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ABSTRACT 

 

Oswald, William, M. S., University of South Alabama, December 2021. Content-

Adaptive ROI-Aware Video Storage Memory for Power Savings. Chair of Committee: 

Na, Gong, Ph.D.  

 

The demand for mobile video streams is constantly increasing. With this demand 

comes a need for mobile devices to receive more videos at ever increasing quality. 

However, due to the large size of video data and intensive computational requirements, 

video streaming requires frequent memory access that consumes a substantial amount of 

mobile device power; as a result, the battery life of mobile devices is limited. In this 

thesis, a video content-adaptable Region-of-Interest (ROI)-aware video storage technique 

that promotes power savings is presented. During the video encoding process on the 

transmitting server, based on the macroblock variance and ROI characterization, the 

“macroblocks of interest” are identified and embedded in the encoded bitstream. In the 

decoding process, a new frame buffer with dynamic power-quality trade-off is presented 

to adapt to the macroblock characteristics during run-time. Results from the system-level 

and circuit-level simulations show that the proposed technique enables substantially more 

truncated bits and significant power savings while delivering similar or better video 

quality as compared to other state-of-the-art solutions. 
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CHAPTER I 

INTRODUCTION 

 

Mobile video streaming on YouTube, Vimeo, and Netflix has increased on average 70% 

per year and will consume approximately 79% of the total internet traffic by 2022 [1]. At 

the same time, power-efficient video storage has proven to be a very challenging problem 

to solve. This is due to the large data sizes associated and intensive computational 

requirements demanding frequent data access. With the advancement of computing 

technologies, more video streaming services deliver content to battery-powered mobile 

devices: such as smart phones and Internet-of-Things (IoT). On one hand, these devices 

would benefit greatly from low-power consumption as this would extend their battery 

life. On the other hand, the mobile video streaming process – receive, decode, and display 

of a video bitstream – consumes considerable power and limits the mobile devices’ 

battery life. For example, with a video decoding chip, embedded memories contribute to 

over 50% of the decoding power consumption [2]. This use-case is only expected to grow 

for the next-generation video formats, H.265/HEVC and H.266/VVC, which has 2x-3x 

greater memory demands when compared to H.264 [3]. 

Today’s mobile hardware designers, including memory designers, are focusing on 

hardware-level energy-efficient design techniques in order to accommodate the large 

amount of video data. However, these design techniques usually come with significant 
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implementation overhead (e.g., silicon area, delay) to solve failure problems in memories. 

viewer-aware video memory was explored as a possible opportunity for power savings, 

taking advantage of the  impact of illuminance levels in different viewing surroundings 

on the viewer’s experience [4, 5, 6, 7], as shown in Fig. 1. Previous studies illustrate a 

new dimension of power savings for hardware design through the introduction of viewer 

awareness, but the developed memories lack runtime adaptation across a wide variety of 

mobile videos. To enable an optimized trade-off between power efficiency and video 

quality, this thesis aims to develop a video content-adaptable Region-of-Interest (ROI)-

aware memory for general videos. Specifically, this thesis makes the following 

contributions: 

• An intelligent ROI-aware and content-adaptive framework is proposed to 

determine video frame regions to preserve (output quality) or truncate bits 

for power savings. The truncation is applied for all Luma and Chroma 

video data (i.e., Y, U, and/or V components) (Chapter III & IV). 

• The system-level implementation scheme of the proposed technique is 

developed and discussed (Chapter IV-A, IV-B, and IV-C). 

• A low-power low-cost frame buffer with dynamic power-quality trade-off 

is developed to adapt to the video content (i.e., macroblock characteristics) 

during run-time (Chapter IV-D). 

• A comprehensive suite of simulations on the proposed technique is 

performed and the enriched results are discussed, including the 

performance, circuit-level power efficiency, video-level power efficiency, 
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number of truncated bits, and output quality of various mobile videos 

(Chapter VI-A, VI-B, VI-C, and VI-D). 

• An extensive statistical analysis demonstrates the effectiveness of the 

proposed technique in achieving significant bit truncations and power 

savings as compared to the state-of-the art, particularly for the videos with 

medium or high variance (Chapter VI-E). 

With existing knowlege, this is the first work that seamlessly integrates ROI 

knowledge, i.e., “macroblocks of interest”, into the hardware design process. 

The organization of the thesis is as follows: A review of low-power video 

memory designs is provided in Chapter II, Chapter III presents the macroblock variance 

and ROI study, Chapter IV discusses the proposed algorithm and software requirements. 

Chapter V shows the circuit and system level implimentation. A discussion of the 

evaluation methodology and results in Chapter VI and VII respectively. Chapter VIII 

compares the proposed tequnique against other alternative methods, and finally, a 

conclusion of the thesis is presented in chapter IX.1 

 

 

 
1 William Oswald was responsible for developing the software simulations, which included integrating 

macroblock variance information with ROI extraction. William was also responsible for the statistical 

analysis process, and video frame analysis. Dr. Ali Ahmad Haidous was in charge of the theoretical 

development, and the hardware system test platform. Hritom Das was in charge of all circuit design in 

Cadence, bit-level power analysis. Dr. Na Gong contributed to the theoretical development, and architecture. 
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FIGURE 1  - Proposed content-adaptable ROI-aware low-power video memory. 
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CHAPTER II 

STATE OF THE ART 

 

A vast amount of research has been conducted to improve the power efficiency of video 

data storage. State-of-the-art, power-efficient video memories consist of either 

approximate memory with application-level information [8, 9, 10, 11, 12] or viewer-

aware memories with an awareness of viewer’s experience [4, 5, 6, 7]. In this Chapter, 

some of the existing work related to the proposed technique are briefly reviewed, and the 

detailed comparison analysis will be provided in Chapter VIII. 

