l+1
i−1 + 2(1 + λ)T l+1

i − λT l+1
i+1 = λT li−1 + 2(1− λ)T li + λT li+1 (293)

where λ = k∆t
∆x2 . For the first point above i = 1 the equation becomes

2(1 + λ)T l+1
1 − λT l+1

2 = λT l0 + λT l+1
0 + 2(1− λ)T l1 + λT l2 (294)

for the last point i = m, the equation becomes

− λT l+1
m−1 + 2(1 + λ)T l+1

m = λT l+1
m+1 + λT lm−1 + 2(1− λ)T lm + λT lm+1 (295)

where T0 and Tm+1 are boundary conditions. These equations can be stacked in matrix form to yield the following
equations.

2(1 + λ) −λ . . . 0 0 0 . . . 0 0
0 0 . . . −λ 2(1 + λ) −λ . . . 0 0
0 0 . . . 0 0 0 . . . −λ 2(1 + λ)





T l+1
1

T l+1
2
...

T l+1
i−1

T l+1
i

T l+1
i+1
...

T l+1
m−1

T l+1
m



= ~b (296)

where ~b is

~b =



λT l0 + λT l+1
0 + 2(1− λ)T l1 + λT l2

...
λT li−1 + 2(1− λ)T li + λT li+1

...

λT lm−1 + λT l+1
m+1 + 2(1− λ)T lm + λT lm+1


(297)

The assumption here is that every coordinate at T l is known and the equation above is used to compute the entire bar at
the next timestep. In addition, the equation is of the form A~x = ~b. The solution to this equation is A−1~b however since
the A matrix is constant this equation can be solved iteratively extremely quickly.

8.B. Finite Element Analysis - Bars and Trusses - Chapter 31 (Kind of)

In finite element methods as opposed to finite difference approaches the bodies are broken up into nodes rather than discretized
into equal parts. These bodies can be one, two or even three dimensional objects as shown in the figure below.
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These nodes are not restricted to be linear and thus offer more capabilities over finite difference methods. The chapters below
will begin with the derivation of a 1-D beam with examples to follow

1. Finite Element Analysis of a 2-Node Bar

For the moment let’s consider the one dimensional object. Typically approximation functions are created to approximate
the nodes such that

u(x) = a0 + a1x (298)

where u(x) is whatever the independent variable can be and the coefficients a are constants to be solved for. When a
one-dimensional bar is split into different nodes we must enforce the constraint that u(x1) = u1 is equal to u(x2) = u2

where x1 and x2 are the coordinates of the nodes along the beam. This constraint for a two node beam would yield the
following two equations.

u1 = a0 + a1x1

u2 = a0 + a1x2
(299)

These equations can be easily solved for using substitution or Gaussian Elimination.

a0 = u1x2−u2x1

x2−x1
a1 = u2−u1

x2−x1
(300)

These equations can then be further reduced by setting

N1 =
x2 − x
x2 − x1

(301)

and

N2 =
x− x1

x2 − x1
(302)

such that equation 298 becomes
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u = N1u1 +N2u2 (303)

The equation above is called a shape function and N1 and N2 are called interpolation functions. The solution does not
seem very fancy however it leads to very interesting results in differentiation and integration. For example, if equation 303
is differentiated to obtain

du

dx
=
dN1

dx
u1 +

dN2

dx
u2 (304)

where

dN1

dx = − 1
x2−x1

dN2

dx = 1
x2−x1

(305)

Noting that u1 and u2 are not functions of x. The variable u(x) is a function of x but u1 and u2 are constants w.r.t x.
Substituting this into the equation for the derivative yields

du

dx
=
u2 − u1

x2 − x1
(306)

which is simply the slope of the line. Similarly, the integral of u(x) can be expressed as

x2∫
x1

u dx =

x2∫
x1

N1u1 +N2u2 dx =
u1 + u2

2
(x2 − x1) (307)

Close inspection reveals that the equation above is simply the trapezoidal rule. Thus, using shape functions create a simple
equation for both the derivative and the integral. Something that can be used when creating the differential equations for
governing bodies. The task then becomes to solve for the value of u(x) at all node locations.

