
University of South Alabama University of South Alabama

JagWorks@USA JagWorks@USA

Theses and Dissertations Graduate School

12-2021

ROI-AWARE CONTENT-ADAPTIVE VIDEO STREAMING SYSTEM ROI-AWARE CONTENT-ADAPTIVE VIDEO STREAMING SYSTEM

FOR POWER SAVINGS FOR POWER SAVINGS

William Oswald
University of South Alabama, wdo1621@jagmail.southalabama.edu

Follow this and additional works at: https://jagworks.southalabama.edu/theses_diss

Recommended Citation Recommended Citation
Oswald, William, "ROI-AWARE CONTENT-ADAPTIVE VIDEO STREAMING SYSTEM FOR POWER SAVINGS"
(2021). Theses and Dissertations. 1.
https://jagworks.southalabama.edu/theses_diss/1

This Thesis is brought to you for free and open access by the Graduate School at JagWorks@USA. It has been
accepted for inclusion in Theses and Dissertations by an authorized administrator of JagWorks@USA. For more
information, please contact jherrmann@southalabama.edu.

https://jagworks.southalabama.edu/
https://jagworks.southalabama.edu/theses_diss
https://jagworks.southalabama.edu/gradschool
https://jagworks.southalabama.edu/theses_diss?utm_source=jagworks.southalabama.edu%2Ftheses_diss%2F1&utm_medium=PDF&utm_campaign=PDFCoverPages
https://jagworks.southalabama.edu/theses_diss/1?utm_source=jagworks.southalabama.edu%2Ftheses_diss%2F1&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:jherrmann@southalabama.edu

University of South Alabama University of South Alabama

JagWorks@USA JagWorks@USA

Theses and Dissertations Graduate School

12-2021

ROI-AWARE CONTENT-ADAPTIVE VIDEO STREAMING SYSTEM ROI-AWARE CONTENT-ADAPTIVE VIDEO STREAMING SYSTEM

FOR POWER SAVINGS FOR POWER SAVINGS

William Oswald
University of South Alabama, wdo1621@jagmail.southalabama.edu

Follow this and additional works at: https://jagworks.southalabama.edu/theses_diss

 Part of the Power and Energy Commons

Recommended Citation Recommended Citation
Oswald, William, "ROI-AWARE CONTENT-ADAPTIVE VIDEO STREAMING SYSTEM FOR POWER SAVINGS"
(2021). Theses and Dissertations. 1.
https://jagworks.southalabama.edu/theses_diss/1

This Thesis is brought to you for free and open access by the Graduate School at JagWorks@USA. It has been
accepted for inclusion in Theses and Dissertations by an authorized administrator of JagWorks@USA. For more
information, please contact jherrmann@southalabama.edu.

https://jagworks.southalabama.edu/
https://jagworks.southalabama.edu/theses_diss
https://jagworks.southalabama.edu/gradschool
https://jagworks.southalabama.edu/theses_diss?utm_source=jagworks.southalabama.edu%2Ftheses_diss%2F1&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/274?utm_source=jagworks.southalabama.edu%2Ftheses_diss%2F1&utm_medium=PDF&utm_campaign=PDFCoverPages
https://jagworks.southalabama.edu/theses_diss/1?utm_source=jagworks.southalabama.edu%2Ftheses_diss%2F1&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:jherrmann@southalabama.edu

THE UNIVERSITY OF SOUTH ALABAMA
COLLEGE OF ENGINEERING

ROI-AW ARE CONTENT-ADAPTIVE VIDEO STREAMING SYSTEM FOR

POWER SAVINGS

Approved:

BY

William Oswald

A Thesis

Submitted to the Graduate Faculty of the
University of South Alabama

in partial fulfillment of the
requirements for the degree of

Master of Science

m

Electrical Engineering

December 2021

2J1�
Chair of Thesis C-c5mmittee: Dr. Na, Gong

,_..1'1 oho.y(leJ 0�a .. baf\

Committee Me

Chair of Depa t ent: Dr. Hulya Kirkici

12,J lhOJ �
Director of Graduate Studies: Dr. Robert Cloutier

Dean of the Graduate School: Dr. J. Harold Pardue

Date:

I of -i,r/-i,;,1-I
IO I;_,; I :;._0'-'

11/5/2021

ROI-AWARE CONTENT-ADAPTIVE VIDEO STREAMING SYSTEM FOR

POWER SAVINGS

A Thesis

Submitted to the Graduate Faculty of the

University of South Alabama

in partial fulfillment of the

requirements for the degree of

Master of Science

in

Electrical Engineering

by

William Oswald

B.S., University of South Alabama, 2020

December 2021

ii

ACKNOWLEDGEMENTS

Before any other, I would like to thank Dr. Na Gong; without her guidance and

support, this work would not have been possible. I would also like to thank my lab

mates—especially Dr. Ali Haidous, Dr. Hritom Das, as these two along with Dr. Na

Gong have contribute and created many sections of the IEEE journal paper which became

this thesis. Thank you for supporting me and my work. I would also like to thank the

members of my thesis committee, Dr. Mohamed Shaban and Dr. Kari Lippert. Thank you

for the time and effort you have given me to make this thesis possible. I would also like

to thank my lab mate Trenton Howell; he gave good insight and discussion along the

way. Lastly, to my family and friends, new and old: thank you.

iii

TABLE OF CONTENTS

Page

LIST OF TABLES ... vi

LIST OF FIGURES .. vii

LIST OF ABBRIVIATIONS ... ix

ABSTRACT ... xi

CHAPTER I: INTRODUCTION ..1

CHAPTER II: STATE OF THE ART ..5

2.1 Approximate Video-Pecific Memory ..5

2.2 Viewer-Aware Video Memory ..6

CHAPTER III: OVERVIEW OF THE PROPOSED TECHNIQUE7

3.1 Motivational Example ..7

3.2 Overview of the Proposed Context-Adaptable ROI-Aware Video Storage10

3.2.1 ROI Awareness ..12

3.2.2 Video Content Adaptation ...13

3.2.3 Truncation Region Extractor ...13

3.2.4 3-Bit Truncation ...14

CHAPTER IV: ROI EXTRACTION AND TRUNCATION ALGORITHM17

4.1 ROI Algorithm Selection Process ..17

4.2 Haar Cascade Classifier for ROI Extraction ..18

4.3 Memory Structure and YUV Colorspace ...19

4.4 Complete Truncation Algorithm ..20

iv

CHAPTER V: PROPOSED TECHNIQUE: SYSTEM AND CIRCUIT LEVEL

IMPLIMENTATION ...21

5.1 System Level Implimentation: Video Streaming Platform21

5.2 Memory Bit Truncation Manager (MBTM) ..25

5.3 H.264 Decoder and MBTM Integration ...27

5.4 Circuit Level Implementation of the Proposed Frame Buffer Memory29

CHAPTER VI: EXPERIMENTAL METHODOLOGIES ..32

6.1 Video Selection ..32

6.2 Video Frame Quality Metrics ..33

6.3 System and Circuit Level Implementation ..33

6.4 Video Quality Evaluation ..34

6.5 Statistical Hypothesis Validation ...34

CHAPTER VII: EXPERIMENTAL RESULTS ..35

7.1 Mobile System Utilizing Proposed Method Overhead ..35

7.2 Circuit Level Frame Buffer Timing Diagram ..37

7.3 Circuit Level Frame Buffer Power Savings Analysis ..39

7.4 Video Visual Quality Comparisons ...41

7.5 Objective Video Quality and Bit Truncation Analysis ..41

7.6 Video Level Power Savings Analysis ..43

7.7 Statistical Analysis ...45

CHAPTER VIII: COMPARISON WITH PRIOR WORK ...54

8.1 Compared to State-of-the-Art Approximate Video Memories54

8.2 Compared to State-of-the-Art Adaptive Video SRAM ...55

8.3 Compared to State –of-the-Art Viewer Aware Video Memory56

8.4 Compared to State-of-the-Art Content-Aware Video Memory56

8.5 Comparison Summary ...57

CHAPTER IX SUMMARY AND FUTURE WORK ...58

9.1 Thesis Summary...58

9.2 Future Work ...59

REFERENCES ..60

v

APPENDICES ...63

A1: ROI Video Metrics ..63

A2: Main.py ...65

A3: Macroblock.py ..67

A4: FlatTruncate.py ...72

A5: MBTruncation.py ..74

A6: OpenCVROI.py ..76

A7: ROIMBTruncation.py ...78

A8: WeightedPSNR.py ..81

BIOGRAPHICAL SKETCH ...86

vi

LIST OF TABLES

Table Page

1. Truncation Region GPIO Protocol ...23

2. Summary of System Overhead/Cost Using the Proposed Method at 1920×1080

Resolution ..35

3. Results of ROI Videos ...49

4 Results of Non-ROI Videos ..50

5. Comparison with Prior Work ...55

6. Appendix A ROI Video Metrics ..63

vii

LIST OF FIGURES

Figure Page

1. Proposed content-adaptable ROI-aware low-power video memory4

2. Observer discernable flaws in the facial region ..9

3. Proposed Region-Of-Interest and macroblock texture framework11

4. Akiyo frame visualization. ...16

5. H264 video stream demonstration platform hardware system22

6. Mobile video streaming system block diagram. ..23

7. Encoded frame 175 from Johnny_1280x720_60 video. ..26

8. Circuit-Level implementation of the proposed frame buffer memory30

9. Timing diagram of the frame buffer circuit. ..36

10. Hardware FPGA system post implementation project summary without BTM. 37

11 Hardware FPGA system post implementation project summary with BTM38

12. Power savings (one word) of the frame buffer circuit ...40

13. Visual Comparison of Selected Video Frames ..44

14 Impact of the video content characteristics on the effectiveness of the proposed

technique, compared to old technique ...51

15. Histogram of quality Improvement distributions ...52

16. Histogram of power savings. ...52

viii

17. Histogram of PSNR noise increase ..53

18. Histogram of SSIM noise increase. ..53

Appendix

Figure Page

A1 Video Metrics ...63

A2 Main.py ..65

A3 Macroblock.py ...67

A4 FlatTruncate.py ..73

A5 MBTruncation.py ...75

A6 OpenCVROI.py..77

A7 ROIMBTruncation.py ..79

A8 WeightedPSNR.py ...81

ix

LIST OF ABBREVIATIONS

Abbreviation Description

CAVLC ... Context-Adaptive Variable-Length Coding

FPGA .. Field Programable Gate Array

ECC ..Error Correcting Code

IDR ... Instantanious Decoder Refresh

HVS..Human Visual System

LSB .. Least Significant Bit

LUT ... Look Up Table

MB ..Macro Block

MBTM ... Memory Bit Truncation Manager

MSB .. Most Significant Bit

NAL ...Network Abstraction Layer

RBSP ... Raw Byte Sequence Payload

PSNR.. Peak Signal to Noise Ratio

PSP .. Picture Parameter Set

POC ... Picture Order Count

ROI .. Region of Interest

SCP .. Secure Copy Protocol

x

SPS .. Sequence Parameter Set

SSIM ... Structual Simularity Index

IoT ... Internet of Things

VDD ..Supply Voltage

VR .. Virtual Reality

WE ... Write Enable

WPSNR .. Weighted Peak Signal to Noise Ratio

WNS ... Worst Negative Slack

YOLO ... You Only Look Once

xi

ABSTRACT

Oswald, William, M. S., University of South Alabama, December 2021. Content-

Adaptive ROI-Aware Video Storage Memory for Power Savings. Chair of Committee:

Na, Gong, Ph.D.

The demand for mobile video streams is constantly increasing. With this demand

comes a need for mobile devices to receive more videos at ever increasing quality.

However, due to the large size of video data and intensive computational requirements,

video streaming requires frequent memory access that consumes a substantial amount of

mobile device power; as a result, the battery life of mobile devices is limited. In this

thesis, a video content-adaptable Region-of-Interest (ROI)-aware video storage technique

that promotes power savings is presented. During the video encoding process on the

transmitting server, based on the macroblock variance and ROI characterization, the

“macroblocks of interest” are identified and embedded in the encoded bitstream. In the

decoding process, a new frame buffer with dynamic power-quality trade-off is presented

to adapt to the macroblock characteristics during run-time. Results from the system-level

and circuit-level simulations show that the proposed technique enables substantially more

truncated bits and significant power savings while delivering similar or better video

quality as compared to other state-of-the-art solutions.

1

CHAPTER I

INTRODUCTION

Mobile video streaming on YouTube, Vimeo, and Netflix has increased on average 70%

per year and will consume approximately 79% of the total internet traffic by 2022 [1]. At

the same time, power-efficient video storage has proven to be a very challenging problem

to solve. This is due to the large data sizes associated and intensive computational

requirements demanding frequent data access. With the advancement of computing

technologies, more video streaming services deliver content to battery-powered mobile

devices: such as smart phones and Internet-of-Things (IoT). On one hand, these devices

would benefit greatly from low-power consumption as this would extend their battery

life. On the other hand, the mobile video streaming process – receive, decode, and display

of a video bitstream – consumes considerable power and limits the mobile devices’

battery life. For example, with a video decoding chip, embedded memories contribute to

over 50% of the decoding power consumption [2]. This use-case is only expected to grow

for the next-generation video formats, H.265/HEVC and H.266/VVC, which has 2x-3x

greater memory demands when compared to H.264 [3].

Today’s mobile hardware designers, including memory designers, are focusing on

hardware-level energy-efficient design techniques in order to accommodate the large

amount of video data. However, these design techniques usually come with significant

2

implementation overhead (e.g., silicon area, delay) to solve failure problems in memories.

viewer-aware video memory was explored as a possible opportunity for power savings,

taking advantage of the impact of illuminance levels in different viewing surroundings

on the viewer’s experience [4, 5, 6, 7], as shown in Fig. 1. Previous studies illustrate a

new dimension of power savings for hardware design through the introduction of viewer

awareness, but the developed memories lack runtime adaptation across a wide variety of

mobile videos. To enable an optimized trade-off between power efficiency and video

quality, this thesis aims to develop a video content-adaptable Region-of-Interest (ROI)-

aware memory for general videos. Specifically, this thesis makes the following

contributions:

• An intelligent ROI-aware and content-adaptive framework is proposed to

determine video frame regions to preserve (output quality) or truncate bits

for power savings. The truncation is applied for all Luma and Chroma

video data (i.e., Y, U, and/or V components) (Chapter III & IV).

• The system-level implementation scheme of the proposed technique is

developed and discussed (Chapter IV-A, IV-B, and IV-C).

• A low-power low-cost frame buffer with dynamic power-quality trade-off

is developed to adapt to the video content (i.e., macroblock characteristics)

during run-time (Chapter IV-D).

• A comprehensive suite of simulations on the proposed technique is

performed and the enriched results are discussed, including the

performance, circuit-level power efficiency, video-level power efficiency,

3

number of truncated bits, and output quality of various mobile videos

(Chapter VI-A, VI-B, VI-C, and VI-D).

• An extensive statistical analysis demonstrates the effectiveness of the

proposed technique in achieving significant bit truncations and power

savings as compared to the state-of-the art, particularly for the videos with

medium or high variance (Chapter VI-E).

With existing knowlege, this is the first work that seamlessly integrates ROI

knowledge, i.e., “macroblocks of interest”, into the hardware design process.

The organization of the thesis is as follows: A review of low-power video

memory designs is provided in Chapter II, Chapter III presents the macroblock variance

and ROI study, Chapter IV discusses the proposed algorithm and software requirements.

Chapter V shows the circuit and system level implimentation. A discussion of the

evaluation methodology and results in Chapter VI and VII respectively. Chapter VIII

compares the proposed tequnique against other alternative methods, and finally, a

conclusion of the thesis is presented in chapter IX.1

1 William Oswald was responsible for developing the software simulations, which included integrating

macroblock variance information with ROI extraction. William was also responsible for the statistical

analysis process, and video frame analysis. Dr. Ali Ahmad Haidous was in charge of the theoretical

development, and the hardware system test platform. Hritom Das was in charge of all circuit design in

Cadence, bit-level power analysis. Dr. Na Gong contributed to the theoretical development, and architecture.

4

Different surroundings

Ref. [4-6]

Ref. [7]

General videos and Region-of-Interest

(ROI) Awareness

This work

Traditional video-

specific approximate

memory

Ref. [8-12]

Low-motion videos with a stationary

camera or containing a reporter

Different surroundings

viewer

experience

FIGURE 1 - Proposed content-adaptable ROI-aware low-power video memory.

5

CHAPTER II

STATE OF THE ART

A vast amount of research has been conducted to improve the power efficiency of video

data storage. State-of-the-art, power-efficient video memories consist of either

approximate memory with application-level information [8, 9, 10, 11, 12] or viewer-

aware memories with an awareness of viewer’s experience [4, 5, 6, 7]. In this Chapter,

some of the existing work related to the proposed technique are briefly reviewed, and the

detailed comparison analysis will be provided in Chapter VIII.

2.1 Approximate Video-Specific Memory

Researchers have presented various low-power video memory design techniques.

Chang et al. [8] presented a hybrid 6T+8T SRAM to achieve quality-power optimization.

Gong et al. [9] developed a hybrid 8T+10T memory for power savings based on the

correlation between most-significant-bits (MSBs) of video data. In [10], a heterogeneous

sizing scheme was presented to reduce the failure probability of conventional 6T bitcells.

The video memory presented in [11] used the Least-Significant-Bits (LSBs) of video data

to store the MSBs’ error-correction-code (ECC). Kazimirsky et al. [12] developed a

hybrid SRAM+DRAM memory to store MSBs in robust SRAM bitcells and LSBs in

error-prone DRAM bitcells, leading to a tolerable output quality with power reduction.

6

However, all those video memory designs were developed without considering viewer’s

experience.

2.2 Viewer-Aware Video Memory

An investigation into viewer-aware low-power video memory techniques in was

conducted, [4, 5, 6]: where an increased amount of ambient luminance allows for a larger

number of bits to be truncated without noticeable degradation to the viewers. Very

recently, the impact of video content characteristics on viewer’s experience to enable

video content-adaptive memory with dynamic energy-quality tradeoff was studed [7].

However, the technique determined the number of truncated LSBs based on the averaged

plain macroblock percentage of an entire video sample; therefore, it was only effective to

store low-motion videos with a stationary camera or containing a reporter in a video cast

use-case. Additionally, this technique may result in noticeable distortion, e.g., a banding

distortion caused by bit truncation, which negatively influenced the viewer’s experience.

The common feature of these viewer-aware storage techniques is that the same

number of the truncated bits were applied on an entire video. In contrast, the technique

proposed in this thesis realizes content adaptation and ROI awareness within each video

frame, thereby maximizing the number of truncated bits while maintaining the video

quality.

7

CHAPTER III

OVERVIEW OF THE PROPOSED TECHIQUE

In this Chapter, the motivation of the proposed technique that introduces ROI awareness

as bit truncation is applied for power savings is presented. Then, the high-level overview

of the proposed technique is shown.