 

2.1 Approximate Video-Specific Memory 

Researchers have presented various low-power video memory design techniques. 

Chang et al. [8] presented a hybrid 6T+8T SRAM to achieve quality-power optimization. 

Gong et al. [9] developed a hybrid 8T+10T memory for power savings based on the 

correlation between most-significant-bits (MSBs) of video data. In [10], a heterogeneous 

sizing scheme was presented to reduce the failure probability of conventional 6T bitcells. 

The video memory presented in [11] used the Least-Significant-Bits (LSBs) of video data 

to store the MSBs’ error-correction-code (ECC). Kazimirsky et al. [12] developed a 

hybrid SRAM+DRAM memory to store MSBs in robust SRAM bitcells and LSBs in 

error-prone DRAM bitcells, leading to a tolerable output quality with power reduction. 
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However, all those video memory designs were developed without considering viewer’s 

experience. 

 

2.2 Viewer-Aware Video Memory 

An investigation into viewer-aware low-power video memory techniques in was 

conducted, [4, 5, 6]: where an increased amount of ambient luminance allows for a larger 

number of bits to be truncated without noticeable degradation to the viewers. Very 

recently, the impact of video content characteristics on viewer’s experience to enable 

video content-adaptive memory with dynamic energy-quality tradeoff was studed [7]. 

However, the technique determined the number of truncated LSBs based on the averaged 

plain macroblock percentage of an entire video sample; therefore, it was only effective to 

store low-motion videos with a stationary camera or containing a reporter in a video cast 

use-case. Additionally, this technique may result in noticeable distortion, e.g., a banding 

distortion caused by bit truncation, which negatively influenced the viewer’s experience. 

The common feature of these viewer-aware storage techniques is that the same 

number of the truncated bits were applied on an entire video. In contrast, the technique 

proposed in this thesis realizes content adaptation and ROI awareness within each video 

frame, thereby maximizing the number of truncated bits while maintaining the video 

quality. 
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CHAPTER III 

OVERVIEW OF THE PROPOSED TECHIQUE 

 

In this Chapter, the motivation of the proposed technique that introduces ROI awareness 

as bit truncation is applied for power savings is presented. Then, the high-level overview 

of the proposed technique is shown. 

 

3.1 Motivational Example 

Researchers conducted studies on the human visual system’s (HVS) performance 

and concluded that viewers usually pay more attention to one or a few areas of a video 

and the region of concentration is called Region-Of-Interest (ROI) [13]. For example, in 

video conferencing applications, viewers typically pay more attention to the face regions 

than other areas. In video surveillance, the facial regions are what viewers concentrate 

most on in consecutive frames. Accordingly, ROIs have higher contribution towards the 

overall visual quality than other areas. Consequently, if truncation-caused banding 

distortion appears in ROIs, this will negatively influence a viewer’s experience. Fig. 2 

shows one example. The output quality of the video (Video tag: wF6lvdXXwc4 [14]) 

using the technique in [7] is shown in Fig. 2 (a). Since the banding distortion caused by 

bit truncation appears on the reporter’s face, viewers were less likely to accept the 

displayed degradation due to this particularly noticeable distortion, as emphasized in [7]. 
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Therefore, the motivation for this work arises from the following two 

observations:  

1) In a video frame, the distortion in ROIs is more noticeable by viewers. 

Accordingly, if ROIs can be extracted and protected from truncation, the video quality 

would be improved from the viewer’s perspective (Fig. 2 (b)). A comparison of the 

report’s face using the technique in [7] and the proposed technique with ROI awareness is 

shown in Fig. 2 (c). 

2) There existed a positive correlation between power savings and the number of 

bits truncated in a video decoder’s frame buffer memory [7]. To optimize the power 

efficiency, it would be beneficial to increase the number of truncated bits in other regions 

which are not ROIs: the truncation regions. 
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(a) Output quality using [7] (at 3 truncated bits)

 
(b) Output quality of the proposed technique (at 3 truncated bits) 

 
(c) [7] (left) vs. Proposed technique (right) 

FIGURE 2.  Observer discernable flaws in the facial region. This is due to a “banding effect” on the face 
when comparing (a) and (b) caused the overall quality of the frame to become unacceptable at 3 

truncated bits (Video tag: wF6lvdXXwc4 from [14]). 
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3.2 Overview of the Proposed Context-Adaptable ROI-Aware Video Storage 

Fig. 3 shows the proposed content-adaptable ROI-aware video storage technique. 

During the traditional mobile video streaming process, first, from (1) in Fig. 3, the mobile 

device requests a video for display from the cloud. Then, the streaming servers process 

the requested video by encoding and transmitting the encoded bitstream to the mobile 

device for decoding and display, (2) in Fig. 3. During this process, multiple memories are 

needed for storing the intermediate and final results of the frame data. In particular, the 

reference macroblock, frame memory, and display memory, which store the decoded 

video frames, are accessed very frequently, and they have a profound impact on the 

system’s overall cost and power consumption. The proposed technique extracts ROIs in 

the cloud server and transmits the truncation region data together with the encoded 

bitstream to the mobile device, (3) in  Fig. 3, to further reduce the mobile device’s power 

consumption from computational overhead. The mobile device hardware video decoder 

receives the truncation region data and makes memory bit-truncation decisions for greater 

power savings with less perceived quality loss than [7]. To optimize the truncation 

decision logic of the mobile device hardware, which further improves power 

consumption, either no truncation or 3-bit truncation is applied to the truncation regions. 

Explicitly, the proposed technique is detailed as follows. 
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FIGURE 3.  Proposed Region-Of-Interest and macroblock texture framework. 