2. Stiffness Matrix for a Bar Element

As a first example, let’s consider the uniform bar being loaded axially below. If this bar is discretized into N or more beads
the problem becomes considerably more complex than if the bar was simply discretized into two nodes (the left and right
dots labeled 1 and 2). In this fashion the loads are computed at 1 and 2 and are assumed to be uniform throughout the
entire member.

x

21f f

A, E

x2x1
L

dx1 dx2

Consider again the uniform prismatic bar element of length L, cross-sectional area A and Young’s modulus E. Assume for
the moment this bar is just a uniform bar and can resist only axial load, thus nodes are allowed to displace only in the
axial direction. The displacement-force relation and the equation of static equilibrium in the x-direction are respectively
given by Hooke’s law where Force = stiffness * displacement

k(dx2 − dx1) = fx2 (308)

where k = EA/L is the axial stiffness constant, and

fx1 = −fx2 (309)

If put into matrix form with the forces on the right hand side the equations become
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k

[
1 −1
−1 1

]{
dx1

dx2

}
=

{
fx1

fx2

}
(310)

As a result, the stiffness matrix for a bar element can be found as

[
K(e)

]
= k

[
1 −1
−1 1

]
(311)

3. Stiffness Matrix for a Bar Assemblage

With the stiffness matrix of one bar known it is now possible to create a stiffness matrix of an entire assemblage. The
structure stiffness matrix [K] may be obtained by assembling

[
K(e)

]
of n individual bar elements.

[K] =

n∑
e=1

[
K(e)

]
(312)

For example, consider the bar below with two elements connected to a wall.

x

2 31

F
2 F

3

k
1

k
2

1 2

The stiffness matrices can be written for both bars using equation 311.

[
K(1)

]
= k1

[
1 −1
−1 1

]{
dx1

dx2

} [
K(2)

]
= k2

[
1 −1
−1 1

]{
dx2

dx3

}
(313)

In order to obtain the total stiffness matrix [K] the 2x2 systems must be expanded to 3x3 systems.

[
K(1)

]
=

 k1 −k1 0
−k1 k1 0

0 0 0

dx1

dx2

dx3

 [
K(2)

]
=

 0 0 0
0 k2 −k2

0 −k2 k2

dx1

dx2

dx3

 (314)

→ [K] =
[
K(1)

]
+
[
K(2)

]
=

 k1 −k1 0
−k1 (k1 + k2) −k2

0 −k2 k2

dx1

dx2

dx3

 (315)

The full system of equations is then simply [K]~d = ~F k1 −k1 0
−k1 (k1 + k2) −k2

0 −k2 k2

dx1

dx2

dx3

 =

Rx1

F2

−F3

 (316)

The unknowns in the equation above are the displacements and the reaction force Rx1. In this example, F1 and F2 are
known forcing functions. Even with these two values there are still 4 unknowns and only 3 equations. The last equation is
obtained by using the boundary conditions of the system. This is the fact that the beam cannot deflect at the attachment
point 1. Thus dx1 = 0. Using this result the systems of equations reduces to[

(k1 + k2) −k2

−k2 k2

]{
dx2

dx3

}
=

{
F2

−F3

}
(317)

This system is in the form A~x = ~b and can now be easily solved by any computer program. Since the system is 2x2 it can
also be easily solved by hand. Knowing the values of ~d, it is possible to obtain the tension/compression force of each bar
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{
f(e)

}
=
[
K(e)

] {
d(e)

}
(318)

For example bar 1 is given as

{
f(1)

}
=
[
K(1)

] {
d(1)

}
(319)

{
fx1

fx2

}
= k1

[
1 −1
−1 1

]{
dx1

dx2

}
(320)

Remember though that fx1 = −fx2.

4. FEA of a Bar Example Problem

Determine the nodal displacements, the forces in each element, and the reactions. Let (Est = 200 GPa, Ast = 4 × 10−4

m2, Eal = 70 GPa, Aal = 2× 10−4 m2).

Aluminum
10 kN

1 m 1 m

Steel

(a) Displacements of nodes 2 and 3

[
K(1)

]
= k1

[
1 −1
−1 1

] [
K(2)

]
= k2

[
1 −1
−1 1

]
(321)

where k1 =
EstAst
L

=
(200× 106)(4× 10−4)

1
= 8× 104 kN/m

k2 =
EalAal
L

=
(70× 106)(2× 10−4)

1
= 14× 103 kN/m

Use of the BCs and loading conditions yields k1 −k1 0
−k1 (k1 + k2) −k2

0 −k2 k2

 0
dx2

dx3

=

Rx1

0
−P

 or 103

 80 −80 0
−80 94 −14

0 −14 14

 0
dx2

dx3

=

Rx1

0
−10

 (322)