3.1 Motivational Example

Researchers conducted studies on the human visual system’s (HVS) performance

and concluded that viewers usually pay more attention to one or a few areas of a video

and the region of concentration is called Region-Of-Interest (ROI) [13]. For example, in

video conferencing applications, viewers typically pay more attention to the face regions

than other areas. In video surveillance, the facial regions are what viewers concentrate

most on in consecutive frames. Accordingly, ROIs have higher contribution towards the

overall visual quality than other areas. Consequently, if truncation-caused banding

distortion appears in ROIs, this will negatively influence a viewer’s experience. Fig. 2

shows one example. The output quality of the video (Video tag: wF6lvdXXwc4 [14])

using the technique in [7] is shown in Fig. 2 (a). Since the banding distortion caused by

bit truncation appears on the reporter’s face, viewers were less likely to accept the

displayed degradation due to this particularly noticeable distortion, as emphasized in [7].

8

Therefore, the motivation for this work arises from the following two

observations:

1) In a video frame, the distortion in ROIs is more noticeable by viewers.

Accordingly, if ROIs can be extracted and protected from truncation, the video quality

would be improved from the viewer’s perspective (Fig. 2 (b)). A comparison of the

report’s face using the technique in [7] and the proposed technique with ROI awareness is

shown in Fig. 2 (c).

2) There existed a positive correlation between power savings and the number of

bits truncated in a video decoder’s frame buffer memory [7]. To optimize the power

efficiency, it would be beneficial to increase the number of truncated bits in other regions

which are not ROIs: the truncation regions.

9

(a) Output quality using [7] (at 3 truncated bits)

(b) Output quality of the proposed technique (at 3 truncated bits)

(c) [7] (left) vs. Proposed technique (right)

FIGURE 2. Observer discernable flaws in the facial region. This is due to a “banding effect” on the face
when comparing (a) and (b) caused the overall quality of the frame to become unacceptable at 3

truncated bits (Video tag: wF6lvdXXwc4 from [14]).

10

3.2 Overview of the Proposed Context-Adaptable ROI-Aware Video Storage

Fig. 3 shows the proposed content-adaptable ROI-aware video storage technique.

During the traditional mobile video streaming process, first, from (1) in Fig. 3, the mobile

device requests a video for display from the cloud. Then, the streaming servers process

the requested video by encoding and transmitting the encoded bitstream to the mobile

device for decoding and display, (2) in Fig. 3. During this process, multiple memories are

needed for storing the intermediate and final results of the frame data. In particular, the

reference macroblock, frame memory, and display memory, which store the decoded

video frames, are accessed very frequently, and they have a profound impact on the

system’s overall cost and power consumption. The proposed technique extracts ROIs in

the cloud server and transmits the truncation region data together with the encoded

bitstream to the mobile device, (3) in Fig. 3, to further reduce the mobile device’s power

consumption from computational overhead. The mobile device hardware video decoder

receives the truncation region data and makes memory bit-truncation decisions for greater

power savings with less perceived quality loss than [7]. To optimize the truncation

decision logic of the mobile device hardware, which further improves power

consumption, either no truncation or 3-bit truncation is applied to the truncation regions.

Explicitly, the proposed technique is detailed as follows.

11

Server

Video

Directory

Video Encoder

ROI

Identifier

Truncation

Region

Extractor

Video

Decoder

Memory Bit

Truncation

Manager

Cloud

Mobile Device

(3) ROI Extraction

(2) Encoded Video

(1) Video Request

Display

FIGURE 3. Proposed Region-Of-Interest and macroblock texture framework.

12

3.2.1 ROI Awareness

ROI has been recently applied for different research areas for video system

optimization, such as wireless transmission [15], virtual reality (VR) [16], and video

summarization [17]. The proposed technique introduces ROI awareness into video

storage. Specifically, to minimize the complexity and computational overhead, the

system focusses on the faces as ROIs in the analysis based on the basic machine learning

facial detection OpenCV model [18]. Different algorithms, such as user attention model

[13], motion-based models [17], and machine learning models [19], can be applied in our

future investigations to extract different ROIs. It should be noted that the complexity of

ROI extraction algorithms is also a trade-off choice between video quality and

computation complexity as well as power savings. A simple ROI extraction algorithm

will save computation resources and power consumption of video encoding. Also, it may

transmit fewer truncation region bits to mobile devices, so more pixel bits will be

truncated for power savings in the mobile devices. The drawback is that it will influence

the video quality. Alternatively, a more complex ROI algorithm will identify additional

regions and therefore it can convert a video without ROI to a video with ROI, which will

benefit the video quality, but it will reduce the power savings due to the less truncated

bits and increased computation complexity.

13

3.2.2 Video Content Adaptation

After the ROIs to preserve are detected and captured by the framework ROI

Identifier, it then searches for regions of low variance measured by the percentage of

plain macroblocks (MBs). Specifically, a MB defines an area of 16x16 pixels within a

frame. An attribute associated with MBs is how “Textured or Plain” they are. A Plain

MB is one in which the variance of intensity within the MB is less than or equal to the

threshold value. It has been concluded in [7] that textured MBs are less susceptible to bit-

truncation. To solve this, the pre-established method is usedfor determining the variance

in a MB [20].

𝑉𝑀𝐵 = ∑ ∑ (𝑃(𝑖, 𝑗) − ρ 𝑀𝐵)2 ≫ 8
15

𝑗=0

15

𝑖=0
 ()

 MB = {
Plain, if(𝑉𝑀𝐵 ≤ Th𝑙𝑜𝑤)

Textured, Else
 ()

Equations (1) and (2), where ρ𝑀𝐵 is the average brightness within the MB, 𝑉𝑀𝐵 is

the texture variance within the MB, and traditionally, Th𝑙𝑜𝑤 is defined as a value of 1.25

[21].

3.2.3 Truncation Region Extractor

After ROIs are identified on the server, a truncation region extractor encodes the

truncation region data using a proprietary protocol per frame and transmits in

synchronization with the encoded video transmission to the mobile device. The truncation

region data is decoded onboard the mobile device’s hardware video decoder in a novel

Memory Bit Truncation Manager (MBTM) hardware unit: which truncates a novel frame

14

buffer memory through the use of unique control YUV truncation signals. The video

decoding and bit truncation processes occur in lockstep.

3.2.4 3-Bit Truncation

Truncation is performed in the YUV (Y’CbCr) color space [22], inferring that any

truncation is done to the YUV color values. The memory designed in [7] truncated 1, 2,

or 3 bits in the Least Significant Bits (LSBs) of the Y vector 2 of all frames within an

entire video as a blanket truncation. The proposed technique will enable a different

number of truncated bits for each region within each frame within an entire video. To

minimize the implementation overhead, only 3-bit truncation is adopted in the new frame

buffer, which will be discussed in Chapter V-D. Meanwhile, the proposed technique can

identify bit-truncation for each Y, U, and V vector of the frame separately for each

truncation region in each frame, instead of only truncating the Y vector as a blanket

truncation across the entire video as the existing techniques [4, 5, 7]. Furthermore, the

proposed technique is expected to enable additional bit truncations as compared to

existing techniques. Also, to minimize the video quality degradation caused by bit

truncation, the developed frame buffer truncates three LSBs to the optimal value “100”

[7], instead of truncating the values to “000”.

Fig. 4 shows the Akiyo video sample using the proposed technique. The extracted

preserved ROI region is highlighted in pink. All truncation regions within a frame are

identified, including the following seven possible truncation combinations: (1) Green, Y

vector truncation; (2) Blue, U vector truncation; (3) Yellow, V vector truncation; (4)

Dark blue, YU vectors truncation; (5) Dark Yellow, UV vector truncation; (6) Dark

green, YV vectors truncation; and (7) Grey, YUV vectors truncation. Each of these

15

combinations would be encoded in the truncation region data for the MBTM to generate

control signals for memory bit truncation in the video decoding process.

To conclude, our proposed technique truncates the chroma sub samples within

each frame as well as the luminosity: Y, U, and V vectors. Previous research only

targeted luminosity, Y, of a video for truncation, while chroma samples were disregarded

for the entire video. Also, our technique preserves ROIs that impact viewer perception

most, while enabling greater truncation for each Y, U, and V vector for the truncation

regions with textured MBs. Accordingly, the proposed technique will realize a greater

number of truncation while preserving visual quality. The system-level and circuit-level

implementations of the proposed technique will be discussed in Chapter V.

16

(a) Original Akiyo Frame (for reference)

(b) Visualized ROI Sample

FIGURE 4. Akiyo frame visualization [23]. Generated using proposed method’s frame parsing process. Pink,
preserved ROI. Seven possible truncation combinations: 1. Green, Y vector truncation. 2. Blue, U vector
truncation. 3. Yellow, V vector truncation. 4. Dark blue, YU vectors truncation. 5. Dark Yellow, UV vector

truncation. 6. Dark green, YV vectors truncation. 7. Grey, YUV vectors truncation.

17

CHAPTER IV

ROI EXTRACTION AND TRUNCATION ALGORITHM

In this chapter, the methodologies behind the ROI extraction algorithm will be explained

in detail, as well as the choice to use a standard public solution instead of devleoping a

custom ROI algorithm for this circuits needs.

4.1 ROI Algorithm Selection process

The choice in selecting an ROI extraction algorithm is heavily dependent on the

type of video being displayed. For instance, the user’s attention will change drastically if

they ware watching a ports game, as compared to a news broudcast. For this reason,

standard object detection algorithms do not fully satisfy the requirement of generalizing

ROI locations within any video stream. Subsequently the development of a general

solution at determining ROI within any video stream would be a novelty, and is outside

the scope of this thesis. With this constraint in mind, two factors went into deciding what

ROI extraction algorithm to use.

1. An assumption will be made in determining what the user’s

attention will be in a video stream. This allows a single region extracting

algorithm to be equivalent to a ROI extractor.

18

2. The region extractor used should be publicly available, and highly

reputable such that the effectiveness of the ROI is not a concern.

This led to the decision to use OpenCV open-source repository of various frontal

face detection algorithms [18]. With this repository in mind, the decision was made to

target news broadcasting video streams as the sample target video genre. Using the

assumption that the user’s attention will be located on the faces within these video

streams.

4.2 Haar Cascade Classifier for ROI Extraction

 Within the OpenCV repository, all the available facial detection

algorithms were tested to find an optimal algorithm, of which

‘HaarCascade_FrontalFace_mlt2.xml’ was selected, as it provided the easiest interface,

and was a very predictable and algorithmic approach to facial detection. However, it

should be noted that any facial detection algorithm could have been used, such as the

Eigen vector approaches, Fisher’s Linear Discrimination Analyzer, or Local Binary

Pattern apprioch [23]. The model chosen uses the Haar cascade approach for facial

recognition. This apporch uses digital image processing to translate an input image into a

feature set, then from this featureset a classifying machine learning algorithm is used to

distinguish if the image contains a face or not. This classifier was trained using the ‘Open

Images V4’ dataset, which contains 15.4 million bounding box images, which was used

to train the classifier [24]. This implies that the classifer follows the ‘You Only Look

Once’ (YOLO) methodology, and thus no time information is considered in detecting a

19

face within an image. Thus, all frames within a video are treated indepentently from

oneanother.

4.3 Memory Structure and YUV Colorspace

 The face detection classifier used for ROI extraction naturally does not

consider the underlying memory structure of the decoder when classifying images. For

this reason, any region defined as a ROI from the classifer needs to be mapped to a

specific byte in memory before truncation. In this specific usecase, the target decoder is

the H.264 decoder, which uses a 16x16 pixel macroblock within the memory structure.

To ensure that all the ROI is preserved in the output of the decoder, a conservative

decision was made, such that if a single pixel within a macroblock is defined as an ROI,

the whole macroblock is preserved. It is important to note that the H.264 decoder uses the

YUV colorspace in the memory structure [2]. Thus, any bits truncated in memory effect

the YUV colorspace, and does not directly affect the RGB output of the decoder. The

YUV colorspace is used throughout the decoder, and is translated to the RGB colorspace

in a conversion circuit before the video stream leaves the decoder. Thus, the effect of

truncating a single YUV color byte will influence a 16x16 pixel region on the RGB

display.

20

4.4 Complete Truncation Algorithm

 With the ROI extraction classifier in place, and macroblock variance

defined with equation (2), it is possible to process any frame. The algorithm Implimented

works as such:

1. Find ROI within frame via ROI extraction algorithm, store ROI

macroblock locations in memory

2. Calculate Macroblock Variance via Equation (2) for each

macroblock.

3. If a macroblock is defined as non-ROI from step #1, and High

Variance from Step #2, truncate the macroblock memory cell.

This algorithm is very effective in that steps #1 and #2 can be done in parralell

using entirely different CPU cores, or different integrated circuit structures. This would

theoredically allow such an algorithm to be effective even for live video broadcasting.

21

CHAPTER V

PROPOSED TECHNIQUE: SYSTEM AND CIRCUIT LEVEL

IMPLEMENTATION

This Chapter presents the system-level and circuit-level implementation of the

proposed technique.

5.1 System Level Implementation: Video Streaming Platform

Fig. 5 shows the developed system-level video streaming platform. As shown, a

Raspberry Pi [25] microcontroller was used to serve as a video streaming server with

which a mobile device would communicate and retrieve video data. Also, a Z-Turn 7020

[26] board and synthesized an H.264 video decoder was utalized into the on-board Xilinx

Zynq 7020 Field Programmable Gate Array (FPGA) which would operate as a mobile

device. Finally, the decoded video data was captured via a Magewell [27] HDMI Video

Capture & Display Device.

The corresponding block diagram for Fig. 5 is illustrated in Fig. 6. The video

streaming process is kicked-off by a command from the mobile device to the server to

retrieve an encoded H.264 video stream over Secure Copy Protocol (SCP) [28]. The

mobile device sends the initial kick-off command to the server over a serial terminal on a

PC interfaced with the mobile device over USB. The server then processes the video

22

stream requested by the mobile device by both transmitting an H.264 encoded format of

the video stream over SCP to the mobile device and parsing the frames for truncation

region information.

FIGURE 5. H264 video stream demonstration platform hardware system.

23

Directory of
Encoded Videos

Server

Mobile Device

Frame-to-

Bitstream

Converter

YUV
4:2:0→4:4:4
translation

YUV
Display
Memory

YUV→RGB
translation

RGB

Video
Capture Card

Video Capture &

Display Device

S
C

P

Circular bitstream
buffer

Residual

Inter predictor

Intra predictor

Motion Vector X F
ra

m
e
 b

u
ff

e
r

Luma
Level

su
m

Intra Pred Engine

Exp-Golomb

Decoder

CAVLC

Decoder

Bitstream Parser

Bitstream parser Reconstruction data path

Inter Pred Engine

Chroma
Level Cr

Chroma
Level Cb

Motion Vector Y Reference MB

Reconstructed
Neighboring

Prediction
Mode

Memory Controller

Bit-truncation Manager

Bits

H264 Decoder

ROI Identifier

Operating

System

Truncation

Region

Extractor

G
P

IO

Display

Controller
HDMI
Output

LCD Monitor

H
D

M
I

USB3.0

Personal
Computer

HDMI

FIGURE 6. Mobile video steaming system block diagram.

TABLE 1. Truncation Region GPIO Protocol.

(a) SERVER-TO-MOBILE DEVICE (b) MOBILE DEVICE-TO-SERVER

Index 0 Index 1 Index 2 Index 3 Index 4 … Index N+1 Index

N+2

Index

N+3

 Index 0 Index 1

Frame

Number

Number

of

Regions

YUV1

Truncation

(X11,Y11) (X12,Y12) … YUVN

Truncatio

n

(XN1,YN1) (XN2,YN2) Frame

Number

Request

Send Frame

Flag

22 bits 16 bits 3 bits 22 bits 22 bits … 3 bits 22 bits 22 bits 22 bits 1 bit

24

After the video frame is parsed on the server, the truncation region information is

transmitted over GPIO per frame. In our developed system, the protocol is defined

inTable 1. Only the truncation region information of the frames that would be truncated is

transmitted. The preserved ROI information will not be transmitted as these regions are

identified prior to the transmission on the server and preserved. As listed in Table 1, the

first index, index 0, denotes the current frame number parsed. The second index, index 1,

denotes the number of truncation regions to truncate. Then the next indices denote the

first three YUV truncation signal bits plus two sets of XY coordinates denoting the left

top and right bottom corners of rectangles grouping the affected truncation region. These

three indices repeat for each region called out by the “Number of Regions”, index 1. The

GPIO interface data width bit size of the developed system is 22-bits per index. The 22-

bit distribution is to account for a maximum of 211 x 211 pixel addressing – a max

resolution of 1,920 × 1,080 – totaling 22 bits. There is an additional 2 handshaking bits

between the server and mobile device to denote data reception confirmation in-order to

transmit the next index.

This truncation region information will be transmitted to a MBTM for processing

in the mobile device side, as discussed in Chapter V-B. The MBTM will generate control

signals for the frame buffer memory, thereby determining which sub-pixels – from Y, U,

and/or V – shall be truncated for each frame written to the frame buffer memory, which

will be detailed in Chapter V-D. Finally, the decoded and bit-truncated frame is output

over HDMI from the mobile Device and captured by the Video Capture & Display

Device.

25

5.2 Memory Bit Truncation Manager (MBTM)

The MBTM implemented into the H.264 decoder parses the protocol data that is

transmitted by the server’s Truncation Region Extractor. The flow is broken down as

follows. First, from Fig. 7 (a), the encoded frame is transmitted via SCP to the mobile

device. Fig. 7 (b) illustrates the truncation regions determined to be bit-truncation capable

on a sub-frame vector level: Y vector, U vector, and V vector each encompassing all the

sub-frames summing to a frame. From Fig. 7 (b), the gray areas denote the truncation

regions determined to be bit-truncation capable for all Y, U, and V vectors. The areas in

boxes are regions where only 1 or 2 vectors were determined to be bit-truncation capable.

Two coordinates, top-left and bottom-right, are highlighted in Fig. 7 (b) for each of these

regions to show how the truncation region data was used to determine the regions to

truncate using the protocol in Table 1. A total of 61 regions to truncate are shown in Fig.

7 (b). Fig. 7 (c) shows the resultant frame after Fig. 7 (a) is decoded using the identified

truncation region information. As shown, the preserved ROI around the face, pink region

from (b), is not truncated to avoid visual quality degradation. The frame is decoded

normally, but when it is written into the frame buffer, the transmitted truncation region

information is used to control the T_Y, T_U, and T_V control inputs to truncate the

frame buffer memory as it is written. These control inputs are provided to the proposed

frame buffer in Fig. 8, which will be discussed in detail in Chapter V-D.

26

(288, 256)

(355, 323)

Preserved ROI

No Truncation

Y Truncation

U Truncation

YV Truncation

V Truncation

YU Truncation

VU Truncation (419, 275)

(403, 256)

(65, 386)

(99, 448)
(224, 449)

(257, 511)

(544, 447)
(608, 515)

(577, 576)

(641, 637)

FIGURE 7. (a) Encoded frame 175 from Johnny_1280x720_60 video [23]. (b) Visual of areas being

truncated. 45 regions total. (c) Output decoded frame. 2,282,496 bits truncated.

27

5.3 H.264 Decoder and MBTM Integration

A H.264 video decoder is implemented based on the Open Source Osenlogic

OSD10 decoder IP [29]. This decoder was capable of decoding baseline profile level 3.1

encoded bitstreams. The slice types supported were I-Slice, SI-Slice, P-Slice, and SP-

Slice [30]. The entropy coding profile supported was Context-Adaptive Variable-Length

Coding (CAVLC). The decoder took an H264 Network Abstraction Layer (NAL)

bitstream and output YUV 4:2:0.