12 
 

3.2.1 ROI Awareness 

ROI has been recently applied for different research areas for video system 

optimization, such as wireless transmission [15], virtual reality (VR) [16], and video 

summarization [17]. The proposed technique introduces ROI awareness into video 

storage. Specifically, to minimize the complexity and computational overhead, the 

system focusses on the faces as ROIs in the analysis based on the basic machine learning 

facial detection OpenCV model [18]. Different algorithms, such as user attention model 

[13], motion-based models [17], and machine learning models [19], can be applied in our 

future investigations to extract different ROIs. It should be noted that the complexity of 

ROI extraction algorithms is also a trade-off choice between video quality and 

computation complexity as well as power savings. A simple ROI extraction algorithm 

will save computation resources and power consumption of video encoding. Also, it may 

transmit fewer truncation region bits to mobile devices, so more pixel bits will be 

truncated for power savings in the mobile devices. The drawback is that it will influence 

the video quality. Alternatively, a more complex ROI algorithm will identify additional 

regions and therefore it can convert a video without ROI to a video with ROI, which will 

benefit the video quality, but it will reduce the power savings due to the less truncated 

bits and increased computation complexity. 
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3.2.2 Video Content Adaptation 

After the ROIs to preserve are detected and captured by the framework ROI 

Identifier, it then searches for regions of low variance measured by the percentage of 

plain macroblocks (MBs). Specifically, a MB defines an area of 16x16 pixels within a 

frame. An attribute associated with MBs is how “Textured or Plain” they are. A Plain 

MB is one in which the variance of intensity within the MB is less than or equal to the 

threshold value. It has been concluded in [7] that textured MBs are less susceptible to bit-

truncation. To solve this, the pre-established method is usedfor determining the variance 

in a MB [20]. 

 

𝑉𝑀𝐵 = ∑ ∑ (𝑃(𝑖, 𝑗) − ρ 𝑀𝐵  )2 ≫ 8
15

𝑗=0

15

𝑖=0
                  () 

     MB = {
Plain, if(𝑉𝑀𝐵 ≤ Th𝑙𝑜𝑤)

Textured, Else
                            () 

 

Equations (1) and (2), where ρ𝑀𝐵 is the average brightness within the MB, 𝑉𝑀𝐵 is 

the texture variance within the MB, and traditionally, Th𝑙𝑜𝑤 is defined as a value of 1.25 

[21]. 

3.2.3 Truncation Region Extractor 

After ROIs are identified on the server, a truncation region extractor encodes the 

truncation region data using a proprietary protocol per frame and transmits in 

synchronization with the encoded video transmission to the mobile device. The truncation 

region data is decoded onboard the mobile device’s hardware video decoder in a novel 

Memory Bit Truncation Manager (MBTM) hardware unit: which truncates a novel frame 



14 
 

buffer memory through the use of unique control YUV truncation signals. The video 

decoding and bit truncation processes occur in lockstep. 

3.2.4 3-Bit Truncation 

Truncation is performed in the YUV (Y’CbCr) color space [22], inferring that any 

truncation is done to the YUV color values. The memory designed in [7] truncated 1, 2, 

or 3 bits in the Least Significant Bits (LSBs) of the Y vector 2 of all frames within an 

entire video as a blanket truncation. The proposed technique will enable a different 

number of truncated bits for each region within each frame within an entire video. To 

minimize the implementation overhead, only 3-bit truncation is adopted in the new frame 

buffer, which will be discussed in Chapter V-D. Meanwhile, the proposed technique can 

identify bit-truncation for each Y, U, and V vector of the frame separately for each 

truncation region in each frame, instead of only truncating the Y vector as a blanket 

truncation across the entire video as the existing techniques [4, 5, 7]. Furthermore, the 

proposed technique is expected to enable additional bit truncations as compared to 

existing techniques. Also, to minimize the video quality degradation caused by bit 

truncation, the developed frame buffer truncates three LSBs to the optimal value “100” 

[7], instead of truncating the values to “000”. 

Fig. 4 shows the Akiyo video sample using the proposed technique. The extracted 

preserved ROI region is highlighted in pink. All truncation regions within a frame are 

identified, including the following seven possible truncation combinations: (1) Green, Y 

vector truncation; (2) Blue, U vector truncation; (3) Yellow, V vector truncation; (4) 

Dark blue, YU vectors truncation; (5) Dark Yellow, UV vector truncation; (6) Dark 

green, YV vectors truncation; and (7) Grey, YUV vectors truncation. Each of these 
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combinations would be encoded in the truncation region data for the MBTM to generate 

control signals for memory bit truncation in the video decoding process. 

To conclude, our proposed technique truncates the chroma sub samples within 

each frame as well as the luminosity: Y, U, and V vectors. Previous research only 

targeted luminosity, Y, of a video for truncation, while chroma samples were disregarded 

for the entire video. Also, our technique preserves ROIs that impact viewer perception 

most, while enabling greater truncation for each Y, U, and V vector for the truncation 

regions with textured MBs. Accordingly, the proposed technique will realize a greater 

number of truncation while preserving visual quality. The system-level and circuit-level 

implementations of the proposed technique will be discussed in Chapter V. 
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(a) Original Akiyo Frame (for reference) 

 
(b) Visualized ROI Sample 

 

FIGURE 4. Akiyo frame visualization [23].  Generated using proposed method’s frame parsing process. Pink, 
preserved ROI. Seven possible truncation combinations: 1. Green, Y vector truncation. 2. Blue, U vector 
truncation. 3. Yellow, V vector truncation. 4. Dark blue, YU vectors truncation. 5. Dark Yellow, UV vector 

truncation. 6. Dark green, YV vectors truncation. 7. Grey, YUV vectors truncation. 