Results:

103

[
94 −14
−14 14

]{
dx2

dx3

}
=

{
0
−10

}
→

{
dx2

dx3

}
= 10−3

[
94 −14
−14 14

]−1{
0
−10

}
(323)

Thus, {
dx2

dx3

}
= 10−4

{
−1.25
−8.39

}
m =

{
−0.125
−0.839

}
mm (324)

(b) Forces in each element:
{
f(e)

}
=
[
K(e)

] {
d(e)

}
Element 1:

{
f1

f2

}
= 8× 104

[
1 −1
−1 1

]{
dx1 = 0
dx2 = −1.25× 10−4

}
=

{
10
−10

}
kN (325)

Element 2:

{
f2

f3

}
= 14× 103

[
1 −1
−1 1

]{
dx2 = −1.25× 10−4

dx3 = −8.39× 10−4

}
=

{
10
−10

}
kN (326)

Notice that in Element 1, f2 = −10kN but in Element 2, f2 = 10kN . This is because the force f2 is seen as
compression for Element 1 and tension for Element 2. This is a direct consequence of Newton’s 3rd Law.
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(c) Reaction Rx1 (using the first equation in (322))

Rx1 = −k1 dx2 = (−8× 104)(−1.25× 10−4) = 10 kN (327)

5. Introduction to Trusses

Trusses as opposed to bars are not restricted to one dimension. That is, a truss is a system of interconnected bars who can
still only support axial loading but in their local reference frame. A drawing of a 2 beam truss in 2-dimensions is shown
below.

1

L

P

1

2

1

3

o

2 x

y

30

E  A

2E  A2

1

In the problem above Let A1 = A2 = 5 in.2, E1 = E2 = 106 psi, L = 100 in., and P = 10 kip (klbf). In order to solve for
the displacement at node 2 the stiffness matrices of each member must be translated to a global inertial coordinate system.
In the problems with 1-D beams the local body frame of each beam was identical to the global inertial frame. However in
the 2D truss problem, each beam is rotated through an angle θ as shown by the problem below.

x

θ

2

f

x̂y

x

θ

2

x̂

y1d

1

y2

x2d

d

dx1 f1
x1

y1

fy2

fx2

y

The nomenclature for the two frames is a superscript [I] for inertial and [B] for body or beam frame. The first step is to
write the stiffness in the local body frame as [

K
[B]
(e)

]
~d(e)

[B]
= ~f(e)

[B]
(328)

Note that this is a vector equation thus as long as the superscript [ ] is the same on all variables the equation is satisfied.
This equation can also be written in component form as

k

[
1 −1
−1 1

]{
δx1

δx2

}
=

{
gx1

gx2

}
(329)

Notice that δ and g are used to denote the components of displacement and force in the local body frame. Clearly there is
a relationship between the body frame components and the inertial frame components. To do this a rotation matrix TIB
is used to rotate from one coordinate system to the other. This can be written as

~d(e)

[I]
= [TIB ] ~d(e)

[B]
(330)

The rotation matrix has the property of being an orthonormal basis in RN thus T−1
IB = TTIB = TBI . Thus the equation

above can be written simply as
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~d(e)

[B]
=
[
TTIB

]
~d(e)

[I]
(331)

The derivation of TIB is left out for space but the reader is encouraged to consult his/her dynamics textbook on 2D rigid
body rotations to obtain the TIB matrix below. It is advised not to just memorize this matrix and learn the steps to derive
the matrix.

[TIB ] =

[
cos(θ) −sin(θ)
sin(θ) cos(θ)

]
(332)

If equation 331 is substituted into equation 328 the equation becomes

[
K

[B]
(e)

] [
TTIB

]
~d(e)

[I]
=
[
TTIB

]
~f(e)

[I]
(333)

Multiplying both sides of the equation by TIB yields

[
TTIB

] [
K

[B]
(e)

] [
TTIB

]
~d(e)

[I]
= ~f(e)

[I]
(334)

Notice then that all terms contain the superscript [I] except for the stiffness matrix. This can be solved by substituting in
the equation below. [

K
[I]
(e)

]
=
[
TTIB

] [
K

[B]
(e)

] [
TTIB

]
(335)

This equation relates the local body frame coordinate system for the global inertial coordinate system. Using this equation
yields the final vector equation.

[
K

[I]
(e)

]
~d(e)

[I]
= ~f(e)

[I]
(336)

At this point the solution to the problem is identical to a 1D bar problem. Thus the example presented above is left as an
exercise to the reader. Remember that in order to solve this the constraint that beams can only hold axial loads must be
held.