During the NAL bitstream parsing process, the bitstream is parsed into raw bytes

of syntax elements from the Raw Byte Sequence Payload (RBSP). Within the RBSP,

therein lies the slice layers. Ignoring the Sequence Parameter Set (SPS) and the Picture

Parameter Set (PPS), the Instantaneous Decoder Refresh Access Unit (IDR Slice(s)) and

the slice layer includes all slice headers and slice data for the frames that shall be

truncated using the MBTM. H.264/AVC defines a frame as an array of luma samples and

two corresponding arrays of chroma samples: denoted as YUV.

Specifically, the slice header includes the parameters first_mb_in_slice, which

indicates the position of the first macroblock in the slice data, and frame_num, which

represents the order in which a video decoder shall decode the encoded frames. This is

not the same as the display order or Picture Order Count (POC), which is the order in

which the frames are displayed. The frame_num parameter is used to determine which

frames during the decoding process would be susceptible to YUV bit-truncation by the

MBTM and the first_mb_in_slice is used to determine the starting coordinates of the

macroblocks susceptible to bit-truncation. The slice data included all the macroblocks of

the slice.

28

After the MBTM determined that a frame would be truncated, through a

conditional match between the frame number parameter from Table 1(a) and frame_num,

a running count of the current macroblock index was kept track of internally to the

MBTM from the slice data starting with the index of first_mb_in_slice. After the MBTM

determined that a macroblock would be truncated, through a conditional match of the

running macroblock index and the truncation region given by the two indices from Table

1 (a) that indicate the rectangular region which YUV truncation would be applied, the

MBTM passes through the YUV truncation signal, from Table 1 (a), to the frame buffer

which would result in the macroblock being truncated to the desired amount. An internal

signal denoting the number of macroblocks truncated in the frame is then incremented.

After all the macroblocks desired to be truncated in the frame are truncated, denoted by

the number of ROI parameter from Table 1 (a), then from Table 1 (b), the Send Frame

Flag is set then reset by the MBTM over GPIO to signal the next frame information to

truncate. From Table 1 (b), the Frame Number Request index is used to fetch any frame

index truncation information for macroblocks that required multiple frames for

prediction. This process is repeated until the end of the NAL bitstream.

The trade-off with utilizing the BTM is the additional GPIO parallel bitstream

overhead required to truncate the macroblocks in each frame. Each frame parsed had an

absolute worst case overhead of approximately 380,738 additional bits to transmit using

the protocol from Table 1. This worst case is calculated assuming every macroblock with

16 × 16 pixels in a maximum resolution of 1,920 × 1,080 would be truncated differently

per frame in a video. On average, however, the number of additional bits transmitted per

frame is 1,200, because the maximum resolution of each frame is 1920 × 1080 and the

29

truncation regions are combined to encompass a greater area in the video to save on bits

transmitted: on average 50 truncation regions per frame. With a 1920 × 1080 video at 30

frames per second progressive (1080p 30fps) or a 1280 × 720 videos at 60 frames per

second progressive (720p 60fps), i.e. 5,000 kbps bit rate, the worst case percentage

overhead would be 7.62% with an average of 0.02% per frame. The protocol utilized is

one of the simplest methods to implement the proposed technique.

5.4 Circuit Level Implementation of the Proposed Frame Buffer Memory

During the video decoding process, multiple memories are needed. In particular,

the frame buffer memory is accessed very frequently and it has a profound influence on

the system’s overall cost and power consumption [7]. In this thesis, a new frame buffer is

designed, and the circuit-level implementation is shown in Fig. 8. Specifically, the logic

in the truth table highlighted in yellow was designed to be supported by the MBTM.

Here, T_Y, T_U, and T_V are utilized to truncate Y, U, and V byte from the word. Each

word consists of a Y, U, and V byte. During the Write Enable (WE) phase of the frame

buffer memory access, if either control line of T_Y, T_U, and / or T_V are asserted, the

memory would truncate the 3-LSB of the optimal asserted vector as “100” [7]. The

proposed frame buffer has M words and each word consists of N bits. To evaluate the

functionality and measure average power consumption of this proposed circuitry, a 128-

word by 24-bits memory array is designed. Here, input and output pins are denoted as

data[23:0] and out[23:0] respectively. Bits 23-16 are named Y byte, bits 15-8 are named

30

FIGURE 8 Circuit-level implementation of the proposed frame buffer memory

31

U byte, and bits 7-0 are named V byte. The memory implemented had a driver U byte,

and bits 7-0 are named V byte. The memory implemented had a driver and sense

amplifier for writing and reading data. These enabled bits truncation according to T_Y,

T_U, and T_V control signal activation. If T_Y, T_ U, and T_V are all de-asserted as

logic ‘0’, then the frame buffer would operate as a traditional memory device where the

sense amplifier would operate with a supply voltage (VDD) and pre-charge signal phi2b.

When the T_Y signal is asserted as logic ‘1’, the peripheral circuitry would generate two

signals: y! which is the inverted value of T_Y and y_pre! which is inverted value of the

pre-charge enable signal. These two signals are used to control the sense amplifier for the

Y byte’s 3-LSBs, thereby enabling truncation. During this process, the VDD for this

sense amplifier remains grounded and the pre-charge signal would be reactivated. As a

result, the power consumption of this portion of circuitry will be reduced as compared to

the normal operation. During the read back operation, the 3-LSBs are generated as “100”

though use of three 2:1 multiplexers in-place of regular of data output. When the bit

truncation is asserted, these multiplexers would select “100” through control signals y!,

u!, or v!. Otherwise, these multiplexers would pass normal readout data values. In

addition, the VDD of all the 3 LSBs of each byte are also controlled by the corresponding

control signals y!, u!, and v!. During the truncation, VDD for LSBs can be powered off to

save power consumption and multiplexers will select “100” as the output data, thereby

achieving low-power operation. The detailed timing diagram and power efficiency of the

proposed memory will be discussed in Chapter VII.

32

CHAPTER VI

EXPERIMENTAL METHODOLOGIES

This Chapter discusses the metrics, methods, and strategies used to evaluate the

effectiveness of the proposed technique. The testing and analysis setup used to generate

the experimental results is also discussed.

6.1 Video Selection

To verify the effectiveness of the proposed technique, 74 videos with diverse

characteristics were selected from the YouTube 8M dataset [14], YouTube UGC dataset

[31], and Xiph.org Video Test Media [32]. As shown in Fig. 13, those videos have

different resolutions (e.g. 288 × 352, 1280 × 720, and 1920 × 1080) and different MB

variance characteristics (low, medium, and high). Of those videos, 60 videos contain

facial features to enable ROI preservation using the proposed technique. All videos were

converted to the YUV 4:2:0 chroma subsampling standard for ease of bit-truncation. A

detailed statistical analysis shows that our selected videos are representative of the full

population of videos in general, which will be discussed in Chapter VII-E.

33

6.2 Video Frame Quality Metrics

Existing video quality metrics such as PSNR and structural similarity (SSIM) [33],

which are used widely to evaluate the video quality, but it fails to incorporate the

importance of ROI. This is because these metrics weigh all pixels of the video equally,

regardless of user awareness. For this reason, another video quality metric – Weighted Peak

Signal to Noise Ratio (WPSNR) – is used in this thesis to evaluate the quality of videos

with ROI [22], which is defined as [34]:

WPSNR = 10𝑙𝑜𝑔10(2552/ 𝐷𝑓𝑟𝑎𝑚𝑒) (3)

𝐷𝑓𝑟𝑎𝑚𝑒 = 𝛂 ∗ MSE(f, f ′) + (1 − 𝛂) ∗ MSE(f, f ′) (4)

Where MSE stands for the Mean Squared Error between the original frame and

after truncation while 𝛂 (alpha) is defined as the weight that the ROI would have. The 𝛂

value will be a constant value of 0.9 following the previous research in [22]. This combines

PSNR with ROI information, however such an ROI weighted metric is not widely accepted

for SSIM. For this reason, videos with ROI information will be evaluated using WPSNR,

whereas videos without ROI information will have both PSNR and SSIM.

6.3 System and Circuit Level Implementation

The hardware system platform from Fig. Fig. 5 implemented an H264 decoder

synthesized into a Xilinx Zynq XC7Z010 FPGA fabric. The H264 decoder IP Core was

designed using the Xilinx Vivado 2019.2 [35] software design suite. This same decoder is

34

modified to include an MBTM. The FPGA was commanded via an ARM Cortex-A9

Processor running on a Linux Operating System through a custom baseband driver.

The circuit-level frame buffer is implemented using a 45nm CMOS technology

[36]. The supply voltage is 1.0V. The memory size is 128 words at 24 bits per word.

6.4 Video Quality Evaluation

All selected videos were analyzed using an in-house custom software tool. The tool

operated in the following three-step process: (i) Load one original video frame from

memory; (ii) Apply both the method in [7] and the proposed method to the original frame

and generate the truncated frame using each method; and (iii) Compare the frames

generated against the original frame and calculate the PSNR, SSIM and WPSNR values.

With data points collected on a per-frame basis, the average PSNR, SSIM and WPSNR of

each video stream was calculated and compared.

6.5 Statistical Hypothesis Validation

From the proposed method, a hypothesis was conjectured: that the differences

between the method in [7] and the proposed method follow a Normal, or near-Normal

distribution. This should hold true for both PSNR and WPSNR. To support this hypothesis,

a goodness of fit regression test was preformed to determine if the data falls within the

probability plot of a Normal or Weibull distribution. If the data follows this hypothesis,

this would suggest that the sample set of videos is of adequate size and as a result, no more

videos would need to be tested.

35

CHAPTER VII

EXPERIMENTAL RESULTS

7.1 Mobile System Utilizing Proposed Method Overhead

Fig. 10 and Fig. 11 show the post-implementation project summaries of the baseline H264

decoder and the H264 decoder modified to include an MBTM. When comparing both

figures, one observes that the Lookup Table (LUT) overhead, which is the additional logic

gates required for the proposed design over the baseline, was 204 LUTs or a 0.38% increase

in area. The I/O, which was used for the server-to-mobile device interface, increased by

37, or 29.6%. The power consumption of the modified decoder also increased by 0.068

watts or 0.03%: most of which was attributed to the increased number of I/O.

TABLE 2. Summary of SYSTEM Overhead/Cost Using the Proposed Method at 1920 × 1080 Resolution

 Description Data

Bitrate: Server to Mobile

Device

Additional bits transmitted from server to mobile device for

protocol per frame

1,200 bits or a 0.02%

increase on average per

frame

Power Consumed: Mobile

Device
Additional power consumed on the mobile device in Watts

0.068W or 0.03%

increase due to

additional I/O

Network Overhead
Additional time needed for additional protocol data to transmit

per frame over the 4G LTE network

Between 240μs and

100μs more time per

frame on 4G LTE at

5Mbps and 12Mbps

Logic Gates: Mobile Device
Additional Look Up Tables (LUTs) needed on the FPGA

implementing the Proposed Method on the mobile device

204 LUTs or a 0.38%

increase in area

36

Finally, the Worst Negative Slack (WNS) increased by 0.011ns, which was within

acceptable tolerance for this system as any positive value means that the critical path passes

timing constraints. Overall, this additional overhead was tolerable when compared against

the benefits in power savings and quality improvements achieved using the proposed

technique.

Table II presents the summary of all the overhead associated with the system

implementing the proposed method with video resolution1920 × 1080, which is the

maximum resolution supported by the system. The primary advantage of the proposed

method is the power savings achieved onboard the mobile device’s H264 hardware decoder

frame buffer memory, discussed later from Fig. 12. The disadvantages are the bitrate,

power consumption, network, and logic gate overhead. From Table 2, the mobile device

needs to receive 1,200 additional bits on average per frame from the server. This coupled

NoTrun.

Write Read Write Read

Trun. Y Trun. U

Write Read Write Read

Trun. V

CLK
phi2b

T_Y
y!

y_pre!
T_U
u!

u_pre!
T_V
v!

v_pre!
Write_en
Read_en

Data<23>
Data<22>
Data<21>
Data<20>
Data<19>
Data<18>
Data<17>
Data<16>
Data<15>
Data<14>
Data<13>
Data<12>
Data<11>
Data<10>
Data<9>
Data<8>
Data<7>
Data<6>
Data<5>
Data<4>
Data<3>
Data<2>
Data<1>
Data<0>

Write Read

Trun. Y & V

Write Read

Trun. Y & U

Write Read

Trun. U & V

Write Read

Trun. Y, U & V

1
0
0

0
0
0

1
0

0

0

0

0

1
0

0

0

0

0

1
0
0

0
0
0

1
0

0

0

0

0

1
0
0

0
0
0

1
0

0

0

0

0

1
0

0

0

0

0

1
0

0

0

0

0

1
0

0

0

0

0

1
0

0

0

0

0

1
0
0

0
0
0

FIGURE 8. Timing diagram of the frame buffer circuit.

37

with 204 additional LUTs required and 240μs of additional network uptime result in a

0.03% increase in mobile system power consumption.

7.2 Circuit Level Frame Buffer Timing Diagram

The proposed frame buffer is shown in Fig. 8 and the simulation timing diagram is

shown in Fig. 9. In this waveform, phi2b, T_Y, y!, and y_pre! denote the pre-charge (for

(a)

(b)

FIGURE 9. Hardware FPGA system post- implementation project summary without BTM. (a) On-Chip Power,

Total Power: 2.203W. (b) Resource allocation.

38

un-truncated bits), bit truncation enable for Y byte, power supply for truncated bitcell’s

(last 3 LSBs of Y byte), and pre-charge deactivated signal for truncated bit cells,

respectively. T_U and T_V controlled the bit truncation for U and V bytes respectively.

Write and read enable signals initiated the write and read operations for the memory

accordingly. Data [23:0] were the three bytes of each word of the proposed memory buffer.

Here, blue to red lines stand for “don’t care” regions. The red lines denote where the rising

clock edge was initiated for write and read operations. Finally, the green lines denote that

(a)

(b)

FIGURE 10. Hardware FPGA system post-implementation project summary with BTM. (a) On-Chip

Power, Total Power: 2.271W. (b) Resource allocation.

39

the write and read operations were enabled. All 8 truncation permutations and traditional

read and write operations were presented in the timing diagram as an exhaustive simulation

of the frame buffer circuit.

It should be noted that, if the bit truncations were initiated, then 3 LSBs were

truncated from the selected byte/bytes based on the control signals T_Y, T_U, and T_V.

During the read operations, the 3-LSBs of the truncated bytes would output “100” bits

through the utilization of 2:1 multiplexers instead of being read from memory to save

power.

7.3 Circuit Level Frame Buffer Power Savings Analysis

Fig. 12 presents the power consumption of the proposed frame buffer in all eight

possible conditions, including seven truncation cases and one baseline case without bit

truncation. Specifically, the eight cases include: (i) No truncation with control signals T_Y

& T_U & T_V =’0’, (ii) Y vector truncation with T_Y=’1’, (iii) U vector truncation with

T_U=’1’, (iv) V vector truncation with T_V=’1’, (v) Y and U vectors truncation with T_Y

& T_U =’1’, (vi) U and V vectors truncation with T_U & T_V=’1’, (vii) V and Y vectors

truncation with T_V & T_Y =’1’, and (viii) YUV vectors truncation with T_Y & T_U &

T_V =’1’. As discussed in Chapter IV-B, for the truncated vectors, the three LSB will be

truncated to “100” to maximize power savings. All 8 truncation cases presented in Fig. 12

are tested in 6 ways: when written (‘0’ to ‘0’, ‘0’ to ‘1’, ‘1’ to ‘0’, ‘1’ to ‘1’) and when read

back (‘0’ & ‘1’). The power consumed in each case was calculated, and then the average

is presented.

40

At first, a random word was initialized with (A5A5A5)16, then the same memory

word was immediately read back with (F0F0F0)16, then all the ‘1’s and ‘0’s written and

read received the same priority in the power consumption calculations. The same word

consumed 3.90E-4 W power without any bit truncation. When the circuitry selected any

T_Y, T_U or T_V control option, where 3-LSBs were truncated from each one selected,

6.67% power was saved when compared against no bit truncation. When T_Y & T_U,

T_Y & T_V or T_U & T_V were selected, where 3-LSBs were truncated from each

selected byte, then 13.33% power was saved when compared against no bit truncation.

Finally, when T_Y, T_U, and T_V were selected for truncation, where 3-LSBs were

truncated from each selected byte, then 19.74% power was saved. The supply voltage for

this simulation was 1V, where the proposed frame buffer circuit can operate to

specification and had no faulty bit(s).

6.67% savings

13.33% savings

19.74% savings

No

Trun.

Y Byte

Trun.

U Byte

Trun.

V Byte

Trun.

(Y & U)

Bytes

Trun.

(Y & V)

Bytes

Trun.

(U & V)

Bytes

Trun.

(Y, U & V)

Bytes

Trun.

FIGURE 11. Power savings (one word) of the frame buffer circuit.

41

7.4 Video Visual Quality Comparisons

Fig. 13 shows visual frame comparisons for three selected videos with ROI between

the proposed method and [7]. The proposed technique enables significant visual quality

improvement as compared to [7]. Specifically, for the Foreman_cif video, due to the

truncated LSBs in [7], the man’s cheeks, forehead, and hat shadows experience noticeable

banding distortion, negatively affecting video quality. Alternatively, the proposed ROI-

aware technique effectively reduces the banding distortion and improves the visual quality.

Similarly, with [7], the mother_daughter_cif demonstrates banding distortion around the

cheeks and hair, and the carphone_qcif video suffers from discoloration around the cheeks

and chin. The introduced ROI awareness of the proposed technique effectively avoids

losing the quality of videos. Another observation from Fig 13 is that the proposed technique

achieves a much higher WPSNR value of all three videos. A more detailed analysis on

WPSNR will be provided in the next sub-chapter.

7.5 Objective Video Quality and Bit Truncation Analysis

Fig. 13 compares WPSNR values and the number of truncated bits of 60 videos

with ROI using the proposed technique to the state-of-the art [7]. As shown, the proposed

technique can enable 26.46% additional truncated bits as compared to [7]. Meanwhile, with

the ROI awareness, the proposed technique can effectively enhance the quality of the

majority of videos. On average, the proposed technique can increase the WPSNR values

by 20.17% videos, as compared to [7].

Further analyziong the impact of the MB variance characteristics (low, medium,

and high variance) on the effectiveness of the proposed technique. The results are shown

42

in Fig. 14. As can be seen, the WPSNR improvement strongly depends on the MB variance

of videos. Specifically, videos with high variance achieve the most significant quality

improvement using the proposed technique, with 47.31% WPSNR increase on average.

With the proposed technique, all videos with medium variance also demonstrate quality

improvement, with 13.74% WPSNR increase on average. However, the proposed

technique shows little video quality improvement for videos with low variance and even

results in minimal video quality degradation (with 1.75% WPSNR loss on average. This

suggests that the proposed technique is particularly effective for videos with high and

medium MB variance.

Analyzeing the results of 14 videos without ROI. As shown in Table 3, the proposed

technique can enable a significant number of truncated bits, with a minimal PSNR drop.