17 
 

 

 

 

CHAPTER IV 

ROI EXTRACTION AND TRUNCATION ALGORITHM 

 

In this chapter, the methodologies behind the ROI extraction algorithm will be explained 

in detail, as well as the choice to use a standard public solution instead of devleoping a 

custom ROI algorithm for this circuits needs. 

 

4.1 ROI Algorithm Selection process 

The choice in selecting an ROI extraction algorithm is heavily dependent on the 

type of video being displayed. For instance, the user’s attention will change drastically if 

they ware watching a ports game, as compared to a news broudcast. For this reason, 

standard object detection algorithms do not fully satisfy the requirement of generalizing 

ROI locations within any video stream. Subsequently the development of a general 

solution at determining ROI within any video stream would be a novelty, and is outside 

the scope of this thesis. With this constraint in mind, two factors went into deciding what 

ROI extraction algorithm to use.  

1. An assumption will be made in determining what the user’s 

attention will be in a video stream. This allows a single region extracting 

algorithm to be equivalent to a ROI extractor.  
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2. The region extractor used should be publicly available, and highly 

reputable such that the effectiveness of the ROI is not a concern. 

 

This led to the decision to use OpenCV open-source repository of various frontal 

face detection algorithms [18]. With this repository in mind, the decision was made to 

target news broadcasting video streams as the sample target video genre. Using the 

assumption that the user’s attention will be located on the faces within these video 

streams.  

4.2 Haar Cascade Classifier for ROI Extraction 

 Within the OpenCV repository, all the available facial detection 

algorithms were tested to find an optimal algorithm, of which 

‘HaarCascade_FrontalFace_mlt2.xml’ was selected, as it provided the easiest interface, 

and was a very predictable and algorithmic approach to facial detection. However, it 

should be noted that any facial detection algorithm could have been used, such as the 

Eigen vector approaches, Fisher’s Linear Discrimination Analyzer, or Local Binary 

Pattern apprioch [23]. The model chosen uses the Haar cascade approach for facial 

recognition. This apporch uses digital image processing to translate an input image into a 

feature set, then from this featureset a classifying machine learning algorithm is used to 

distinguish if the image contains a face or not. This classifier was trained using the ‘Open 

Images V4’ dataset, which contains 15.4 million bounding box images, which was used 

to train the classifier [24]. This implies that the classifer follows the ‘You Only Look 

Once’ (YOLO) methodology, and thus no time information is considered in detecting a 
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face within an image. Thus, all frames within a video are treated indepentently from 

oneanother.  

 

4.3 Memory Structure and YUV Colorspace 

 The face detection classifier used for ROI extraction naturally does not 

consider the underlying memory structure of the decoder when classifying images. For 

this reason, any region defined as a ROI from the classifer needs to be mapped to a 

specific byte in memory before truncation. In this specific usecase, the target decoder is 

the H.264 decoder, which uses a 16x16 pixel macroblock within the memory structure. 

To ensure that all the ROI is preserved in the output of the decoder, a conservative 

decision was made, such that if a single pixel within a macroblock is defined as an ROI, 

the whole macroblock is preserved. It is important to note that the H.264 decoder uses the 

YUV colorspace in the memory structure [2]. Thus, any bits truncated in memory effect 

the YUV colorspace, and does not directly affect the RGB output of the decoder. The 

YUV colorspace is used throughout the decoder, and is translated to the RGB colorspace 

in a conversion circuit before the video stream leaves the decoder. Thus, the effect of 

truncating a single YUV color byte will influence a 16x16 pixel region on the RGB 

display. 
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4.4 Complete Truncation Algorithm 

 With the ROI extraction classifier in place, and macroblock variance 

defined with equation (2), it is possible to process any frame. The algorithm Implimented 

works as such: 

1. Find ROI within frame via ROI extraction algorithm, store ROI 

macroblock locations in memory 

2. Calculate Macroblock Variance via Equation (2) for each 

macroblock. 

3. If a macroblock is defined as non-ROI from step #1, and High 

Variance from Step #2, truncate the macroblock memory cell. 

This algorithm is very effective in that steps #1 and #2 can be done in parralell 

using entirely different CPU cores, or different integrated circuit structures. This would 

theoredically allow such an algorithm to be effective even for live video broadcasting.  
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CHAPTER V 

PROPOSED TECHNIQUE: SYSTEM AND CIRCUIT LEVEL 

IMPLEMENTATION 

 

This Chapter presents the system-level and circuit-level implementation of the 

proposed technique. 

 

5.1 System Level Implementation: Video Streaming Platform 

Fig. 5 shows the developed system-level video streaming platform. As shown, a 

Raspberry Pi [25] microcontroller was used to serve as a video streaming server with 

which a mobile device would communicate and retrieve video data. Also, a Z-Turn 7020 

[26] board and synthesized an H.264 video decoder was utalized into the on-board Xilinx 

Zynq 7020 Field Programmable Gate Array (FPGA) which would operate as a mobile 

device. Finally, the decoded video data was captured via a Magewell [27] HDMI Video 

Capture & Display Device.  

The corresponding block diagram for Fig. 5 is illustrated in Fig. 6. The video 

streaming process is kicked-off by a command from the mobile device to the server to 

retrieve an encoded H.264 video stream over Secure Copy Protocol (SCP) [28]. The 

mobile device sends the initial kick-off command to the server over a serial terminal on a 

PC interfaced with the mobile device over USB. The server then processes the video 
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stream requested by the mobile device by both transmitting an H.264 encoded format of 

the video stream over SCP to the mobile device and parsing the frames for truncation 

region information. 