8.C. Finite Element Analysis - Heated Rods - Chapter 31

Let’s re-investigate the heat conduction equation we encountered in the finite difference methods Section 1. The rod is discretized
in the normal fashion into 5 nodes where the endpoint temperature values are known as shown in the figure below.

200
40

10 cm

1 2

1 2 3 4x 5

3

=40
1
T

=200
5
T

x

4

2.5 cm 2.5 cm2.5 cm2.5 cm

Figure 1: 1-D Heat Rod for Finite Element Analysis

If the body obey’s Fourier’s law

q = −kdT
dx

(337)

If k is a constant

k
d2T

dx2
+Q(x) = 0 (338)

where Q(x) = dq(x)/dx is an internal uniform heat source.
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1. Analytic Solution with Q(x) = 0

The easiest finite element solution is the direct method as has been done with bars and trusses. This method only applies
to Q(x) = 0. such that

d2T

dx2
= 0 (339)

To solve the equation the equation above is integrated twice to yield

T (x) = c1x+ c2 (340)

The boundary conditions are then used to solve for the coefficients c1 and c2.

T (x = 0) = T1 = c2 = 40
T (x = 10) = T2 = c1(10) + 40 = 200→ c1 = 16

(341)

Thus the analytical solution is

T (x) = 16x+ 40 (342)

2. Direct Method Solution

Although this equation can be solved for explicitly it is a good problem to do for its simplicity. Again the question is to
determine the temperature at the nodes in the rod. First let’s examine one element where

T (x) = N1T1 +N2T2 (343)

In this fashion

dT

dx
= T

′
=
T2 − T1

x2 − x1
(344)

which was derived in the previous section. This leads to the heat flux at node 1 equal to the following.

q1 = −kT2 − T1

x2 − x1
= −kT

′
(345)

In the finite element bar example subject to an axial load, the forces applied to the beam are equal and opposite. Here
similar constraints are imposed such that q1 = −q2. This implies that the heat flux flowing out of 1 bar is equal to the
heat flux flowing into 2. Thus,

q2 = kT
′

= k
T2 − T1

x2 − x1
(346)

Writing this in matrix form yields the element matrix equation

−k
x2 − x1

[
−1 1
1 −1

]{
T1

T2

}
= k

{
−T ′

T
′

}
(347)

Dividing out the thermal coefficient k, distributing the minus sign and noting that T
′

at node 1 is T
′

= T
′

1 and T
′

= T
′

2

at node 2 yields the following element matrix.

1

x2 − x1

[
1 −1
−1 1

]{
T1

T2

}
=

{
−T ′1
T
′

2

}
(348)

At this point the solution is the same as a bar subject to axial loads.
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3. Heat Conduction Bar Example

Let’s now solve the heat conduction problem for the rod in Figure 1. First let’s write the element stiffness matrix for
elements 1-4. Note that there are 5 nodes and 4 elements where x2 − x1 = ∆x = 2.5.[

0.4 −0.4
−0.4 0.4

]{
40
T2

}
=

{
−T ′1
T
′

2

}
(349)

[
0.4 −0.4
−0.4 0.4

]{
T2

T3

}
=

{
−T ′2
T
′

3

}
(350)

[
0.4 −0.4
−0.4 0.4

]{
T3

T4

}
=

{
−T ′3
T
′

4

}
(351)

[
0.4 −0.4
−0.4 0.4

]{
T4

200

}
=

{
−T ′4
T
′

5

}
(352)

Just as before this is combined to a full bar element matrix such that
0.4 −0.4 0 0 0
−0.4 0.8 −0.4 0 0

0 −0.4 0.8 −0.4 0
0 0 −0.4 0.8 −0.4
0 0 0 −0.4 0.4




40
T2

T3

T4

200

 =


−T ′1

0
0
0

T
′

5

 (353)

Notice that the internal heat flux was canceled due to equal and opposite reactions. The formulation of these equations
led to two unknowns being introduced. That is, T

′

1 and T
′

5 are now unknowns. The equations must be rearranged to yield
the following equations. 