On average, 44.61% additional truncated bits can be achieved, with 3dB PSNR loss.

Finally, the average SSIM was calculated for all video streams without ROI to

verify the quality drop within each video. Table 4 verify that the quality loss within each

video was minimal. With the average loss in each video being 0.0223 for videos with ROI,

and 0.0167 for videos without ROI respectively. This is the expected result, as videos

without ROI experience color truncation in all regions of the video, thus the user is more

susceptible to noticing quality loss.

43

7.6 Video Level Power Savings Analysis

To compare the power effectiveness of the proposed ROI-aware technique to the

traditional memory design and the state-of-the art [7], a model was built to simulate the

power consumption of the memory for a video as:

 () ()
=

=
iN

j

k

i

i jP
N

VideoP
1

1

 ()3,2,1,0k (3)

where Ni is the total number of bytes for the video i, Pk(j) is the normalized power

consumption to store byte j with k truncated bits. For the proposed memory, k = 3; for the

traditional memory, k = 0; for the memory in [7], k = 0, 1, 2, or 3. For a fair comparison,

the normalized power consumption Pk(j) is based on the power consumption reported in

[9]. The results are listed in Fig. 13 and Table 3. As observed, the proposed technique only

consumes 83.79% and 76.56% total power on average for videos with ROI and videos

without ROI, respectively, as compared to the traditional memory. Also, the proposed

technique achieves 3.06% and 8.26% power savings for videos with ROI and videos

without ROI, respectively, as compared to [7]. It is worth mentioning that, our analysis

only considers the facial features as ROI of videos and integrating advanced ROI

identification algorithms will covert videos without ROI to videos with ROI, thereby

further increasing the effectiveness of our proposed technique to general videos.

44

F
o
re

m
an

_
c
if

 f
ra

m
e
 0

Proposed Method: WPSNR = 54.03 dB Previous Method [7]: WPSNR = 37.00 dB

m
o
th

e
r_

d
a
u

g
h
te

r_
c
if

 f
ra

m
e
 2

9
9

Proposed Method: WPSNR = 53.77 dB Previous Method [7]: WPSNR = 48.03 dB

c
a
rp

h
o

n
e
_
q
c
if

 f
ra

m
e
 2

4
8

Proposed Method: WPSNR = 54.52 dB Previous Method [7]: WPSNR = 48.04 dB

Figure 13. VISUAL COMPARISON OF SELECTED VIDEO FRAMES

45

7.7 Statistical Analysis

Various videos were analyzed using the proposed method. In-order to confirm that

the selected video analysis results are a representation of the full population of all videos,

a statistical analysis of the results was conducted. to verified the statistical analysis to

determine that the results are relevant across all videos not analyzed. Specifically, the

Pearson’s Chi-square test [37], which is also known as the Chi-Squared goodness-of-fit

test, is used in our analysis. The goodness-of-fit test checks whether the sample data is

likely to be from a specific theoretical distribution, and therefore represents the data

expected in the actual population. The idea is, if the sample data does fit an expected

distribution, then it shows that the sample data represents the full population of the video

data in existence. The statistical results will either reject or accept the working statement

called the null hypothesis, H0, which is the opposite of the alternative hypothesis, H1. To

reject or accept the null hypothesis, several methods exist, one of which is the Probability

value method i.e. P-Value method. The P-Value is the evidence against the null hypothesis,

i.e., the smaller the P-Value, the stronger the evidence that the null hypothesis should be

rejected. The P-Value method is based on a critical value, which is determined based on

the distribution. For example, if the data shows a normally distributed population – which

according to the statistical results shown later, this critical value is a z-score. The z-score

is a value that is then used to lookup the P-Value in a Standard Normal z-table, which is

used to then test the null hypothesis. If a P-Value is greater than an alpha or 𝛂 value of

0.10, then the statistical results are “not significant” and thus, the null hypothesis is

accepted. However, if the P-Value is less than or equal to 𝛂 values of 0.05 or 0.01, then the

46

results are “significant” or “highly significant” respectively, and thus, the null hypothesis

is rejected in favor of the alternative hypothesis. The rejection regions depend on the

confidence level that the results are significant, e.g., if a confidence level is 95%, then an

𝛂 value of 5% or 0.05 is chosen: 100% - 95%.

In our analysis, the null hypothesis for the Chi-Squared goodness-of-fit test, H0, is,

“For the given set of video data points, a specified distribution accurately represents the

data”, and therefore, the alternative hypothesis, H1, is, “For the given set of video data

points, a specified distribution does not accurately represent the data.” Hence, the goal of

the statistical analysis is to validate the null hypothesis and thus deduce that the specified

distribution would fit the data. To achieve this statistical result, P-values were calculated

for each data set – low, medium, and high variance – for WPSNR metrics, Power Savings,

and video noise introduced. The Chi-Squared goodness-of-fit test can only be used for data

put into classes (or bins); therefore, the data sets are put into histograms: Figs 14, 15, 16,

and 17 used the MathWave Technologies EasyFit software[38], to find the Chi-Squared

goodness-of-fit test, in order to determine the type of distribution. In the video analysis

results, the WPSNR metrics, power savings, and video noise were calculated and

introduced for all 74 videos for both the truncation method in [9] and the proposed method.

As well, the data was split into three sets referred to as low, medium, and high variance,

which corresponded to 1-bit, 2-bit, and 3-bit truncation videos using the truncation method

in [9], respectively. These data are what are refer to as video data points in our statistical

analysis.

47

Fig. 15 demonstrates how categorizing the data creates clear groupings when

comparing the truncation method in [7] to the proposed method. The figure shows three

distinct 3-parameter Weibull distributions that describe the quality improvement between

the proposed and [7]. These Weibull distributions are within the 95% confidence interval

required. Each distribution reports a P-value greater than 0.1, implying that we cannot

reject the null hypothesis and accept this distribution as a possible representation of the

data. Fig. 16 shows the power savings distribution for each video type as a 3-parameter

Weibull distribution. Power savings is reported as a percentage increase, using the total

number of bits truncated in each video and the power consumption shown in Fig. 12. All

of these distributions pass the 95%

confidence interval. 17 shows the probability of noise increase in a random video

stream. All distributions shown fall into the category of normal distributions with a 95%

confidence interval. Fig. 18 shows the probability of quality drop measured in SSIM for a

random video stream, with a 95% confidence interval that the probability lies within a

normal distirbution. The most notable differences between the Figure 16 and Figure 17 is

that the Medium and Low Variance videos show very little difference for the SSIM loss,

whereas the loss is very distinct in the PSNR distribtuion.

It was determined that because all videos are compared to themselves for

improvement, e.g., video after the proposed method is applied verses the original video,

video resolution has no statistical impact in the data set. Power Consumption will be

presented by improvement percentage, thus ignoring linear growth in watts saved in larger

scale videos. Similarly, it is statistically sound that a larger dataset is not needed to affirm

48

the distributions. As all distributions shown fall within the 95% confidence interval, there

is only a 5% chance that the data collected is far from the specified distribution.

In summary, videos categorized as high variance show the biggest improvements

in WPSNR quality, the most power saving by percentage, and introduce the least noise as

measured by PSNR and SSIM. With medium variance videos also saving on power

consumption, with a more noticeable drop in quality and increase in noise. As such, videos

classified as low variance often have little to gain using this method, and sometimes even

cause video quality degradation.

49

TABLE 3. Results of ROI Videos

Videos with ROI Truncated bits Normalized power consumption WPSNR (Alpha = 0.9)

Ref. [7] Proposed diff Ref. [7] Proposed diff Ref. [7] Proposed diff
akiyo_cif 30,412,800 32,922,081 8.25% 90.97% 93.55% -2.83% 57.53 55.14 -4.16%

claire_qcif 50,079,744 44,009,266 -12.12% 90.97% 94.76% -4.16% 57.61 57.10 -0.88%

dinner_1080p30 1,969,920,000 1,629,113,461 -17.30% 90.97% 95.07% -4.50% 57.32 58.21 1.56%

grandma_qcif 88,197,120 78,023,685 -11.53% 90.97% 94.73% -4.12% 57.57 57.21 -0.62%

intros_422_cif 36,495,360 43,295,433 18.63% 90.97% 92.93% -2.15% 57.45 55.15 -4.01%

Johnny_1280x720_60 553,881,600 456,595,131 -17.56% 90.97% 95.09% -4.52% 57.07 58.44 2.39%

KristenAndSara_1280x720_60 553,881,600 488,596,289 -11.79% 90.97% 94.74% -4.14% 56.99 57.37 0.65%

miss_am_qcif 15,206,400 10,966,364 -27.88% 90.97% 95.70% -5.20% 57.60 58.54 1.63%

news_cif 30,412,800 36,162,420 18.91% 90.97% 92.91% -2.13% 57.52 54.48 -5.27%

rush_hour_1080p25 1,036,800,000 1,134,324,798 9.41% 90.97% 93.48% -2.75% 57.49 55.78 -2.97%

sign_irene_cif 54,743,040 64,431,060 17.70% 90.97% 92.98% -2.21% 57.48 55.01 -4.29%

trevor_qcif 15,206,400 16,565,578 8.94% 90.97% 93.50% -2.78% 57.31 54.99 -4.05%

vidyo1_720p_60fps 553,881,600 597,801,678 7.93% 90.97% 93.57% -2.85% 57.54 56.05 -2.58%

west_wind_easy_1080p 1,181,952,000 1,086,498,282 -8.08% 90.97% 94.52% -3.90% 56.81 55.68 -1.99%

720p50_mobcal_ter 928,972,800 1,325,076,458 42.64% 86.60% 82.99% 4.17% 47.88 54.16 13.12%

720p50_shields_ter 928,972,800 1,245,591,004 34.08% 86.60% 84.01% 2.99% 47.69 54.48 14.25%

aspen_1080p 2,363,904,000 3,041,639,112 28.67% 86.60% 84.66% 2.24% 47.92 54.97 14.71%

blue_sky_1080p25 899,942,400 1,060,438,048 17.83% 86.60% 85.95% 0.75% 47.66 55.10 15.61%

bowing_cif 60,825,600 76,915,166 26.45% 86.60% 84.92% 1.94% 48.02 53.69 11.81%

bridge_close_cif 405,504,000 560,890,106 38.32% 86.60% 83.51% 3.57% 47.95 54.13 12.88%

carphone_qcif 77,451,264 88,390,034 14.12% 86.60% 86.39% 0.24% 48.04 54.52 13.48%

controlled_burn_1080p 2,363,904,000 2,937,098,762 24.25% 86.60% 85.18% 1.63% 47.96 55.18 15.06%

crew_4cif 121,651,200 172,691,140 41.96% 86.60% 83.07% 4.07% 47.54 53.54 12.61%

crowd_run_1080p50 2,073,600,000 3,005,452,078 44.94% 86.60% 82.72% 4.48% 47.42 53.55 12.93%

deadline_cif 278,581,248 334,134,316 19.94% 86.60% 85.70% 1.04% 48.02 54.48 13.45%

FourPeople_1280x720_60 1,107,763,200 1,318,759,148 19.05% 86.60% 85.80% 0.92% 47.96 55.12 14.94%

Lecture_1080P-412e 1,034,726,400 998,909,402 -3.46% 86.60% 88.49% -2.18% 48.07 57.01 16.91%

life_1080p30 3,421,440,000 4,187,455,252 22.39% 86.60% 85.41% 1.38% 48.04 54.99 14.46%

mother_daughter_cif 60,825,600 79,283,536 30.35% 86.60% 84.46% 2.47% 48.03 53.78 11.95%

pamphlet_cif 60,825,600 83,561,818 37.38% 86.60% 83.62% 3.44% 47.93 53.27 11.14%

paris_cif 215,930,880 302,557,572 40.12% 86.60% 83.29% 3.82% 47.88 53.81 12.40%

pedestrian_area_1080p25 1,555,200,000 1,749,179,384 12.47% 86.60% 86.59% 0.01% 48.05 55.59 15.70%

rush_field_cuts_1080p 2,363,904,000 3,080,806,912 30.33% 86.60% 84.46% 2.47% 47.86 54.09 13.01%

salesman_qcif 91,035,648 127,208,586 39.73% 86.60% 83.34% 3.77% 47.97 53.74 12.03%

station2_1080p25 1,298,073,600 1,803,902,208 38.97% 86.60% 83.43% 3.66% 47.79 53.71 12.39%

students_cif 204,171,264 283,317,790 38.76% 86.60% 83.45% 3.63% 47.92 53.64 11.93%

sunflower_1080p25 2,073,600,000 2,874,084,316 38.60% 86.60% 83.47% 3.61% 47.81 53.79 12.52%

suzie_qcif 30,412,800 31,039,198 2.06% 86.60% 87.83% -1.42% 48.07 55.79 16.07%

touchdown_pass_1080p 2,363,904,000 2,715,649,830 14.88% 86.60% 86.30% 0.35% 47.94 55.38 15.52%

tractor_1080p25 2,861,568,000 4,031,161,306 40.87% 86.60% 83.20% 3.92% 47.50 53.67 12.99%

vidyo3_720p_60fps 1,107,763,200 1,368,042,822 23.50% 86.60% 85.27% 1.53% 48.11 54.54 13.36%

vidyo4_720p_60fps 1,107,763,200 1,206,225,090 8.89% 86.60% 87.02% -0.48% 48.13 55.78 15.89%

720p50_parkrun_ter 1,393,459,200 2,074,332,336 48.86% 82.11% 73.37% 10.64% 36.71 53.47 45.63%

720p5994_stockholm_ter 1,669,939,200 2,434,415,832 45.78% 82.11% 73.93% 9.97% 35.49 53.38 50.41%

ducks_take_off_1080p50 3,110,400,000 4,661,102,586 49.86% 82.11% 73.20% 10.86% 36.36 53.30 46.61%

football_422_cif 109,486,080 161,366,445 47.39% 82.11% 73.64% 10.32% 36.54 53.96 47.67%

football_cif 79,073,280 114,873,738 45.28% 82.11% 74.02% 9.86% 36.58 53.79 47.03%

foreman_cif 91,238,400 123,714,882 35.60% 82.11% 75.75% 7.75% 37.01 54.04 46.01%

hall_monitor_cif 91,238,400 136,539,606 49.65% 82.11% 73.23% 10.82% 36.66 53.56 46.12%

harbour_4cif 182,476,800 268,811,991 47.31% 82.11% 73.65% 10.31% 36.34 53.91 48.34%

ice_4cif 145,981,440 183,650,610 25.80% 82.11% 77.50% 5.62% 35.22 52.91 50.21%

mobile_calendar_422_cif 109,486,080 163,476,849 49.31% 82.11% 73.29% 10.74% 36.37 53.06 45.88%

old_town_cross_420_720p50 1,382,400,000 2,060,977,467 49.09% 82.11% 73.33% 10.69% 36.44 53.60 47.07%

riverbed_1080p25 1,555,200,000 2,285,697,270 46.97% 82.11% 73.71% 10.23% 36.62 53.29 45.54%

silent_cif 91,238,400 130,669,137 43.22% 82.11% 74.38% 9.41% 36.70 53.46 45.64%

soccer_4cif 182,476,800 249,118,389 36.52% 82.11% 75.58% 7.96% 36.49 53.36 46.25%

tennis_sif 45,619,200 67,173,204 47.25% 82.11% 73.66% 10.29% 36.27 54.29 49.69%

tt_sif 34,062,336 50,343,861 47.80% 82.11% 73.56% 10.41% 36.16 54.24 49.98%

vtc1nw_422_ntsc 109,486,080 146,642,766 33.94% 82.11% 76.04% 7.39% 36.67 53.74 46.55%

washdc_422_ntsc 109,486,080 163,223,193 49.08% 82.11% 73.33% 10.69% 36.48 53.62 46.99%

AVE 26.46% 86.27% 83.79% 3.06% 20.17%

50

TABLE 4. RESULTS OF NON-ROI VIDEOS

Videos without ROI Truncated bits Normalized power consumption PSNR loss (dB)

Ref. [7] Proposed diff Ref. [7] Proposed diff Ref. [7] Proposed diff
bus_cif 30,412,800 43,042,560 41.53% 86.60% 82.47% 4.77% 48.15 40.82 7 dB

galleon_422_cif 72,990,720 102,643,456 40.63% 86.60% 83.23% 3.89% 48.20 40.72 7 dB

highway_cif 405,504,000 569,610,752 40.47% 86.60% 83.25% 3.87% 48.24 41.14 7 dB

tempete_cif 52,715,520 77,495,808 47.01% 86.60% 83.12% 4.01% 48.12 40.81 7 dB

bridge_far_cif 638,972,928 958,070,016 49.94% 82.11% 73.18% 10.88% 42.56 40.60 2 dB

city_4cif 182,476,800 271,175,040 48.61% 82.11% 73.42% 10.59% 42.48 40.84 2 dB

coastguard_cif 91,238,400 120,874,752 32.48% 82.11% 76.30% 7.08% 42.48 41.07 1 dB

container_cif 91,238,400 125,445,888 37.49% 82.11% 75.41% 8.17% 42.45 41.01 1 dB

flower_cif 76,032,000 107,439,360 41.31% 82.11% 74.72% 9.00% 42.50 40.93 2 dB

flower_garden_422_cif 109,486,080 162,798,336 48.69% 82.11% 73.40% 10.61% 42.57 40.62 2 dB

garden_sif 34,974,720 52,448,256 49.96% 82.11% 73.18% 10.88% 42.52 40.73 2 dB

husky_cif 76,032,000 111,882,240 47.15% 82.11% 73.68% 10.27% 42.48 40.91 2 dB

mobile_cif 91,238,400 136,164,864 49.24% 82.11% 73.31% 10.73% 42.57 40.70 2 dB

waterfall_cif 79,073,280 118,609,920 50.00% 82.11% 73.17% 10.89% 42.40 40.63 2 dB

AVE 44.61%

83.40% 76.56% 8.26%

 3dB

51

Low Variance Videos: Average = -1.75%

Medium Variance Videos: Average = 13.74%

High Variance Videos: Average = 47.31%

W
P

S
N

R
 I

m
p
ro

v
em

en
t

(%
)

Videos

FIGURE 14. Impact of the video content characteristics on the effectiveness of the proposed technique, compared to

old technique.

52

WPSNR (dB)

D
en

si
ty

 (
%

)

Data Set Number of Samples P-Value
High Variance 28 0.4982
Medium Variance 32 0.8094
Low Variance 14 0.3078

FIGURE 15. Histogram of quality Improvement distributions. Number of data points and P-value shown,

between the truncation method in [7] and the proposed method. All distributions are 3-parameter

Weibull distributions that fall within a 95% Confidence Interval.

Power Improvement (%)

D
en

si
ty

 (
%

)

Data Set Number of Samples P-Value
High Variance 28 0.2450
Medium Variance 32 0.2296
Low Variance 14 0.3390

FIGURE 16 Histogram of power savings, measured in percentage improvement, between the truncation

method in [7] and the proposed method. All distributions are 3-parameter Weibull distributions that fall

within a 95% Confidence Interval.

53

PSNR (dB)

D
en

si
ty

 (
%

)

Data Set Number of Samples P-Value
High Variance 28 0.6849
Medium Variance 32 0.7879
Low Variance 14 0.5062

FIGURE 17. Histogram of PSNR noise increase, between the truncation method in [7] and the proposed

method. All distributions are Normal Distributions that fall within a 95% Confidence Interval.