 

FIGURE 5.  H264 video stream demonstration platform hardware system. 
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FIGURE 6.  Mobile video steaming system block diagram. 

 

TABLE 1. Truncation Region GPIO Protocol. 

(a) SERVER-TO-MOBILE DEVICE                                                               (b) MOBILE DEVICE-TO-SERVER 

Index 0 Index 1 Index 2 Index 3 Index 4 … Index N+1 Index 

N+2 

Index 

N+3 

 Index 0 Index 1 

Frame 

Number 

Number 

of 

Regions 

YUV1 

Truncation 

(X11,Y11) (X12,Y12) … YUVN 

Truncatio

n 

(XN1,YN1) (XN2,YN2)  Frame 

Number 

Request 

Send Frame  

Flag 

22 bits 16 bits 3 bits 22 bits 22 bits … 3 bits 22 bits 22 bits  22 bits 1 bit 
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After the video frame is parsed on the server, the truncation region information is 

transmitted over GPIO per frame. In our developed system, the protocol is defined 

inTable 1. Only the truncation region information of the frames that would be truncated is 

transmitted. The preserved ROI information will not be transmitted as these regions are 

identified prior to the transmission on the server and preserved. As listed in Table 1, the 

first index, index 0, denotes the current frame number parsed. The second index, index 1, 

denotes the number of truncation regions to truncate. Then the next indices denote the 

first three YUV truncation signal bits plus two sets of XY coordinates denoting the left 

top and right bottom corners of rectangles grouping the affected truncation region. These 

three indices repeat for each region called out by the “Number of Regions”, index 1. The 

GPIO interface data width bit size of the developed system is 22-bits per index. The 22-

bit distribution is to account for a maximum of 211 x 211 pixel addressing – a max 

resolution of 1,920 × 1,080 – totaling 22 bits. There is an additional 2 handshaking bits 

between the server and mobile device to denote data reception confirmation in-order to 

transmit the next index. 

This truncation region information will be transmitted to a MBTM for processing 

in the mobile device side, as discussed in Chapter V-B. The MBTM will generate control 

signals for the frame buffer memory, thereby determining which sub-pixels – from Y, U, 

and/or V – shall be truncated for each frame written to the frame buffer memory, which 

will be detailed in Chapter V-D. Finally, the decoded and bit-truncated frame is output 

over HDMI from the mobile Device and captured by the Video Capture & Display 

Device. 
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5.2 Memory Bit Truncation Manager (MBTM) 

The MBTM implemented into the H.264 decoder parses the protocol data that is 

transmitted by the server’s Truncation Region Extractor. The flow is broken down as 

follows. First, from Fig. 7 (a), the encoded frame is transmitted via SCP to the mobile 

device. Fig. 7 (b) illustrates the truncation regions determined to be bit-truncation capable 

on a sub-frame vector level: Y vector, U vector, and V vector each encompassing all the 

sub-frames summing to a frame. From Fig. 7 (b), the gray areas denote the truncation 

regions determined to be bit-truncation capable for all Y, U, and V vectors. The areas in 

boxes are regions where only 1 or 2 vectors were determined to be bit-truncation capable. 

Two coordinates, top-left and bottom-right, are highlighted in Fig. 7 (b) for each of these 

regions to show how the truncation region data was used to determine the regions to 

truncate using the protocol in Table 1. A total of 61 regions to truncate are shown in Fig. 

7 (b). Fig. 7 (c) shows the resultant frame after Fig. 7 (a) is decoded using the identified 

truncation region information. As shown, the preserved ROI around the face, pink region 

from (b), is not truncated to avoid visual quality degradation. The frame is decoded 

normally, but when it is written into the frame buffer, the transmitted truncation region 

information is used to control the T_Y, T_U, and T_V control inputs to truncate the 

frame buffer memory as it is written. These control inputs are provided to the proposed 

frame buffer in Fig. 8, which will be discussed in detail in Chapter V-D.  
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FIGURE 7.  (a) Encoded frame 175 from Johnny_1280x720_60 video [23]. (b) Visual of areas being 

truncated. 45 regions total. (c) Output decoded frame. 2,282,496 bits truncated. 
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5.3 H.264 Decoder and MBTM Integration 

A H.264 video decoder is implemented based on the Open Source Osenlogic 

OSD10 decoder IP [29]. This decoder was capable of decoding baseline profile level 3.1 

encoded bitstreams. The slice types supported were I-Slice, SI-Slice, P-Slice, and SP-

Slice [30]. The entropy coding profile supported was Context-Adaptive Variable-Length 

Coding (CAVLC). The decoder took an H264 Network Abstraction Layer (NAL) 

bitstream and output YUV 4:2:0. 

During the NAL bitstream parsing process, the bitstream is parsed into raw bytes 

of syntax elements from the Raw Byte Sequence Payload (RBSP). Within the RBSP, 

therein lies the slice layers. Ignoring the Sequence Parameter Set (SPS) and the Picture 

Parameter Set (PPS), the Instantaneous Decoder Refresh Access Unit (IDR Slice(s)) and 

the slice layer includes all slice headers and slice data for the frames that shall be 

truncated using the MBTM. H.264/AVC defines a frame as an array of luma samples and 

two corresponding arrays of chroma samples: denoted as YUV. 