1 −0.4 0 0 0
0 0.8 −0.4 0 0
0 −0.4 0.8 −0.4 0
0 0 −0.4 0.8 0
0 0 0 −0.4 −1



T
′

1

T2

T3

T4

T
′

5

 =


−16
16
0
80
−80

 (354)

This equation is of the form A~x = ~b which can be solved explicitly for the temperature. The figure below shows the result
of the analytic solution from equation 342 and the numerical solution from above.
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4. Method of Weighted Residuals

The direct method above works well if Q(x) = 0; however, it is it’s major shortcoming. Let’s re-investigate the same
problem above however setting Q(x)/k = 10. This equation can again be solved analytically since

d2T

dx2
= −10 (355)

which leads to the temperature solution shown below where the boundary conditions T (0) = 40 and T (10) = 200 are used
to solve for the undetermined coefficients.

T (x) = −5x2 + 66x+ 40 (356)

In order to solve this using finite element analysis the heat equation is written as

d2T

dx2
+ f(x) = 0 (357)

Then using equation 343 which is an approximate solution leads to

d2T̃

dx2
+ f(x) = R (358)

where R is a residual since the equation is only an approximation. The method of weighted residuals then requires∫
D

RWidD = 0 (359)

where Wi are weights force the integrand to zero. D is the entire control volume. For this case the control volume is the
length of the rod and the weighted functions are the interpolation functions Ni. This method is called Galerkin’s method.

∫
D

RNidD = 0 =

x2∫
x1

[
d2T̃

dx2
+ f(x)

]
Ni dx = 0 (360)

which can also be written as

x2∫
x1

d2T̃

dx2
Ni dx = −

x2∫
x1

f(x)Nidx (361)

The integrand on the left can be evaluated using integration by parts

x2∫
x1

d2T̃

dx2
Ni dx = Ni

dT̃

dx

∣∣∣x2

x1

−
x2∫
x1

dT̃

dx

dNi
dx

dx (362)

The first term on the right hand side can be evaluated to yield

N1
dT̃

dx

∣∣∣x2

x1

= N1(x2)T
′

2 −N1(x1)T
′

1 (363)

where i = 1. Remember that N1(x2) = 0 and N1(x1) = 1 so

N1
dT̃

dx

∣∣∣x2

x1

= −T
′

1 (364)

Similarly with i = 2
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N2
dT̃

dx

∣∣∣x2

x1

= T
′

2 (365)

using equations 361 through 363 leads to the following two equations for i = 1 and i = 2

x2∫
x1

dT̃

dx

dN1

dx
dx = −T

′

1 +

x2∫
x1

f(x)N1dx (366)

x2∫
x1

dT̃

dx

dN2

dx
dx = T

′

2 +

x2∫
x1

f(x)N2dx (367)

The first terms in the left-hand side are simple to evaluate using the shape functions.

x2∫
x1

dT̃

dx

dN1

dx
dx = −T2 − T1

x2 − x1
(368)

x2∫
x1

dT̃

dx

dN2

dx
dx =

T2 − T1

x2 − x1
(369)

If the equation above is written in matrix form the equation is identical to the element matrix written in 348 except there
is an external forcing function added that must be evaluated.

1

x2 − x1

[
1 −1
−1 1

]{
T1

T2

}
=

{
−T ′1
T
′

2

}
+


x2∫
x1

f(x)N1dx

x2∫
x1

f(x)N2dx

 (370)

The solution to the example with Q(x)/L = 10 is solved in the same fashion as before only the forcing functions must
be evaluated for each element. Just as before this is done for all 4 elements to yield 8 equations. The equations are then
stacked together to yield only 5 equations as shown in the equations below. The equations are again identical to 353 only
the forcing function adds a bit extra to the equation.


0.4 −0.4 0 0 0
−0.4 0.8 −0.4 0 0

0 −0.4 0.8 −0.4 0
0 0 −0.4 0.8 −0.4
0 0 0 −0.4 0.4




40
T2

T3

T4

200

 =


−T ′1 + 12.5

25
25
25

T
′

5 + 12.5

 (371)

Just as before the equations are altered to solve for the introduced unknowns T
′

1 and T
′

2 which leads to the equation


1 −0.4 0 0 0
0 0.8 −0.4 0 0
0 −0.4 0.8 −0.4 0
0 0 −0.4 0.8 0
0 0 0 −0.4 1



T
′

1

T2

T3

T4

T
′

5

 =


−3.5
41
25
105
−67.5

 (372)

Again, this can be solved on any numerical computer and the solution is shown in the figure below.
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Notice however that the solution is not quite exact since the shape functions are linear. Obviously there are solutions
where the shape functions are quadratic but these are beyond the scope of this text.
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