FIGURE 18. Histogram of SSIM noise increase, measured in between the truncation method in [7] and the

proposed method. All distributions are 3-parameter Weibull distributions that fall within a 95%

Confidence Interval.

54

CHAPTER VIII

COMPARISON WITH PRIOR WORK

Table 5 compares this work against state-of-the art low-power video memory designs. As

shown, the proposed memory enables more-flexible run-time power-quality adaptation

according to video content characteristics of each frame, while considering the important

region within one frame from a perceptual point of view.

8.1 Compared to State-of-the-Art Approximate Video Memories

To enhance the power efficiency of video storage, approximate video-specific

memories have been developed to store the MSBs of video data in more robust memory

bitcells, such as more-than-6T SRAM bitcells [8, 9], upsized 6T [10], which usually brings

implementation overhead. In order to minimize the implementation cost, those techniques

typically store LSBs in error-prone but area-efficient bitcells (e.g., basic 6T [8, 10]),

thereby leading to a tolerable output quality degradation with power reduction. However,

for those techniques, the achieved video quality is fixed during design-time, so they lack

of adaptation at run-time to meet different requirements of a variety of video applications.

55

8.2 Compared to State-of-the-Art Adaptive Video SRAM

To enable run-time power-quality adaptation, recently, several video SRAM

designs have been presented, such as data-dependent memory [39], SRAM with selective

hamming (15,11) [11], and SRAM with error-correction-code (ECC) adaptation [40]. The

data-dependent SRAM consists of 10T bitcells and associated conditional pre-charge

circuitry to adapt to the stored data’s statistical dependencies. SRAM with selective

hamming (15,11) [11] can switch between no ECC and hamming (15,11) based on the

quality targets of the applications. The SRAM with ECC adaptation [40] supports three

power-quality tradeoff levels, hamming code-74, hamming code-1511, and no ECC.

However, those memory designs focus on hardware-level quality optimization, without

considering the viewer’s experience, and therefore they may cause large and inefficient

design margins.

TABLE 5 COMPARISION WITH PRIOR WORK

6T/8T

SRAM

[8]

Heterogeneous

sizing SRAM

[10]

Split-

data

SRAM

[9]

Data-

dependent

SRAM [39]

SRAM with

hamming

[11]

SRAM

with ECC

[40]

Viewer-

aware

memories

[4, 5, 6]

Content-

aware

memory

[7]

This

Work

Quality

runtime

adaptation

No No Yes Yes Yes Yes Yes Yes Yes

Considering

viewer’s

experience

No No No No No No Yes Yes Yes

Video content

adaptation
No No No No No No No Yes Yes

ROI awareness No No No No No No No No Yes

Induced bitcell

area overhead

Yes

(6T and

8T)

Yes

(Larger 6T)

Yes

(8T and

10T)

No

Yes

(10T)

No No No No

56

8.3 Compared to State-of-the-Art Viewer Aware Video Memory

By introducing viewer’s experience to video memory design process, a study was

conducted that showed that memory failures can be leveraged to improve video system

power efficiency without sacrificing viewer's experience [4, 5, 6]. The basic idea is that in

high noise-tolerance viewing contexts with high-illuminance levels, memory failures are

intentionally introduced by adaptively disabling LSBs of the video data stored in memories.

This line of studies illustrates a new dimension of power savings for hardware design

through the introduction of memory failures. However, those designs did not consider the

variance of different videos and they are not sufficient to support videos with various

content characteristics.

8.4 Compared to State-of-the-Art Content-Aware Video Memory

The content-aware SRAM presented in [7] is another recent viewer-aware memory

design that can enable run-time power-quality adaptation based on the video content

characteristics of the applications. However, it adapts the number of truncated LSBs of

video data based on the average plain macroblock percentage of an entire video sample, so

it is not suitable for the videos with frame-level difference. Figure 13 also compares the

video output quality of the proposed memory and memory presented in [7]. As shown, the

proposed memory enables more truncated bits and more power savings.

57

8.5 Comparison Summary

In the developed video memory technique, the ROI is identified and utilized to

enable intelligent tradeoff between video quality and power efficiency of video storage in

mobile devices. Accordingly, the proposed memory enables run-time quality adaptation

with significantly reduced pixel bits and further power savings, as compared to existing

techniques. To the best of my knowledge, this is the first work that can adapt the video

storage to frame-level video content and important region from viewer’s perceptual

experience point of view. The proposed ROI-aware video memory is orthogonal to existing

viewer-aware or data-dependent schemes and therefore can be simultaneously utilized to

further optimize power efficiency.

58

CHAPTER IX

SUMMARY AND FUTURE WORK

9.1 Thesis Summary

In this thesis, a video content-adaptable Region-of-Interest (ROI)-aware video storage

technique to optimize the power efficiency was presented. The ROI of videos is identified

and protected to preserve the video quality, while other regions are truncated with 3-LSB

truncation for power savings. To support the proposed method, a low-power frame buffer

was developed that implemented 3-LSB truncation which enabled runtime quality and

power adaptation. The results show that the proposed technique only uses 83.79% and

76.56% of the power on average for videos with ROI and without ROI respectively, as

compared to the traditional memory and the state-of-the art [9], respectively. Meanwhile,

the proposed technique can increase the quality (i.e. WPSNR values) by 20.17% on average

for the videos with ROI and 26.46% additional truncated bits as compared to [9]. For the

videos without ROI, the proposed technique can realize 44.61% additional truncated bits

and 8.26% power savings as compared to [9], while maintaining a healthy above 40dB

PSNR and 0.95 SSIM. This thesis focuses on the facial features as ROI of videos;

59

9.2 Future Work

Future investigations would include extensions of ROI, finding a general solution for ROI

extraction for all video types will expand the fesability of this technology to all types of

video streams. The possibility of using multiple ROI extraction algorithms to determin

various types of ROIs will also be explored. Additionally, psychological experiments will

be conducted to access the visual experience of viewers for hardware optimization. Another

point of investigation will be to adapt the transmission protocol to include useful

information within the bits that have been truncated, similar to many Steganography

techniques.

60

REFERENCES

[1] [Online]. Available: https://www.adcolony.com/blog/2019/03/05/video-on-track-to-

be-nearly-80-of-mobile-data-traffic-by-2022/.

[2] T. Liu, S. Wang, W. Lee, J. Yang, K. Hou, Lee and C, "A 125 uW, fully scalable

MPEG-2 and H.264/AVC video decoder for mobile applications," IEEE J. Solid-

State Circuits, vol. 42, no. 1, p. 161–169, 2007.

[3] F. Sampaio, M. Shafique, B. Zatt, S. Bampi and J. Henkel, "Energy-Efficient

Architecture for Advanced Video Memory," in IEEE/ACM International

Conference on Computer-Aided Design (ICCAD), 2014.

[4] D. Chen, X. Wang, J. Wang and N. Gong, "VCAS: Viewing context aware power-

efficient mobile video embedded memory," in 28th IEEE Internatonal System-on-

Chip Conference (SOCC), Beijing, 2015.

[5] D. Chen, J. Edstrom, L. Yang, M. E. McCourt, J. Wang and N. Gong, "Viewer-

Aware Intelligent Efficient Mobile Video Embedded Memory," IEEE Trans. Very

Large Scale Integr. (VLSI) Syst., vol. 26, pp. 684-696, 2018.

[6] J. Edstrom, D. Chen, J. Wang, H. Gu, E. A. Vazquez, M. E. McCourt and N. Gong,

"Luminance-Adaptive Smart Video Storage System," in International Symposium

on Circuits and Systems (ISCAS), 2016.

[7] J. Edstrom, Y. Gong, A. Haidous, B. Humphrey, M. E. McCourt, Y. Xu, J. Wang

and N. Gong, "Content-Adaptive Memory for Viewer-Aware Energy-Quality

Scalable Mobile Video Systems," IEEE Access,, vol. 7, pp. 47479-47493, 2019.

[8] I. Chang, D. Mohapatra and K. Roy, "A Priority-Based 6T/8T Hybrid SRAM

Architecture for Aggressive Voltage Scaling in Video Applications," IEEE. Trans.

Circuits and Systems for Video Technology, pp. 101-112, 2011.

[9] N. Gong, S. Jiang, A. Challapalli, S. Fernandes and R. Sridhar, "Ultra-Low Voltage

Split-data-aware Embedded SRAM for Mobile Video Applications," IEEE Trans.

on Circuits and Systems II, vol. 59, no. 12, pp. 883-887, 2012.

[10] J. Kwon, I. Lee and J. Park, "Heterogeneous SRAM Cell Sizing for Low Power

H.264 Applications," IEEE Trans. on Circuits and Systems I,, vol. 99, no. 2, pp. 1-

10, 2012.

[11] F. Frustaci, M. Khayatzadeh, D. Blaauw, D. Sylvester and M. Alioto, "SRAM for

Error-Tolerant Applications With Dynamic Energy-Quality Management in 28nm

CMOS," IEEE J. Of Solid-State Circuits, vol. 50, no. 5, pp. 1310-1323, 2015.

61

[12] A. Kazimirsky, A. Teman, N. Edri and A. Fish, "A 0.65-V, 500-MHz Integrated

Dynamic and Static RAM for Error Tolerant Applications," IEEE Trans. on Very

Large Scale Integration (VLSI) Systems, vol. 25, no. 9, pp. 2411-2418, 2017.

[13] M.-C. Chi, C.-H. Yeh and M.-J. Chen, "Robust Region-of-Interest Determination

Based on User Attention Model Through Visual Rhythm Analysis," IEEE Trans. on

Circuits and Systems on Vodeo Technology, vol. 19, no. 7, pp. 1025-1038, 2009.

[14] " YouTube-8M Dataset.," 2017. [Online]. Available: https://research.

google.com/youtube8m/ .

[15] I. Himawan, W. Song and D. Tjondronegoro, "Automatic Region-of-Interest

Detection and Prioritisation for Visually Optimised," in IEEE Workshop on

Applications of Computer Vision (WACV), 2013.

[16] Y. Huo, X. Wang, P. Zhang, J. Jiang and L. Hanzo, "Unequal Error Protection

Aided Region of Interest Aware Wireless Panoramic Video," IEEE Access, vol. 7,

p. 2019, 80262-80276.

[17] Y.-F. Ma, X.-S. Hua, L. Lu and H.-J. Zhang, "A generic framework of user

attention model and its application in video summarization," IEEE Trans.

Multimedia, vol. 7, no. 5, p. 907–919, 2005.

[18] I. Culjak, D. Abram, T. Pribanic, H. Dzapo and M. Cifrek, "A brief introduction to

OpenCV," in 35th International Convention MIPRO, Opatija, 2012.

[19] X.-W. Tang, X.-L. Huang, F. Hu and Q. Shi, "Human-Perception-Oriented Pseudo

Analog Video Transmissions With Deep Learning," IEEE Transactions on

Vehicular Technology, 2020.

[20] M. Shafique, "Application-guided power-efficient fault tolerance for H.264 context

adaptive variable length coding," IEEE Trans. Comput., vol. 66, no. 4, pp. 560-574,

2017.

[21] M. Shafique, B. Molkenthin and J. Henkel, "An HVS-based adaptive computational

complexity reduction scheme for H.264/AVC video encoder using prognostic early

mode exclusion," in Design, Automation & Test in Europe Conference &

Exhibition, 2010.

[22] Y. Liang, H. Wang and K. El-Maleh, "Design and implementation of content-

adaptive background skipping for wireless video," IEEE International Symposium

on Circuits and Systems, pp. 4-7, 2006.

[23] M. Khan, S. Chakraborty, R. Astya, S. Khepra, “Face Detection and Recognition

Using OpenCV,” IEEE International Conference on Computting, Communication,

and Intelligent Systems (ICCCIS), pp 116-119, 2019, .

[24] “Open_Images_v4” [Online] Available:

https://www.tensorflow.org/datasets/catalog/open_images_v4.

[25] R. P. Foundation, "Raspberry Pi Documentation," [Online]. Available:

https://www.raspberrypi.org/documentation/.

62

[26] Xilinx, "Z-turn Board (with Zynq-7020)," [Online]. Available:

https://www.xilinx.com/products/boards-and-kits/1-571ww1.html. [Accessed 01 11

2020].

[27] MAGEWELL, "USB Capture Utility V3," [Online]. Available:

http://www.magewell.com/usb-capture-utility-v3. [Accessed 01 11 2020].

[28] Ylonen, T. Rinne and Tatu, "scp(1) - Linux man page," 14 04 2013. [Online].

Available: https://linux.die.net/man/1/scp. [Accessed 01 11 2020].

[29] Q. Bin, "Osen Logic OSD10 h.264 decoder," [Online]. Available:

http://bbs.eetop.cn/viewthread.php?tid=628991. [Accessed 2018].

[30] I. E. Richardson, The H.264 Advanced Video Compression Standard (Second

Edition), West Sussex, UK: John Wiley & Sons, Ltd, 2010.

[31] Y. Wang, S. Inguva and B. Adsumilli, "YouTube UGC Dataset for Video

Compression Research," in 2019 IEEE 21st International Workshop on Multimedia

Signal Processing (MMSP), Kuala Lumpur, Malaysia, 2019.

[32] "Xiph.org Video Test Media [derf's collection]," Xiph, [Online]. Available:

https://media.xiph.org/video/derf/. [Accessed 18 October 2020].

[33] Z. Wang, A. C. Bovik, H. R. Sheikh, Simoncelli and E. P., "Image quality

assessment: from error visibility to structural similarity," IEEE Trans. on Image

Processing, vol. 13, no. 4, pp. 600-612, 2004.

[34] J. Erfurt, C. R. Helmrich, S. Bosse, H. Schwarz, D. Marpe and T. Wiegand, "A

Study of the Perceptually Weighted Peak Signal-To-Noise Ratio (WPSNR) for

Image Compression," in 2019 IEEE International Conference on Image Processing

(ICIP), Taipei, Taiwan, 2019 .

[35] Xilinx, "Vivado Design Suite," 2019. [Online]. Available:

https://www.xilinx.com/products/design-tools/vivado.html.

[36] "FreePDK45," [Online]. Available:

https://www.eda.ncsu.edu/wiki/FreePDK45:Contents.

[37] K. Pearson, "Chapter 56 - Karl Pearson, paper on the chi square goodness of fit test

(1900)," in Landmark Writings in Western Mathematics 1640-1940, ELSEVIER,

2005, pp. 724-731.

[38] MathWave Technologies, EasyFit Software, 2015.

[39] C. Duan, A. J. Gotterba, M. E. Sinangil and A. P. Chandrakasan, "Energy-Efficient

Reconfigurable SRAM: Reducing Read Power Through Data Statistics," IEEE

Journal Of Solid-State Circutis, vol. 52, no. 10, pp. 2703-2711, 2017.

[40] H. Das, A. A. Haidous, S. C. Smith and N. Gong, "Flexible Low-Cost Power-

Efficient Video Memory with ECC-Adaptation," IEEE Transactions on Very Large

Scale Integration (VLSI) Systems, 2021.

63

APPENDICES

Appendix A1: ROI Video Metrics (cont. 1/2)

FIGURE A1. ROI Video Metrics for all videos presented in paper. This is the raw results of each video using

the proposed and old circuitry [7]. Videos with a WPSNR of ‘nan’ are videos that do not contain a single

ROI.

Video Metrics

For Videos With ROI

OLD CIRCUIT (OC) [7] NEW CIRCUIT (NC)

SSIM PSNR WPSNR SSIM PSNR WPSNR
akiyo_cif 0.9982 52.89 57.53 0.9703 41.96 55.14

claire_qcif 0.9981 53.36 57.61 0.9792 42.77 57.10

dinner_1080p30 0.9982 52.78 57.32 0.9766 43.28 58.21

grandma_qcif 0.9984 52.91 57.57 0.9774 43.03 57.21

intros_422_cif 0.9985 52.89 57.45 0.9686 41.71 55.15

Johnny_1280x720_60 0.9980 52.96 57.07 0.9780 43.29 58.44

KristenAndSara_1280x720_60 0.9980 52.91 56.99 0.9745 42.75 57.37

miss_am_qcif 0.9978 52.90 57.60 0.9762 43.88 58.54

news_cif 0.9985 52.90 57.52 0.9710 41.40 54.48

rush_hour_1080p25 0.9980 52.88 57.49 0.9621 42.03 55.78

sign_irene_cif 0.9983 52.89 57.48 0.9703 41.69 55.01

trevor_qcif 0.9986 52.53 57.31 0.9729 41.66 54.99

vidyo1_720p_60fps 0.9981 52.90 57.54 0.9658 42.12 56.05

west_wind_easy_1080p 0.9987 51.70 56.81 0.9760 41.90 55.68

720p50_mobcal_ter 0.9945 48.11 47.88 0.9672 41.14 54.16

720p50_shields_ter 0.9951 48.11 47.69 0.9713 41.23 54.48

aspen_1080p 0.9936 48.15 47.92 0.9692 41.38 54.97

blue_sky_1080p25 0.9929 48.11 47.66 0.9749 41.70 55.10

bowing_cif 0.9922 47.97 48.02 0.9678 41.24 53.69

bridge_close_cif 0.9962 48.36 47.95 0.9667 41.11 54.13

carphone_qcif 0.9931 48.10 48.04 0.9709 41.74 54.52

controlled_burn_1080p 0.9939 48.16 47.96 0.9690 41.50 55.18

crew_4cif 0.9938 48.13 47.54 0.9648 40.84 53.54

crowd_run_1080p50 0.9957 48.13 47.42 0.9687 40.84 53.55

deadline_cif 0.9951 48.15 48.02 0.9791 41.75 54.48

FourPeople_1280x720_60 0.9920 48.10 47.96 0.9660 41.65 55.12

Lecture_1080P-412e 0.9900 48.15 48.07 0.9665 42.64 57.02

life_1080p30 0.9938 48.25 48.04 0.9680 41.51 54.99

mother_daughter_cif 0.9925 47.99 48.03 0.9642 41.14 53.78

pamphlet_cif 0.9940 47.92 47.93 0.9657 40.84 53.27

paris_cif 0.9960 48.15 47.88 0.9773 41.04 53.81

pedestrian_area_1080p25 0.9920 48.43 48.05 0.9632 41.88 55.59

rush_field_cuts_1080p 0.9932 48.14 47.86 0.9634 41.12 54.09

salesman_qcif 0.9946 48.13 47.97 0.9657 41.03 53.74

station2_1080p25 0.9923 48.14 47.79 0.9550 40.92 53.71

students_cif 0.9941 48.14 47.92 0.9701 40.98 53.64

sunflower_1080p25 0.9921 48.13 47.81 0.9602 41.03 53.79

suzie_qcif 0.9918 48.12 48.07 0.9709 42.57 55.79

touchdown_pass_1080p 0.9910 48.14 47.94 0.9617 41.95 55.38

tractor_1080p25 0.9936 48.11 47.50 0.9626 40.96 53.67

vidyo3_720p_60fps 0.9911 48.12 48.11 0.9630 41.35 54.54

vidyo4_720p_60fps 0.9916 48.19 48.13 0.9686 42.11 55.78

720p50_parkrun_ter 0.9909 42.47 36.71 0.9727 40.80 53.47

720p5994_stockholm_ter 0.9800 42.47 35.49 0.9638 40.77 53.38

ducks_take_off_1080p50 0.9894 42.49 36.36 0.9760 40.72 53.30

football_422_cif 0.9832 42.49 36.54 0.9709 40.96 53.96
football_cif 0.9818 42.44 36.58 0.9703 40.95 53.79

foreman_cif 0.9800 42.48 37.01 0.9695 41.32 54.04

hall_monitor_cif 0.9743 42.50 36.66 0.9568 40.84 53.56

harbour_4cif 0.9946 42.50 36.34 0.9790 41.00 53.91

ice_4cif 0.9703 41.94 35.22 0.9619 40.66 52.91

mobile_calendar_422_cif 0.9915 42.46 36.37 0.9806 40.59 53.06

64

Appendix A1: ROI Video Metrics (CONT. 2/2)