Specifically, the slice header includes the parameters first_mb_in_slice, which 

indicates the position of the first macroblock in the slice data, and frame_num, which 

represents the order in which a video decoder shall decode the encoded frames. This is 

not the same as the display order or Picture Order Count (POC), which is the order in 

which the frames are displayed. The frame_num parameter is used to determine which 

frames during the decoding process would be susceptible to YUV bit-truncation by the 

MBTM and the first_mb_in_slice is used to determine the starting coordinates of the 

macroblocks susceptible to bit-truncation. The slice data included all the macroblocks of 

the slice. 
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After the MBTM determined that a frame would be truncated, through a 

conditional match between the frame number parameter from Table 1(a) and frame_num, 

a running count of the current macroblock index was kept track of internally to the 

MBTM from the slice data starting with the index of first_mb_in_slice. After the MBTM 

determined that a macroblock would be truncated, through a conditional match of the 

running macroblock index and the truncation region given by the two indices from Table 

1 (a) that indicate the rectangular region which YUV truncation would be applied, the 

MBTM passes through the YUV truncation signal, from  Table 1 (a), to the frame buffer 

which would result in the macroblock being truncated to the desired amount. An internal 

signal denoting the number of macroblocks truncated in the frame is then incremented. 

After all the macroblocks desired to be truncated in the frame are truncated, denoted by 

the number of ROI parameter from Table 1 (a), then from Table 1 (b), the Send Frame 

Flag is set then reset by the MBTM over GPIO to signal the next frame information to 

truncate. From Table 1 (b), the Frame Number Request index is used to fetch any frame 

index truncation information for macroblocks that required multiple frames for 

prediction. This process is repeated until the end of the NAL bitstream. 

The trade-off with utilizing the BTM is the additional GPIO parallel bitstream 

overhead required to truncate the macroblocks in each frame. Each frame parsed had an 

absolute worst case overhead of approximately 380,738 additional bits to transmit using 

the protocol from Table 1. This worst case is calculated assuming every macroblock with 

16 × 16 pixels in a maximum resolution of 1,920 × 1,080 would be truncated differently 

per frame in a video. On average, however, the number of additional bits transmitted per 

frame is 1,200, because the maximum resolution of each frame is 1920 × 1080 and the 



29 
 

truncation regions are combined to encompass a greater area in the video to save on bits 

transmitted: on average 50 truncation regions per frame. With a 1920 × 1080 video at 30 

frames per second progressive (1080p 30fps) or a 1280 × 720 videos at 60 frames per 

second progressive (720p 60fps), i.e. 5,000 kbps bit rate, the worst case percentage 

overhead would be 7.62% with an average of 0.02% per frame. The protocol utilized is 

one of the simplest methods to implement the proposed technique. 

 

5.4 Circuit Level Implementation of the Proposed Frame Buffer Memory 

During the video decoding process, multiple memories are needed. In particular, 

the frame buffer memory is accessed very frequently and it has a profound influence on 

the system’s overall cost and power consumption [7]. In this thesis, a new frame buffer is 

designed, and the circuit-level implementation is shown in Fig. 8. Specifically, the logic 

in the truth table highlighted in yellow was designed to be supported by the MBTM. 

Here, T_Y, T_U, and T_V are utilized to truncate Y, U, and V byte from the word. Each 

word consists of a Y, U, and V byte. During the Write Enable (WE) phase of the frame 

buffer memory access, if either control line of T_Y, T_U, and / or T_V are asserted, the 

memory would truncate the 3-LSB of the optimal asserted vector as “100” [7]. The 

proposed frame buffer has M words and each word consists of N bits. To evaluate the 

functionality and measure average power consumption of this proposed circuitry, a 128-

word by 24-bits memory array is designed. Here, input and output pins are denoted as 

data[23:0] and out[23:0] respectively. Bits 23-16 are named Y byte, bits 15-8 are named  
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FIGURE 8 Circuit-level implementation of the proposed frame buffer memory 
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U byte, and bits 7-0 are named V byte. The memory implemented had a driver U byte, 

and bits 7-0 are named V byte. The memory implemented had a driver and sense 

amplifier for writing and reading data. These enabled bits truncation according to T_Y, 

T_U, and T_V control signal activation. If T_Y, T_ U, and T_V are all de-asserted as 

logic ‘0’, then the frame buffer would operate as a traditional memory device where the 

sense amplifier would operate with a supply voltage (VDD) and pre-charge signal phi2b. 

When the T_Y signal is asserted as logic ‘1’, the peripheral circuitry would generate two 

signals: y! which is the inverted value of T_Y and y_pre! which is inverted value of the 

pre-charge enable signal. These two signals are used to control the sense amplifier for the 

Y byte’s 3-LSBs, thereby enabling truncation. During this process, the VDD for this 

sense amplifier remains grounded and the pre-charge signal would be reactivated. As a 

result, the power consumption of this portion of circuitry will be reduced as compared to 

the normal operation. During the read back operation, the 3-LSBs are generated as “100” 

though use of three 2:1 multiplexers in-place of regular of data output. When the bit 

truncation is asserted, these multiplexers would select “100” through control signals y!, 

u!, or v!. Otherwise, these multiplexers would pass normal readout data values. In 

addition, the VDD of all the 3 LSBs of each byte are also controlled by the corresponding 

control signals y!, u!, and v!. During the truncation, VDD for LSBs can be powered off to 

save power consumption and multiplexers will select “100” as the output data, thereby 

achieving low-power operation. The detailed timing diagram and power efficiency of the 

proposed memory will be discussed in Chapter VII. 
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CHAPTER VI 

EXPERIMENTAL METHODOLOGIES 

 

This Chapter discusses the metrics, methods, and strategies used to evaluate the 

effectiveness of the proposed technique. The testing and analysis setup used to generate 

the experimental results is also discussed. 

 

6.1 Video Selection 

To verify the effectiveness of the proposed technique, 74 videos with diverse 

characteristics were selected from the YouTube 8M dataset [14], YouTube UGC dataset 

[31], and Xiph.org Video Test Media [32]. As shown in Fig. 13, those videos have 

different resolutions (e.g. 288 × 352, 1280 × 720, and 1920 × 1080) and different MB 

variance characteristics (low, medium, and high). Of those videos, 60 videos contain 

facial features to enable ROI preservation using the proposed technique. All videos were 

converted to the YUV 4:2:0 chroma subsampling standard for ease of bit-truncation. A 

detailed statistical analysis shows that our selected videos are representative of the full 

population of videos in general, which will be discussed in Chapter VII-E. 
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6.2 Video Frame Quality Metrics 

Existing video quality metrics such as PSNR and structural similarity (SSIM) [33], 

which are used widely to evaluate the video quality, but it fails to incorporate the 

importance of ROI. This is because these metrics weigh all pixels of the video equally, 

regardless of user awareness. For this reason, another video quality metric – Weighted Peak 

Signal to Noise Ratio (WPSNR) – is used in this thesis to evaluate the quality of videos 

with ROI [22], which is defined as [34]: 

 

WPSNR = 10𝑙𝑜𝑔10(2552/ 𝐷𝑓𝑟𝑎𝑚𝑒)                                 (3) 

𝐷𝑓𝑟𝑎𝑚𝑒 = 𝛂 ∗ MSE(f, f ′) + (1 − 𝛂) ∗ MSE(f, f ′)              (4) 

 

Where MSE stands for the Mean Squared Error between the original frame and 

after truncation while 𝛂 (alpha) is defined as the weight that the ROI would have. The 𝛂 

value will be a constant value of 0.9 following the previous research in [22]. This combines 

PSNR with ROI information, however such an ROI weighted metric is not widely accepted 

for SSIM. For this reason, videos with ROI information will be evaluated using WPSNR, 

whereas videos without ROI information will have both PSNR and SSIM.  

 

6.3 System and Circuit Level Implementation 

The hardware system platform from Fig. Fig. 5 implemented an H264 decoder 

synthesized into a Xilinx Zynq XC7Z010 FPGA fabric. The H264 decoder IP Core was 

designed using the Xilinx Vivado 2019.2 [35] software design suite. This same decoder is 
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modified to include an MBTM. The FPGA was commanded via an ARM Cortex-A9 

Processor running on a Linux Operating System through a custom baseband driver. 

The circuit-level frame buffer is implemented using a 45nm CMOS technology 

[36]. The supply voltage is 1.0V. The memory size is 128 words at 24 bits per word.  

 

6.4 Video Quality Evaluation 

All selected videos were analyzed using an in-house custom software tool. The tool 

operated in the following three-step process: (i) Load one original video frame from 

memory; (ii) Apply both the method in [7] and the proposed method to the original frame 

and generate the truncated frame using each method; and (iii) Compare the frames 

generated against the original frame and calculate the PSNR, SSIM and WPSNR values. 

With data points collected on a per-frame basis, the average PSNR, SSIM and WPSNR of 

each video stream was calculated and compared. 

 

6.5 Statistical Hypothesis Validation 

From the proposed method, a hypothesis was conjectured: that the differences 

between the method in [7] and the proposed method follow a Normal, or near-Normal 

distribution. This should hold true for both PSNR and WPSNR. To support this hypothesis, 

a goodness of fit regression test was preformed to determine if the data falls within the 

probability plot of a Normal or Weibull distribution. If the data follows this hypothesis, 

this would suggest that the sample set of videos is of adequate size and as a result, no more 

videos would need to be tested. 
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CHAPTER VII 

EXPERIMENTAL RESULTS 

 

7.1 Mobile System Utilizing Proposed Method Overhead 

Fig. 10 and Fig. 11 show the post-implementation project summaries of the baseline H264 

decoder and the H264 decoder modified to include an MBTM. When comparing both 

figures, one observes that the Lookup Table (LUT) overhead, which is the additional logic 

gates required for the proposed design over the baseline, was 204 LUTs or a 0.38% increase 

in area. The I/O, which was used for the server-to-mobile device interface, increased by 

37, or 29.6%. The power consumption of the modified decoder also increased by 0.068 

watts or 0.03%: most of which was attributed to the increased number of I/O.  

TABLE 2. Summary of SYSTEM Overhead/Cost Using the Proposed Method at 1920 × 1080 Resolution 

 Description Data 

Bitrate: Server to Mobile 

Device 

Additional bits transmitted from server to mobile device for 

protocol per frame 

1,200 bits or a 0.02% 

increase on average per 

frame 

Power Consumed: Mobile 

Device 
Additional power consumed on the mobile device in Watts 

0.068W or 0.03% 

increase due to 

additional I/O 

Network Overhead 
Additional time needed for additional protocol data to transmit 

per frame over the 4G LTE network 

Between 240μs and 

100μs more time per 

frame on 4G LTE at 

5Mbps and 12Mbps 

Logic Gates: Mobile Device 
Additional Look Up Tables (LUTs) needed on the FPGA 

implementing the Proposed Method on the mobile device 

204 LUTs or a 0.38% 

increase in area 
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Finally, the Worst Negative Slack (WNS) increased by 0.011ns, which was within 

acceptable tolerance for this system as any positive value means that the critical path passes 

timing constraints. Overall, this additional overhead was tolerable when compared against 

the benefits in power savings and quality improvements achieved using the proposed 

technique. 