Video Metrics

For Videos With ROI

OLD CIRCUIT (OC) [7] NEW CIRCUIT (NC)

SSIM PSNR WPSNR SSIM PSNR WPSNR
sunflower_1080p25 0.9921 48.13 47.81 0.9602 41.03 53.79

suzie_qcif 0.9918 48.12 48.07 0.9709 42.57 55.79

touchdown_pass_1080p 0.9910 48.14 47.94 0.9617 41.95 55.38

tractor_1080p25 0.9936 48.11 47.50 0.9626 40.96 53.67

vidyo3_720p_60fps 0.9911 48.12 48.11 0.9630 41.35 54.54

vidyo4_720p_60fps 0.9916 48.19 48.13 0.9686 42.11 55.78

720p50_parkrun_ter 0.9909 42.47 36.71 0.9727 40.80 53.47

720p5994_stockholm_ter 0.9800 42.47 35.49 0.9638 40.77 53.38

ducks_take_off_1080p50 0.9894 42.49 36.36 0.9760 40.72 53.30

football_422_cif 0.9832 42.49 36.54 0.9709 40.96 53.96

football_cif 0.9818 42.44 36.58 0.9703 40.95 53.79

foreman_cif 0.9800 42.48 37.01 0.9695 41.32 54.04

hall_monitor_cif 0.9743 42.50 36.66 0.9568 40.84 53.56

harbour_4cif 0.9946 42.50 36.34 0.9790 41.00 53.91

ice_4cif 0.9703 41.94 35.22 0.9619 40.66 52.91

mobile_calendar_422_cif 0.9915 42.46 36.37 0.9806 40.59 53.06

old_town_cross_420_720p50 0.9751 42.48 36.44 0.9583 40.87 53.60

riverbed_1080p25 0.9765 42.48 36.62 0.9575 40.71 53.29

silent_cif 0.9820 42.48 36.70 0.9689 40.94 53.46

soccer_4cif 0.9783 42.49 36.49 0.9667 40.93 53.36

tennis_sif 0.9796 42.50 36.27 0.9676 41.08 54.29

tt_sif 0.9805 42.48 36.16 0.9677 41.09 54.24

vtc1nw_422_ntsc 0.9774 42.37 36.67 0.9678 41.09 53.74

washdc_422_ntsc 0.9883 42.40 36.48 0.9774 40.91 53.62

tempete_cif 0.9966 48.12 nan 0.9779 40.81 nan

galleon_422_cif 0.9956 48.20 nan 0.9707 40.72 nan

highway_cif 0.9925 48.24 nan 0.9536 41.14 nan

bus_cif 0.9970 48.15 nan 0.9725 40.82 nan

bridge_far_cif 0.9660 42.56 nan 0.9453 40.60 nan

city_4cif 0.9869 42.48 nan 0.9702 40.84 nan

coastguard_cif 0.9877 42.48 nan 0.9735 41.07 nan

container_cif 0.9766 42.45 nan 0.9669 41.01 nan

flower_cif 0.9929 42.50 nan 0.9844 40.93 nan

flower_garden_422_cif 0.9894 42.57 nan 0.9782 40.62 nan

garden_sif 0.9911 42.52 nan 0.9813 40.73 nan

husky_cif 0.9949 42.48 nan 0.9784 40.91 nan

mobile_cif 0.9925 42.57 nan 0.9855 40.70 nan

waterfall_cif 0.9883 42.40 nan 0.9775 40.63 nan

65

Appendix A2: Main.py (cont. 1/2)

FIGURE A2. Main.py, This Main Function calls all other scripts. Written by William Oswald, using Python

2.7. The input is a YUV422 video and produces as outputs the digital results of the proposed and previous

circuits, calculates PSNR, SSIM and WPSNR for both. It also saves each from of the output video as a .png

file.

#written by Liam Oswald
import struct
import sys
import math
import pickle
import cv2
import numpy as np
from tqdm import tqdm
import os
from skimage.measure import compare_ssim
import Macroblock
import OpenCVROI
import MBTruncation
import FlatTruncation
import ROIMBTruncation
import pulldatatocsv
import WeightedPSNR

def FlatTruncateAmountViaFile(FileName):
 fin = open(str(FileName), 'r')
 list = str(fin.read()).split(',')
 MBpercent = list[19]
 fin.close()

 if float(MBpercent) >= 21.5571:
 i = 1
 elif float(MBpercent) >= 1.96405:
 i = 2
 else:
 i = 3
 return i

VideoRepositoryDir = '/home/student/Desktop/Duplicate/vid'
#VideoRepositoryDir = '/home/student/Desktop/Duplicate/D3/Videos'
#VideoRepositoryDir = '/home/student/PycharmProjects/H264Project/Videos'
ResultsRepositoryDir = '/home/student/PycharmProjects/H264Project/Results'
#here

PixelWidth = 1920
PixelHight = 1080
FPS = 25
FrameCount = 600

PixelWidth = 352
PixelHight = 288
FPS = 24
FrameCount = 300

def main():
 VideoRepository = os.listdir(VideoRepositoryDir)
 print "Videos To Process: ", VideoRepository

 for Video in VideoRepository:
 VideoIn = str(VideoRepositoryDir + '/' + Video)
 ResultsOut = str(ResultsRepositoryDir + '/' + Video[:-4])
 cap = Macroblock.VideoCaptureYUV(VideoIn, (PixelHight, PixelWidth))
 FrameCount = cap.framecount

 temp_folder = os.path.join(os.getcwd(), 'temp')

 frames_path = os.path.join(os.getcwd(), 'Results', str(VideoIn[:-4].rsplit('/', 1)[-
1]) + "/frames/")
 MBframe_path = os.path.join(os.getcwd(), 'Results', str(VideoIn[:-4].rsplit('/', 1)[-
1]) + "/MBTruncation_Results/")

66

Appendix A2: Main.py (cont. 2/2)

def main():
 VideoRepository = os.listdir(VideoRepositoryDir)
 print "Videos To Process: ", VideoRepository

 for Video in VideoRepository:
 VideoIn = str(VideoRepositoryDir + '/' + Video)
 ResultsOut = str(ResultsRepositoryDir + '/' + Video[:-4])
 cap = Macroblock.VideoCaptureYUV(VideoIn, (PixelHight, PixelWidth))
 FrameCount = cap.framecount

 temp_folder = os.path.join(os.getcwd(), 'temp')

 frames_path = os.path.join(os.getcwd(), 'Results', str(VideoIn[:-4].rsplit('/', 1)[-
1]) + "/frames/")
 MBframe_path = os.path.join(os.getcwd(), 'Results', str(VideoIn[:-4].rsplit('/', 1)[-
1]) + "/MBTruncation_Results/")

 cap = Macroblock.VideoCaptureYUV(VideoIn, (PixelHight, PixelWidth))
 ROIMBTruncation.OpenCVMBTruncate(cap, FPS, ResultsOut, 1.25)
 ROIMBT_dir = str(ResultsOut + '/ROIMBTruncation/' + str(1.25) +
'/ROIMBTruncation_output.yuv')
 Macroblock.Main(VideoIn, ROIMBT_dir, cap.width, cap.height, str(ResultsOut +
'/ROIMBTruncation/' + str(1.25) + '/ROIMBTruncation_output/'))

 n = FlatTruncateAmountViaFile(str(ResultsOut + '/ROIMBTruncation/' + str(1.25) +
'/ROIMBTruncation_output/' + Video[:-4] + '.csv'))

 cap = Macroblock.VideoCaptureYUV(VideoIn, (PixelHight, PixelWidth))
 FlatTruncation.FlatTruncate(cap, str(ResultsOut + '/flat/'), FPS, n)
 Macroblock.Main(VideoIn, str(ResultsOut + '/flat/' + str(n) + '_OUTPUT.yuv'),
cap.width, cap.height, str(ResultsOut + '/flat/' + str(n) + '/'))

 Old_method_Frame = str(ResultsOut + '/flat/' + str(n) + '_OUTPUT.yuv')
 WeightedPSNR.Main(VideoIn, ROIMBT_dir, Old_method_Frame, cap.width, cap.height,
str(ResultsOut + '/WeightedPSNR/' + str(1.25) + '/'), alpha=0.90)

 pullFile = '/home/student/PycharmProjects/H264Project/Results/' + Video[:-4] + '/'
 pulldatatocsv.main(pullFile, PixelWidth, PixelHight, n, FrameCount)

 cap.release()

if __name__ == "__main__":
 main()

67

Appendix A3: Macroblock.Py (cont. 1/5)

 FIGURE A3. Macroblock.py, originally written by Ali Haidous. This file has been heavily modified by

Williiam Oswald. This Script calculates the Macroblock variance on a per-frame basis.

#!/usr/bin/python
#Script written by Ali Haidous, modified by Liam Oswald

import struct
import sys
import math
import pickle
import cv2
import numpy as np
from tqdm import tqdm
import os
from skimage.measure import compare_ssim

FIRST_PLAIN_MB = 21.5571
SECOND_PLAIN_MB = 1.96405
class VideoCaptureYUV(object):
 def __init__(self, filename, size):
 self.height, self.width = size
 self.filename = filename
 self.filesize = os.stat(filename).st_size
 self.framecount = (2 * self.filesize) / (self.height * self.width * 3)
 self.frame_len = self.width * self.height * 3 / 2
 self.f = open(filename, 'rb')
 self.shape = (int(self.height*1.5), self.width)

 def file_statistics(self):
 return (self.filesize, self.framecount)

 def read_raw(self):
 try:
 raw = self.f.read(self.frame_len)
 yuv = np.frombuffer(raw, dtype=np.uint8)
 yuv = yuv.reshape(self.shape)
 except Exception as e:
 print str(e)
 return False, None
 return True, yuv

 def read(self):
 ret, yuv = self.read_raw()
 if not ret:
 return ret, yuv
 bgr = cv2.cvtColor(yuv, cv2.COLOR_YUV2BGR_I420)
 return ret, bgr

 def fetch_raw_frame(self, frame_num):
 f = open(self.filename, 'rb')
 raw = None
 for _ in range(frame_num):
 raw = f.read(self.frame_len)

 try:
 yuv = np.frombuffer(raw, dtype=np.uint8)
 yuv = yuv.reshape(self.shape)
 except Exception as e:
 print str(e)
 return None
 return yuv

 def display_raw_frame(self, raw_frame, name="frame"):
 frame = cv2.cvtColor(raw_frame, cv2.COLOR_YUV2BGR_I420)
 #cv2.imshow(name, frame)
 cv2.imwrite(name, frame)

 def play_video(self):

68

Appendix A3: Macroblock.Py (cont. 2/5)

 try:
 yuv = np.frombuffer(raw, dtype=np.uint8)
 yuv = yuv.reshape(self.shape)
 except Exception as e:
 print str(e)
 return None
 return yuv

 def display_raw_frame(self, raw_frame, name="frame"):
 frame = cv2.cvtColor(raw_frame, cv2.COLOR_YUV2BGR_I420)
 #cv2.imshow(name, frame)
 cv2.imwrite(name, frame)

 def play_video(self):
 while True:
 ret, frame = self.read(cv2.COLOR_YUV2BGR_I420)
 if ret:
 cv2.imshow("frame", frame)
 cv2.waitKey(30)
 else:
 break

 def release(self):
 self.f.close()

class VideoWriter(object):
 def __init__(self, filename):
 self.filename = filename
 self.f = open(filename, 'wb')

 def writeFrame(self, yuvFrame):
 self.f.write(yuvFrame)

 def release(self):
 self.f.close()

def calc_macroblock_per(yuv_frame, low_variance_threshold=1.25):
 offset = int(len(yuv_frame)/3)
 rows = len(yuv_frame) - offset
 columns = len(yuv_frame[0])

 y = yuv_frame[0:rows, 0:columns]
 u = yuv_frame[rows:rows+(offset/2), 0:columns]
 v = yuv_frame[rows+(offset/2):rows+offset, 0:columns]

 def macbroblock_per(sub_frame):
 total_macroblocks = 0
 plain_macroblocks = 0
 macroblock_per = 0
 for row_position in range(0, len(sub_frame), 16):
 for column_position in range(0, len(sub_frame[0]), 16):
 macroblock = []
 total_macroblocks += 1

 for j in range(row_position, row_position+16):
 for i in range(column_position, column_position+16):
 try:
 macroblock.append(0.0001560911143834408 *
pow(int(sub_frame[j][i]), 2.628389343175764))
 except IndexError:
 break

 try:
 avg_lum = sum(macroblock) / len(macroblock)
 variance = sum([pow(byte - avg_lum, 2) / len(macroblock) for byte in
macroblock])
 except ZeroDivisionError:
 pass

69

Appendix A3: Macroblock.Py (cont. 3/5)

 if ret:
 (y_per, u_per, v_per) = calc_macroblock_per(frame)
 #print (y_per, u_per, v_per)
 macroblock_per_y.append(y_per)
 macroblock_per_u.append(u_per)
 macroblock_per_v.append(v_per)
 else:
 break

 return (macroblock_per_y, macroblock_per_u, macroblock_per_v)

#This main function has been heavily modified by Liam Oswald.
def Main(VideoOld, VideoNew, xRez, yRez, path):
 # Get arguments
 filename = VideoOld
 xres = int(xRez)
 yres = int(yRez)

 frames_path = path + 'frames/'

 # Do OS operations
 #path = os.path.join(os.getcwd(), str(filename[:-4].rsplit('/', 1)[-1]))
 #path = os.path.join(os.getcwd(),'Results', str(filename[:-4].rsplit('/', 1)[-1]))
 #frames_path = os.path.join(os.getcwd(), str(filename[:-4].rsplit('/', 1)[-1])+"/frames/")
 try:
 #os.makedirs(path)
 os.makedirs(frames_path[:-1])
 except OSError:
 print ("Creation of the directory %s failed" % frames_path)
 else:
 print ("Successfully created the directory %s " % frames_path)

 # Read in the file
 cap = VideoCaptureYUV(filename, (yres, xres))
 filesize, framecount = cap.file_statistics()

 capNew = VideoCaptureYUV(VideoNew, (yres, xres))
 filesizeNew, framecountNew = capNew.file_statistics()

 print "Size of file in bytes: %d\nNumber of frames: %d\n" % (filesize, framecount)
 #cap.play_video()

 # Calculate macroblock percentage per frame
 (macroblock_per_y, macroblock_per_u, macroblock_per_v) =
CalculateMacroblockPercentage(cap, framecount)
 (macroblock_per_y_new, macroblock_per_u_new, macroblock_per_v_new) =
CalculateMacroblockPercentage(capNew, framecountNew)

 # Calculate average macroblock percentages
 macroblock_per_y_avg = sum(macroblock_per_y) / len(macroblock_per_y)
 macroblock_per_u_avg = sum(macroblock_per_u) / len(macroblock_per_u)
 macroblock_per_v_avg = sum(macroblock_per_v) / len(macroblock_per_v)
 macroblock_per_y_avg_new = sum(macroblock_per_y_new) / len(macroblock_per_y_new)
 macroblock_per_u_avg_new = sum(macroblock_per_u_new) / len(macroblock_per_u_new)
 macroblock_per_v_avg_new = sum(macroblock_per_v_new) / len(macroblock_per_v_new)
 #Filter >= 99% macroblocks
 for x in range(len(macroblock_per_y)):
 if macroblock_per_y[x] >= 99:
 macroblock_per_y[x] = macroblock_per_y_avg
 for x in range(len(macroblock_per_u)):
 if macroblock_per_u[x] >= 99:
 macroblock_per_u[x] = macroblock_per_u_avg

 for x in range(len(macroblock_per_v)):
 if macroblock_per_v[x] >= 99:
 macroblock_per_v[x] = macroblock_per_v_avg
 #Filter >= 99% for new video as well
 for x in range(len(macroblock_per_y_new)):
 if macroblock_per_y_new[x] >= 99:
 macroblock_per_y_new[x] = macroblock_per_y_avg_new
 for x in range(len(macroblock_per_u_new)):
 if macroblock_per_u_new[x] >= 99:

70

Appendix A3: Macroblock.Py (cont. 4/5)

 for x in range(len(macroblock_per_v)):
 if macroblock_per_v[x] >= 99:
 macroblock_per_v[x] = macroblock_per_v_avg
 #Filter >= 99% for new video as well
 for x in range(len(macroblock_per_y_new)):
 if macroblock_per_y_new[x] >= 99:
 macroblock_per_y_new[x] = macroblock_per_y_avg_new
 for x in range(len(macroblock_per_u_new)):
 if macroblock_per_u_new[x] >= 99:
 macroblock_per_u_new[x] = macroblock_per_u_avg_new
 for x in range(len(macroblock_per_v_new)):
 if macroblock_per_v_new[x] >= 99:
 macroblock_per_v_new[x] = macroblock_per_v_avg_new
 # Calculate average psnr and ssim for the whole video
 cap = VideoCaptureYUV(filename, (yres, xres))
 capNew = VideoCaptureYUV(VideoNew, (yres, xres))
 psnr_old = []
 ssim_old = []
 psnr_new = []
 ssim_new = []
 for index in tqdm(range(framecount), unit="MacroBlock PSNR and SSIM Calc"):
 try:
 ret, frame = cap.read_raw()
 retNew, frameNew = capNew.read_raw()
 except Exception:
 break
 if (ret & retNew):
 frame_truncate_old = frame
 frame_truncate_new = frameNew

 psnr_old.append(psnr(frameNew, frame_truncate_old))
 (ssim, _) = compare_ssim(frameNew, frame_truncate_old, full=True)
 ssim_old.append(ssim)
 # psnr_new.append(psnr(frame, frame_truncate_new))
 # (ssim, _) = compare_ssim(frame, frame_truncate_new, full=True)
 # ssim_new.append(ssim)
 psnr_new.append("Liam Lazy")
 ssim_new.append("Liam Lazy")
 #cap.display_raw_frame(frame, frames_path+str(filename[:-4].rsplit('/', 1)[-
1])+"_frame"+str(index)+".png")
 cap.display_raw_frame(frame_truncate_old, frames_path+str(filename[:-
4].rsplit('/', 1)[-1])+"_Original"+str(index)+".png")
 capNew.display_raw_frame(frame_truncate_new, frames_path+str(filename[:-
4].rsplit('/', 1)[-1])+"_New"+str(index)+".png")
 else:
 break
 # Calculate max and min macroblock frame index for y u and v
 max_frame_y_index = macroblock_per_y.index(max(macroblock_per_y))
 min_frame_y_index = macroblock_per_y.index(min(macroblock_per_y))
 max_frame_u_index = macroblock_per_u.index(max(macroblock_per_u))
 min_frame_u_index = macroblock_per_u.index(min(macroblock_per_u))
 max_frame_v_index = macroblock_per_v.index(max(macroblock_per_v))
 min_frame_v_index = macroblock_per_v.index(min(macroblock_per_v))
 psnr_old_avg = sum(psnr_old) / len(psnr_old)
 ssim_old_avg = sum(ssim_old) / len(ssim_old)

 # Write data to CSV file
 with open(os.path.join(path,str(filename[:-4].rsplit('/', 1)[-1])+".csv"), "wb") as file:
 file.write("Original Video,"+
 "New Video,"+
 ","+
 "MB % Y Avg:,"+
 "MB % U Avg:,"+
 "MB % V Avg:,"+

 "MB Y Max Idx:,"+
 "MB Y Min Idx:,"+
 "MB U Max Idx:,"+
 "MB U Min Idx:,"+
 "MB V Max Idx:,"+
 "MB V Min Idx:,"+

71

Appendix A3: Macroblock.Py (cont. 5/5)

 "MB Y Max Idx:,"+
 "MB Y Min Idx:,"+
 "MB U Max Idx:,"+
 "MB U Min Idx:,"+
 "MB V Max Idx:,"+
 "MB V Min Idx:,"+
 "PSNR Avg,"+
 "SSIM Avg:,"+
 #"PSNR New Avg:,"+
 #"SSIM New Avg:,"+"\n")
 "," +
 "," + "\n")
 file.write(str(VideoOld[:-4].rsplit('/', 1)[-1])+","+
 str(VideoNew[:-4].rsplit('/', 1)[-1])+","+
 str(',')+
 str(macroblock_per_y_avg)+","+
 str(macroblock_per_u_avg)+","+
 str(macroblock_per_v_avg)+","+
 str(max_frame_y_index)+","+
 str(min_frame_y_index)+","+
 str(max_frame_u_index)+","+
 str(min_frame_u_index)+","+
 str(max_frame_v_index)+","+
 str(min_frame_v_index)+","+
 str(psnr_old_avg)+","+
 str(ssim_old_avg)+","+
 #str(psnr_new_avg)+","+
 #str(ssim_new_avg)+"\n\n\n")
 str('') + "\n\n\n")
 file.write("Frame,MB % Y,MB % U,MB % V,PSNR ,SSIM, \n")
 for index, mb_y, mb_u, mb_v, psnr_o, ssim_o, in zip(range(framecount),
 macroblock_per_y,
 macroblock_per_u,
 macroblock_per_v,
 psnr_old,
 ssim_old,
 #psnr_new,
 #ssim_new):
):

#file.write(str(index)+","+str(mb_y)+","+str(mb_u)+","+str(mb_v)+","+str(psnr_o)+","+str(ssim_
o)+","+str(psnr_n)+","+str(ssim_n)+"\n")
 file.write(str(index) + "," + str(mb_y) + "," + str(mb_u) + "," + str(mb_v) + ","
+ str(psnr_o) + "," + str(ssim_o) + "," + "\n")

if __name__ == "__main__":

 Main()

72

Appendix A4: FlatTruncate.Py (cont. 1/2)

FIGURE A4. FlatTruncate.py This script was written by William Oswald, this takes a YUV 422 video, and

writes a flat truncated video to a desired location. For our purposes 3-bit truncation was use

import cv2
import os
import tqdm
import numpy as np
import Macroblock

def TruncateIntValue(a, n):
 if (n == 1):
 return (int(a) & 0b11111111 | 0b00000001)
 elif (n==2):
 return (int(a) & 0b11111110 | 0b00000010)
 elif (n==3):
 return (int(a) & 0b11111100 | 0b00000100)
 elif (n==4):
 return (int(a) & 0b11111000 | 0b00001000)
 elif (n==5):
 return (int(a) & 0b11110000 | 0b00010000)
 elif (n==6):
 return (int(a) & 0b11100000 | 0b00100000)
 elif (n==7):
 return (int(a) & 0b11000000 | 0b01000000)
 elif (n==8):
 return (int(a) & 0b10000000 | 0b10000000)
 elif (n==0):
 return a

def FlatTruncate(CapturedVideo, fileOutDirectory, FPS, n=2):
 try:
 os.makedirs(fileOutDirectory[:-1])
 except OSError:
 print ("Creation of the directory failed")
 else:
 print ("Successfully created the directory")

 try:
 os.makedirs(str(fileOutDirectory) + str(n))
 except OSError:
 print ("Creation of the directory failed")
 else:
 print ("Successfully created the directory")
 cap = CapturedVideo

 print str(fileOutDirectory) + str(n)
 # Setup output mp4 video that will show blue box around ROI's

 name = str(fileOutDirectory + str(n) + '_OUTPUT.yuv')

 #Reference FOURCC values from http://www.fourcc.org/codecs.php
 Frame = Macroblock.VideoWriter(str(fileOutDirectory + str(n) + '_OUTPUT.yuv'))
 print (str(fileOutDirectory + str(n) + '_OUTPUT.yuv'))

 try:

 countTotal = 0

73

Appendix A4: FlatTruncate.Py (cont. 2/2)

d.

 try:

 countTotal = 0
 frameNum = 0

 for _ in tqdm.tqdm(range(int(cap.framecount)), unit="Flat Truncation"):
 frameNum += 1
 count = 0

 ret, yuvimgRaw = cap.read_raw()
 if not ret:
 break
 yuvimg = np.copy(yuvimgRaw)

 offset = int(len(yuvimgRaw) / 3)
 rows = len(yuvimgRaw) - offset
 columns = len(yuvimgRaw[0])

 # print yuvimg.shape
 #
 # cv2.imshow("image stack", yuvimg)
 # cv2.waitKey(1)
 for i in range(rows):
 for j in range(int(yuvimg.shape[1])):
 yuvimg[i, j] = TruncateIntValue(yuvimg[i,j], n)
 count += 1
 #r.write('Frame Number: ' + str(frameNum) + ' Truncations Preformed: ' +
str(count) + '\n')
 countTotal = countTotal + count

 # cv2.imshow("image stack", yuvimg)
 # cv2.waitKey(1)

 #print np.array_equal(yuvimg, yuvimgRaw)

 Frame.writeFrame(yuvimg)

 #r.write('Total Number of Truncations: ' + str(countTotal))
 #r.close()

 finally:
 Frame.release()

74

Appendix A5: MBTruncation.py (cont. 1/2)

FIGURE A4. MBTruncation.py – This Script was written by William Oswald. This takes a YUV 422 video, and

truncates macroblocks based on variance levels, which it calculates itself

#Written by Liam Oswald
import Macroblock
import OpenCVROI
import struct
import sys
import math
import pickle
import cv2
import numpy as np
import tqdm
import os
from skimage.measure import compare_ssim

def Display2Images(img1, img2):
 stack = np.hstack((img1, img2))

 cv2.imshow("image stack", stack)
 cv2.waitKey(1)

def macroblock_per(yuv_frame, low_variance_threshold=1.25):
 offset = int(len(yuv_frame)/3)
 rows = len(yuv_frame) - offset
 columns = len(yuv_frame[0])

 y = yuv_frame[0:rows, 0:columns]
 u = yuv_frame[rows:rows+(offset/2), 0:columns]
 v = yuv_frame[rows+(offset/2):rows+offset, 0:columns]

 def macbroblock_per(sub_frame, macroblocksize, Ybox):
 visualFrame = np.copy(sub_frame)
 truncatedFrame = np.copy(sub_frame)

 bitsTruncated = 0

 for row_position in range(0, len(sub_frame), 16):
 for column_position in range(0, len(sub_frame[0]), 16):
 macroblock = []

 for j in range(row_position, row_position+16):
 for i in range(column_position, column_position+16):
 try:
 macroblock.append(0.0001560911143834408 *
pow(int(sub_frame[j][i]), 2.628389343175764))
 except IndexError:
 break

 try:
 avg_lum = sum(macroblock) / len(macroblock)
 variance = sum([pow(byte - avg_lum, 2) / len(macroblock) for byte in
macroblock])
 except ZeroDivisionError:
 pass
 else:
 if variance >= low_variance_threshold:
 if Ybox:
 visualFrame[row_position:row_position+4,

column_position:column_position + 16] = 255
 else:
 visualFrame[row_position:row_position+16,
column_position:column_position+16] = 255

75

Appendix A5: MBTruncation.py (cont. 2/2)

 else:
 if variance >= low_variance_threshold:
 if Ybox:
 visualFrame[row_position:row_position+4,
column_position:column_position + 16] = 255
 else:
 visualFrame[row_position:row_position+16,
column_position:column_position+16] = 255

 for i in range(macroblocksize):
 for j in range(16):
 if ((row_position + i) < len(sub_frame)):
 truncatedFrame[row_position + i, column_position + j] =
OpenCVROI.TruncateIntValue(truncatedFrame[row_position + i, column_position + j])
 bitsTruncated += 1
 return visualFrame, truncatedFrame, bitsTruncated
 yVisualFrame, yTruncatedFrame, bits1 = macbroblock_per(y, 16, True)
 uVisualFrame, uTruncatedFrame, bits2 = macbroblock_per(u, 16, False)
 vVisualFrame, vTruncatedFrame, bits3 = macbroblock_per(v, 16, False)
 visualframe = np.vstack((yVisualFrame,uVisualFrame,vVisualFrame))
 truncatedframe = np.vstack((yTruncatedFrame, uTruncatedFrame, vTruncatedFrame))
 totalbits = bits1 + bits2 + bits3
 return (visualframe, truncatedframe, totalbits)
def VisualizePlainMacroblocks(cap, FPS, saveDir, low_variance_threshold):
 try:
 newsaveDir = os.path.join(saveDir, "MBTruncation_Results/")
 os.makedirs(newsaveDir)
 except OSError:
 print ("Creation of the directory failed")
 else:
 print ("Successfully created the directory")
 #paramiters for mp4 visual output
 namemp4 = str(newsaveDir + "/MBVisualization.mp4")
 fourccmp4 = cv2.VideoWriter_fourcc(*'mp4v')
 Framemp4 = cv2.VideoWriter(namemp4, fourccmp4, FPS, (cap.width, cap.height))
 #paramiters for yuv output video with truncation
 name = str(newsaveDir + "/MBTruncation_output.yuv")
 #fourcc = cv2.VideoWriter_fourcc(*'IYUV')
 #Frame = cv2.VideoWriter(name, fourcc, FPS, (cap.width, cap.height))
 Frame = Macroblock.VideoWriter(name)

 f = open(os.path.join(saveDir, "MBTruncation_Results/", 'Macroblock_Report.txt'), 'w')
 frameNum = 0
 totalTruncations = 0

 for _ in tqdm.tqdm(range(int(cap.framecount)), unit="MBTruncation Visualize"):
 ret, yuvimgRaw = cap.read_raw()
 if not ret:
 break
 #copy yuvimg for editing
 yuvimg = np.copy(yuvimgRaw)
 visual, truncatedFrame, bitstruncated = macroblock_per(yuvimg, low_variance_threshold)
 f.write('Frame Num: ' + str(frameNum) + ' Truncations preformed: ' +
str(bitstruncated) + '\n')
 totalTruncations = totalTruncations + bitstruncated
 #save Visual into mp4 file
 Framemp4.write(cv2.cvtColor(visual, cv2.COLOR_YUV2BGR_I420))
 Frame.writeFrame(truncatedFrame)
 frameNum += 1
 Frame.release()
 Framemp4.release()

 f.write('Total Truncations Preformed: ' + str(totalTruncations))
 f.close()

76

Appendix A6: OpenCVROI.Py (cont. 1/2)

FIGURE A6. OpenCVROI.py – This Script was written by William Oswald. This Script uses the

Hardcascade_frontalFace_mlt2.xml Neural Network model to find faces in a YUV video frame, and writes

ROI locations in a table as output

Script written by William Oswald Python Version 3.6

import cv2
import os
import tqdm
import numpy as np
def TruncateIntValue(a):
 return (int(a) & 0b11111100 | 0b00000100)
def InROIRange(Pixelx, Pixely, faces):
 for (x, y, w, h) in faces:
 if ((x < Pixelx < (x + w)) and (y < Pixely < (y + h))):
 return True
 else:
 return False

def ROI_CSV_OUT(faces, fileDirecotry, f):
 # Setup CSV file to save location of the 4 corners for a ROI
 count = 0
 tempstring = ''

 for (x, y, w, h) in faces:
 tempstring = (tempstring + str(x) + ',' + str(y) + ' ' + str(x) + ',' + str(y + h) + '
' + str(
 x + w) + ',' + str(y) + ' ' + str(x + w) + ',' + str(y + h))
 count = count + 1

 f.write((str(count) + ' ' + tempstring + '\n'))
def FindFaces(RawYUVFrame, face_cascade):
 # Load the cascade
 # Convert to grayscale
 gray = cv2.cvtColor(RawYUVFrame, cv2.COLOR_BGR2GRAY)
 # Detect the faces
 faces = face_cascade.detectMultiScale(gray, 1.1, 4)
 return faces

def TranslatePositon(x,y, hight, width):
 #YUV file format explained here: https://answers.opencv.org/question/100149/how-to-get-y-
u-v-from-image/
 ypos = [x,y]
 ve = [int(hight + (x / 4)), int(y / 2)]
 vo = [int(hight + (x / 4)), int((y / 2) + (width / 2))]
 ue = [int(1.25 * hight + (x / 4)), int(y / 2)]
 uo = [int(1.25 * hight + (x / 4)), int((y / 2) + (width / 2))]
 return ypos,ve,vo,ue,uo

def OpenCVTruncate(pixelWidth=1920, pixelHight=1080, FPS=24.0, fileIn='Video.yuv',
fileDirecotry = os.getcwd(), CapturedVideo = None, frameCount = None):

 try:
 os.makedirs(os.path.join(os.getcwd(),'Results', str(fileIn[:-4].rsplit('/', 1)[-1])))
 except OSError:
 print ("Creation of the directory failed")
 else:
 print ("Successfully created the directory")
 f = open(os.path.join(os.getcwd(),'Results', str(fileIn[:-4].rsplit('/', 1)[-
1]),'ROI_Locations.csv'), 'w')

 r = open(os.path.join(os.getcwd(), 'Results', str(fileIn[:-4].rsplit('/', 1)[-1]),
'ROI_Report.txt'), 'w')
 name = str(os.path.join(os.getcwd(),'Results', str(fileIn[:-4].rsplit('/', 1)[-1]),
((fileIn[:-4].rsplit('/', 1)[-1])+'_OUTPUT.yuv')))

77

Appendix A6: OpenCVROI.Py (cont. 2/2)

 except OSError:
 print ("Creation of the directory failed")
 else:
 print ("Successfully created the directory")
 f = open(os.path.join(os.getcwd(),'Results', str(fileIn[:-4].rsplit('/', 1)[-
1]),'ROI_Locations.csv'), 'w')
 r = open(os.path.join(os.getcwd(), 'Results', str(fileIn[:-4].rsplit('/', 1)[-1]),
'ROI_Report.txt'), 'w')
 name = str(os.path.join(os.getcwd(),'Results', str(fileIn[:-4].rsplit('/', 1)[-1]),
((fileIn[:-4].rsplit('/', 1)[-1])+'_OUTPUT.yuv')))

 face_cascade = cv2.CascadeClassifier('haarcascade_frontalface_alt2.xml')

 # To capture video from webcam.
 cap = CapturedVideo

 # Setup output mp4 video that will show blue box around ROI's
 #Reference FOURCC values from http://www.fourcc.org/codecs.php
 #fourcc = cv2.VideoWriter_fourcc(*'YV12')
 fourcc = cv2.VideoWriter_fourcc(*'IYUV')
 Frame = cv2.VideoWriter(name, fourcc, FPS, (cap.width, cap.height))

 try:
 for _ in tqdm.tqdm(range(int(frameCount)), unit="OpenCV Truncation"):
 # Read the frame

 ret, yuvimgRaw = cap.read_raw()
 if not ret:
 break
 img = cv2.cvtColor(yuvimgRaw, cv2.COLOR_YUV2BGR_I420)
 yuvimg = np.copy(yuvimgRaw)

 faces = FindFaces(img, face_cascade)

 #if an image is not in an ROI, truncate it across the YUV frame
 totalTruncatePixels = 0
 for i in range(cap.height):
 for j in range(cap.width):
 if (not InROIRange(j, i, faces)):
 for [h,w] in TranslatePositon(i,j,cap.height,cap.width):
 yuvimg[h,w] = TruncateIntValue(yuvimg[h,w])
 #yuvimg[h, w] = 255
 totalTruncatePixels += 1
 ROI_CSV_OUT(faces, fileDirecotry, f)

 Frame.write(cv2.cvtColor(yuvimg, cv2.COLOR_YUV2BGR_I420))

 r.write(str('OpenCVROI bits Truncated ' + str(totalTruncatePixels) + '\n'))

 finally:
 Frame.release()
 # Release the VideoCapture object

 # Release CSV save file
 r.close()
 f.close()

if __name__ == "__main__":
 OpenCVTruncate()

78

Appendix A7: ROIMBTruncation.Py (cont. 1/3)

FIGURE A6. ROIMBTruncation.py – This Script was written by William Oswald. This combines the OpenCV

ROI Detection with the Macroblock Variance, and produces an output YUV video with both factors

import cv2
import numpy as np
import tqdm
import os
import math
import Macroblock

def TruncateIntValue(a):
 return (int(a) & 0b11111100 | 0b00000100)
 #return 0b00000000

def InROIRange(Pixelx, Pixely, faces):
 for (x, y, w, h) in faces:
 if ((x < Pixelx < (x + w)) and (y < Pixely < (y + h))):
 return True
 else:
 return False

def ROI_CSV_OUT(faces, fileDirecotry, f):
 # Setup CSV file to save location of the 4 corners for a ROI
 count = 0
 tempstring = ''

 for (x, y, w, h) in faces:
 tempstring = (tempstring + str(x) + ',' + str(y) + ' ' + str(x) + ',' + str(y + h) + '
' + str(
 x + w) + ',' + str(y) + ' ' + str(x + w) + ',' + str(y + h))
 count = count + 1
 f.write((str(count) + ' ' + tempstring + '\n'))

def FindFaces(RawYUVFrame, face_cascade):
 # Load the cascade
 # Convert to grayscale
 gray = cv2.cvtColor(RawYUVFrame, cv2.COLOR_BGR2GRAY)
 # Detect the faces
 faces = face_cascade.detectMultiScale(gray, 1.1, 4)
 return faces

def TranslatePositon(x,y, hight, width):
 ypos = [x, y]
 ve = [int((x / 2)), int(hight + (y / 4))]
 vo = [int((x / 2)) + (width / 2), int(hight + (y / 4))]
 ue = [int((x / 2)), int(int(hight * 1.25) + (y / 4))]
 uo = [int((x / 2)) + (width / 2), int((hight * 1.25) + (y / 4))]
 return ypos, ve, vo, ue, uo

def macroblock_per(yuv_frame, low_variance_threshold=1.25):
 offset = int(len(yuv_frame)/3)
 rows = len(yuv_frame) - offset
 columns = len(yuv_frame[0])
 y = yuv_frame[0:rows, 0:columns]
 u = yuv_frame[rows:rows+(offset/2), 0:columns]
 v = yuv_frame[rows+(offset/2):rows+offset, 0:columns]
 face_cascade = cv2.CascadeClassifier('haarcascade_frontalface_alt2.xml')
 ROI_Index = FindFaces(cv2.cvtColor(yuv_frame, cv2.COLOR_YUV2BGR_I420), face_cascade)

 def macbroblock_per(sub_frame):
 MBtruncatedFrame = np.copy(sub_frame)
 bitsTruncated = 0
 for row_position in range(0, len(sub_frame), 16):
 for column_position in range(0, len(sub_frame[0]), 16):
 macroblock = []

 for j in range(row_position, row_position+16):
 for i in range(column_position, column_position+16):
 try:
 macroblock.append(0.0001560911143834408 *

79

Appendix A7: ROIMBTruncation.Py (cont. 2/3)

 face_cascade = cv2.CascadeClassifier('haarcascade_frontalface_alt2.xml')
 ROI_Index = FindFaces(cv2.cvtColor(yuv_frame, cv2.COLOR_YUV2BGR_I420), face_cascade)

 def macbroblock_per(sub_frame):
 MBtruncatedFrame = np.copy(sub_frame)
 bitsTruncated = 0
 for row_position in range(0, len(sub_frame), 16):
 for column_position in range(0, len(sub_frame[0]), 16):
 macroblock = []

 for j in range(row_position, row_position+16):
 for i in range(column_position, column_position+16):

 try:
 macroblock.append(0.0001560911143834408 *
pow(int(sub_frame[j][i]), 2.628389343175764))
 except IndexError:
 break
 try:
 avg_lum = sum(macroblock) / len(macroblock)
 variance = sum([pow(byte - avg_lum, 2) / len(macroblock) for byte in
macroblock])
 except ZeroDivisionError:
 pass
 else:

 if variance >= low_variance_threshold:

 for i in range(16):
 for j in range(16):
 #print(len(sub_frame))
 if ((row_position + i) < len(sub_frame)):
 MBtruncatedFrame[row_position + i, column_position + j] =
TruncateIntValue(MBtruncatedFrame[row_position + i, column_position + j])
 bitsTruncated += 1

 return MBtruncatedFrame, bitsTruncated

 def repairROI(MBTruncatedImage, originalImage):
 ROIBitsSaved = 0
 MBROIFrame = np.copy(MBTruncatedImage)
 for (x, y, w, h) in ROI_Index:
 x_MB_Translated = int(x - (x % 16))
 y_MB_Translated = int(y - (y % 16))
 MB_width = math.ceil(w / 16)
 MB_hight = math.ceil(h / 16)

 for i in range(int(MB_width * 16)):
 for j in range(int(MB_hight * 16)):
 pixel_x = x_MB_Translated + i
 pixel_y = y_MB_Translated + j

 for [image_x, image_y] in TranslatePositon(pixel_x, pixel_y, rows,
columns):
 if (MBROIFrame[image_y, image_x] != originalImage[image_y, image_x]):
 MBROIFrame[image_y, image_x] = originalImage[image_y, image_x]
 #MBROIFrame[image_y, image_x] = 255
 ROIBitsSaved += 1

80

Appendix A7: ROIMBTruncation.Py (cont. 3/3)

 return (MBROIFrame, ROIBitsSaved)
 uMBTruncatedFrame, bits2 = macbroblock_per(u)
 vMBTruncatedFrame, bits3 = macbroblock_per(v)
 yMBTruncatedFrame, bits1 = macbroblock_per(y)
 MBtruncatedframe = np.vstack((yMBTruncatedFrame, uMBTruncatedFrame, vMBTruncatedFrame))
 totalbits = bits1 + bits2 + bits3

 ROIMBFrame, totalsaved = repairROI(MBtruncatedframe, yuv_frame)
 return (ROIMBFrame, MBtruncatedframe, totalbits, totalsaved)

81

Appendix A8: WeightedPSNR.Py (cont. 1/5)

FIGURE A8. WeightedPSNR.py – This Script was written by William Oswald. This calculates WPSNR for a
YUV 422 video, and records the ouput into a file.

#!/usr/bin/python #Script written by Liam Oswald
import struct
import sys
import math
import pickle
import cv2
import numpy as np
from tqdm import tqdm
import os
import Macroblock
import ROIMBTruncation
from skimage.measure import compare_ssim

def psnr_rw(img1_ROI, img1_NROI, img2_ROI, img2_NROI, img3_ROI, img3_NROI, alpha):
 img1_ROI = img1_ROI.astype(np.float128)
 img1_NROI = img1_NROI.astype(np.float128)
 img2_ROI = img2_ROI.astype(np.float128)
 img2_NROI = img2_NROI.astype(np.float128)
 img3_ROI = img3_ROI.astype(np.float128)
 img3_NROI= img3_NROI.astype(np.float128)
 mse_img2_ROI = np.mean((img1_ROI - img2_ROI) ** 2)
 mse_img3_ROI = np.mean((img1_ROI - img3_ROI) ** 2)
 mse_img2_NROI = np.mean((img1_NROI - img2_NROI) ** 2)
 mse_img3_NROI = np.mean((img1_NROI - img3_NROI) ** 2)

 def Critical_Alpha(MSE_1_ROI, MSE_1_NROI, MSE_2_ROI, MSE_2_NROI):
 return (MSE_1_NROI - MSE_2_NROI) / (MSE_1_NROI + MSE_2_ROI - MSE_1_ROI -MSE_2_NROI)

 Crit_alpha = Critical_Alpha(mse_img2_ROI, mse_img2_NROI, mse_img3_ROI, mse_img3_NROI)
 D_frame_img2 = alpha * mse_img2_ROI + (1 - alpha) * mse_img2_NROI
 D_frame_img3 = alpha * mse_img3_ROI + (1 - alpha) * mse_img3_NROI
 psnr_rw_img2 = 20 * math.log10((255 / D_frame_img2))
 psnr_rw_img3 = 20 * math.log10((255 / D_frame_img3))
 return psnr_rw_img2, psnr_rw_img3, Crit_alpha

def psnr(img1, img2):
 img1 = img1.astype(np.float128)
 img2 = img2.astype(np.float128)
 mse = np.mean((img1 - img2) ** 2)
 if mse == 0:
 return 100
 PIXEL_MAX = 255.0
 return 20 * math.log10(PIXEL_MAX / math.sqrt(mse))

def WeightedPSR(frameNew, frameOld):
 hight = len(frameOld)
 width = len(frameOld[0])
 offset = int(len(frameOld)/3)
 rows = len(frameOld) - offset
 columns = len(frameOld[0])
 face_cascade = cv2.CascadeClassifier('haarcascade_frontalface_alt2.xml')
 ROI_Index = ROIMBTruncation.FindFaces(cv2.cvtColor(frameOld, cv2.COLOR_YUV2BGR_I420),
face_cascade)

 def TranslatePositon(x, y, hight, width):
 # YUV file format explained here: https://answers.opencv.org/question/100149/how-to-
get-y-u-v-from-image/
 ypos = [x, y]
 ve = [int((x / 2)), int(hight + (y / 4))]
 vo = [int((x / 2)) + (width / 2), int(hight + (y / 4))]
 ue = [int((x / 2)), int(int(hight * 1.25) + (y / 4))]
 uo = [int((x / 2)) + (width / 2), int((hight * 1.25) + (y / 4))]
 return ypos, ve, vo, ue, uo

82

 Appendix A8: WeightedPSNR.Py (cont. 2/5)

 columns = len(frameOld[0])
 face_cascade = cv2.CascadeClassifier('haarcascade_frontalface_alt2.xml')
 ROI_Index = ROIMBTruncation.FindFaces(cv2.cvtColor(frameOld, cv2.COLOR_YUV2BGR_I420),
face_cascade)

 def TranslatePositon(x, y, hight, width):
 # YUV file format explained here: https://answers.opencv.org/question/100149/how-to-
get-y-u-v-from-image/
 ypos = [x, y]
 ve = [int((x / 2)), int(hight + (y / 4))]
 vo = [int((x / 2)) + (width / 2), int(hight + (y / 4))]
 ue = [int((x / 2)), int(int(hight * 1.25) + (y / 4))]
 uo = [int((x / 2)) + (width / 2), int((hight * 1.25) + (y / 4))]
 return ypos, ve, vo, ue, uo

 def InROIRange(Pixelx, Pixely, faces):
 for (x, y, w, h) in faces:
 #translate ROI to macroblock edges
 x_u = int(x - (x % 16))
 y_u = int(y - (y % 16))
 w_u = int(math.ceil(w / 16) * 16)
 h_u = int(math.ceil(h / 16) * 16)
 if ((x_u < Pixelx < (x_u + w_u)) and (y_u < Pixely < (y_u + h_u))):
 return True
 else:
 return False

 def ExtractROIPixels(frameNew, frameOld, ROI_Index):
 inside_ROI_new = []
 inside_ROI_old = []
 outside_ROI_new = []
 outside_ROI_old = []
 picked_table = np.zeros((hight, width))
 for i in range(columns):
 for j in range(rows):
 ROI_flag = InROIRange(i,j,ROI_Index)
 locations = TranslatePositon(i, j, rows, columns)

 for [image_x, image_y] in locations:
 if picked_table[image_y, image_x] == 1:
 pass
 elif (image_y >= hight or image_x >= (width)):
 pass
 elif (ROI_flag):
 inside_ROI_new.append(frameNew[image_y,image_x])
 inside_ROI_old.append(frameOld[image_y,image_x])
 else:
 outside_ROI_new.append(int(frameNew[image_y, image_x]))
 outside_ROI_old.append(int(frameOld[image_y, image_x]))

 picked_table[image_y, image_x] = 1

 inside_ROI_new = np.array(inside_ROI_new)
 inside_ROI_old = np.array(inside_ROI_old)
 outside_ROI_new = np.array(outside_ROI_new)
 outside_ROI_old = np.array(outside_ROI_old)
 return (inside_ROI_new, inside_ROI_old, outside_ROI_new, outside_ROI_old)
 inside_ROI_new, inside_ROI_old, outside_ROI_new, outside_ROI_old =
ExtractROIPixels(frameNew, frameOld, ROI_Index)
 psnr_ROI = psnr(inside_ROI_new, inside_ROI_old)
 psnr_not_ROI = psnr(outside_ROI_new, outside_ROI_old)
 return psnr_ROI,psnr_not_ROI

 for i in range(columns):
 for j in range(rows):
 ROI_flag = InROIRange(i,j,ROI_Index)
 locations = TranslatePositon(i, j, rows, columns)

 for [image_x, image_y] in locations:

 if picked_table[image_y, image_x] == 1:

83

Appendix A8: WeightedPSNR.Py (cont. 3/5)

 for i in range(columns):
 for j in range(rows):
 ROI_flag = InROIRange(i,j,ROI_Index)
 locations = TranslatePositon(i, j, rows, columns)

 for [image_x, image_y] in locations:

 if picked_table[image_y, image_x] == 1:
 pass

 elif (image_y >= hight or image_x >= (width)):
 pass

 elif (ROI_flag):
 inside_ROI_new.append(frameNew[image_y,image_x])
 inside_ROI_old.append(frameOld[image_y,image_x])
 inside_ROI_M2.append(frameM2[image_y, image_x])
 else:
 outside_ROI_new.append(int(frameNew[image_y, image_x]))
 outside_ROI_old.append(int(frameOld[image_y, image_x]))
 outside_ROI_M2.append(int(frameM2[image_y, image_x]))
 picked_table[image_y, image_x] = 1

 inside_ROI_new = np.array(inside_ROI_new)
 inside_ROI_old = np.array(inside_ROI_old)
 inside_ROI_M2 = np.array(inside_ROI_M2)
 outside_ROI_new = np.array(outside_ROI_new)
 outside_ROI_old = np.array(outside_ROI_old)
 outside_ROI_M2 = np.array(outside_ROI_M2)

 return (inside_ROI_new, inside_ROI_old, outside_ROI_new, outside_ROI_old,
inside_ROI_M2, outside_ROI_M2)
 inside_ROI_new, inside_ROI_old, outside_ROI_new, outside_ROI_old, inside_ROI_M2,
outside_ROI_M2 = ExtractROIPixels(frameNew, frameOld, frameM2, ROI_Index)
 psnr_rw_img2, psnr_rw_img3, Crit_alpha = psnr_rw(inside_ROI_old, outside_ROI_old,
inside_ROI_new, outside_ROI_new, inside_ROI_M2, outside_ROI_M2, alpha)

 return psnr_rw_img2, psnr_rw_img3, Crit_alpha

def Main(VideoOld, VideoNew, Old_method_Frame, xRez, yRez, path, alpha =0.9):
 # Get arguments
 filename = VideoOld
 xres = int(xRez)
 yres = int(yRez)

 frames_path = path + 'frames/'

 # Do OS operations
 #path = os.path.join(os.getcwd(), str(filename[:-4].rsplit('/', 1)[-1]))
 #path = os.path.join(os.getcwd(),'Results', str(filename[:-4].rsplit('/', 1)[-1]))
 #frames_path = os.path.join(os.getcwd(), str(filename[:-4].rsplit('/', 1)[-1])+"/frames/")
 try:
 #os.makedirs(path)
 os.makedirs(frames_path[:-1])
 except OSError:
 print ("Creation of the directory %s failed" % frames_path)
 else:
 print ("Successfully created the directory %s " % frames_path)

 # Read in the file
 capNew = Macroblock.VideoCaptureYUV(VideoNew, (yres, xres))
 capOld = Macroblock.VideoCaptureYUV(VideoOld, (yres, xres))
 capM2 = Macroblock.VideoCaptureYUV(Old_method_Frame, (yres, xres))

 filesize, framecount = capNew.file_statistics()

 print "Size of file in bytes: %d\nNumber of frames: %d\n" % (filesize, framecount)

 # Calculate average psnr and ssim for the whole video
 psnr_rw_img2_list = []
 psnr_rw_img3_list = []

84

Appendix A8: WeightedPSNR.Py (cont. 4/5)

 filesize, framecount = capNew.file_statistics()
 print "Size of file in bytes: %d\nNumber of frames: %d\n" % (filesize, framecount)
 # Calculate average psnr and ssim for the whole video
 psnr_rw_img2_list = []
 psnr_rw_img3_list = []
 Crit_alpha_list = []
 for index in tqdm(range(framecount), unit="WeightedPSNR - ROI and non-ROI PSNR, critical
Alpha calc"):
 try:
 retOld, frameOld = capOld.read_raw()
 retNew, frameNew = capNew.read_raw()
 retM2, frameM2 = capM2.read_raw()

 except:
 print("ERROR")
 print(retOld)
 print(retNew)
 print(VideoNew)
 print("ERROR")
 frame_truncate_old = frameOld
 #CALCULATE ALL PSNR VALUES
 psnr_rw_img2, psnr_rw_img3, Crit_alpha = WeightedPSR_Two_Videos(frameNew, frameOld,
frameM2, alpha)

 psnr_rw_img2_list.append(psnr_rw_img2)
 psnr_rw_img3_list.append(psnr_rw_img3)
 Crit_alpha_list.append(Crit_alpha)

 #cap.display_raw_frame(frame, frames_path+str(filename[:-4].rsplit('/', 1)[-
1])+"_frame"+str(index)+".png")
 capNew.display_raw_frame(frame_truncate_old, frames_path+str(filename[:-4].rsplit('/',
1)[-1])+"_Original"+str(index)+".png")
 psnr_rw_img2_avg = np.nansum(psnr_rw_img2_list) /
np.count_nonzero(~np.isnan(psnr_rw_img2_list))
 psnr_rw_img3_avg = np.nansum(psnr_rw_img3_list) /
np.count_nonzero(~np.isnan(psnr_rw_img3_list))
 Crit_alpha_avg = np.nansum(Crit_alpha_list) /
np.count_nonzero(~np.isnan((Crit_alpha_list)))
 print len(Crit_alpha_list)
 # Write data to CSV file
 with open(os.path.join(path,str(filename[:-4].rsplit('/', 1)[-1])+".csv"), "wb") as file:
 file.write("Original Video,"+
 "New Video,"+
 ","+
 "psnr_wr_OUR METHOD avg,"+
 "psnr_wr_OLD METHOD avg,"+
 "Critical_Alpha avg,"+

 "," +
 "," + "\n")
 file.write(str(VideoOld[:-4].rsplit('/', 1)[-1])+","+
 str(VideoNew[:-4].rsplit('/', 1)[-1])+","+
 str(',')+
 str(psnr_rw_img2_avg) + "," +
 str(psnr_rw_img3_avg) + "," +
 str(Crit_alpha_avg) + "," +

 #str(ssim_new_avg)+"\n\n\n")
 str('') + "\n\n\n")

 file.write("Frame,psnr_wr_OUR METHOD,psnr_wr_OLD METHOD,Critical_Alpha, \n")
 for index, psnr_rw_img2_list, psnr_rw_img3_list, Crit_alpha_list in
zip(range(framecount),
 psnr_rw_img2_list,
 psnr_rw_img3_list,
 Crit_alpha_list,

 #psnr_new,
 #ssim_new):
):

#file.write(str(index)+","+str(mb_y)+","+str(mb_u)+","+str(mb_v)+","+str(psnr_o)+","+str(ssim_
o)+","+str(psnr_n)+","+str(ssim_n)+"\n")

85

Appendix A8: WeightedPSNR.Py (cont. 5/5)

 for index, psnr_rw_img2_list, psnr_rw_img3_list, Crit_alpha_list in
zip(range(framecount),
 psnr_rw_img2_list,
 psnr_rw_img3_list,
 Crit_alpha_list,

 #psnr_new,
 #ssim_new):
):

#file.write(str(index)+","+str(mb_y)+","+str(mb_u)+","+str(mb_v)+","+str(psnr_o)+","+str(ssim_
o)+","+str(psnr_n)+","+str(ssim_n)+"\n")
 file.write(str(index) + "," + str(psnr_rw_img2_list) + "," +
str(psnr_rw_img3_list) + "," + str(Crit_alpha_list) + "," + "\n")

if __name__ == "__main__":

 Main()

86

BIOGRAPHICAL SKETCH

William Oswald

Graduate and Undergraduate Schools Attended:

University of South Alabama, Mobile, Alabama.

Degrees Awarded:

B. S. Computer Engineering, University of South Alabama 2020

M. S. Electrical Engineering, University of South Alabama, 2021

Awards and Honors:

Graduate Research Assistant 2020-2021

Alabama EPSCOR Graduate Research Scholars Program Fellowship 2021-2022

IEEE ICECS 2021 Final Submissoin Reviwer

	ROI-AWARE CONTENT-ADAPTIVE VIDEO STREAMING SYSTEM FOR POWER SAVINGS
	Recommended Citation

	ROI-AWARE CONTENT-ADAPTIVE VIDEO STREAMING SYSTEM FOR POWER SAVINGS
	Recommended Citation

	William Oswald signature page
	Liam_Thesis_Revision4_Oct11_unsigned