Table II presents the summary of all the overhead associated with the system 

implementing the proposed method with video resolution1920 × 1080, which is the 

maximum resolution supported by the system. The primary advantage of the proposed 

method is the power savings achieved onboard the mobile device’s H264 hardware decoder 

frame buffer memory, discussed later from Fig. 12. The disadvantages are the bitrate, 

power consumption, network, and logic gate overhead. From Table 2, the mobile device 

needs to receive 1,200 additional bits on average per frame from the server. This coupled 
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FIGURE 8.  Timing diagram of the frame buffer circuit. 
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with 204 additional LUTs required and 240μs of additional network uptime result in a 

0.03% increase in mobile system power consumption.  

 

7.2 Circuit Level Frame Buffer Timing Diagram 

The proposed frame buffer is shown in Fig. 8 and the simulation timing diagram is 

shown in Fig. 9. In this waveform, phi2b, T_Y, y!, and y_pre! denote the pre-charge (for 

(a)

(b)

 

FIGURE 9.  Hardware FPGA system post- implementation project summary without BTM. (a) On-Chip Power, 

Total Power: 2.203W. (b) Resource allocation. 
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un-truncated bits), bit truncation enable for Y byte, power supply for truncated bitcell’s 

(last 3 LSBs of Y byte), and pre-charge deactivated signal for truncated bit cells, 

respectively. T_U and T_V controlled the bit truncation for U and V bytes respectively. 

Write and read enable signals initiated the write and read operations for the memory 

accordingly. Data [23:0] were the three bytes of each word of the proposed memory buffer. 

Here, blue to red lines stand for “don’t care” regions. The red lines denote where the rising 

clock edge was initiated for write and read operations. Finally, the green lines denote that 

(a)

(b)

 

FIGURE 10.  Hardware FPGA system post-implementation project summary with BTM. (a) On-Chip 

Power, Total Power: 2.271W. (b) Resource allocation. 
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the write and read operations were enabled. All 8 truncation permutations and traditional 

read and write operations were presented in the timing diagram as an exhaustive simulation 

of the frame buffer circuit. 

It should be noted that, if the bit truncations were initiated, then 3 LSBs were 

truncated from the selected byte/bytes based on the control signals T_Y, T_U, and T_V. 

During the read operations, the 3-LSBs of the truncated bytes would output “100” bits 

through the utilization of 2:1 multiplexers instead of being read from memory to save 

power.  

 

7.3 Circuit Level Frame Buffer Power Savings Analysis 

Fig. 12 presents the power consumption of the proposed frame buffer in all eight 

possible conditions, including seven truncation cases and one baseline case without bit 

truncation. Specifically, the eight cases include: (i) No truncation with control signals T_Y 

& T_U & T_V =’0’, (ii) Y vector truncation with T_Y=’1’, (iii) U vector truncation with 

T_U=’1’, (iv) V vector truncation with T_V=’1’, (v) Y and U vectors truncation with T_Y 

& T_U =’1’, (vi) U and V vectors truncation with T_U & T_V=’1’, (vii) V and Y vectors 

truncation with T_V & T_Y =’1’, and (viii) YUV vectors truncation with T_Y & T_U & 

T_V =’1’. As discussed in Chapter IV-B, for the truncated vectors, the three LSB will be 

truncated to “100” to maximize power savings. All 8 truncation cases presented in Fig. 12 

are tested in 6 ways: when written (‘0’ to ‘0’, ‘0’ to ‘1’, ‘1’ to ‘0’, ‘1’ to ‘1’) and when read 

back (‘0’ & ‘1’). The power consumed in each case was calculated, and then the average 

is presented. 
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At first, a random word was initialized with (A5A5A5)16, then the same memory 

word was immediately read back with (F0F0F0)16, then all the ‘1’s and ‘0’s written and 

read received the same priority in the power consumption calculations. The same word 

consumed 3.90E-4 W power without any bit truncation. When the circuitry selected any 

T_Y, T_U or T_V control option, where 3-LSBs were truncated from each one selected, 

6.67% power was saved when compared against no bit truncation. When T_Y & T_U, 

T_Y & T_V or T_U & T_V were selected, where 3-LSBs were truncated from each 

selected byte, then 13.33% power was saved when compared against no bit truncation. 

Finally, when T_Y, T_U, and T_V were selected for truncation, where 3-LSBs were 

truncated from each selected byte, then 19.74% power was saved. The supply voltage for 

this simulation was 1V, where the proposed frame buffer circuit can operate to 

specification and had no faulty bit(s).  

 

6.67% savings

13.33% savings

19.74% savings

No 

Trun.

Y Byte  

Trun.

U Byte 

Trun.

V Byte 

Trun.

(Y & U) 

Bytes  

Trun.

(Y & V) 

Bytes  

Trun.

(U & V) 

Bytes  

Trun.

(Y, U & V) 

Bytes  

Trun.  

FIGURE 11.  Power savings (one word) of the frame buffer circuit. 
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7.4 Video Visual Quality Comparisons 

Fig. 13 shows visual frame comparisons for three selected videos with ROI between 

the proposed method and [7]. The proposed technique enables significant visual quality 

improvement as compared to [7]. Specifically, for the Foreman_cif video, due to the 

truncated LSBs in [7], the man’s cheeks, forehead, and hat shadows experience noticeable 

banding distortion, negatively affecting video quality. Alternatively, the proposed ROI-

aware technique effectively reduces the banding distortion and improves the visual quality. 

Similarly, with [7], the mother_daughter_cif demonstrates banding distortion around the 

cheeks and hair, and the carphone_qcif video suffers from discoloration around the cheeks 

and chin. The introduced ROI awareness of the proposed technique effectively avoids 

losing the quality of videos. Another observation from Fig 13 is that the proposed technique 

achieves a much higher WPSNR value of all three videos. A more detailed analysis on 

WPSNR will be provided in the next sub-chapter. 

 

7.5 Objective Video Quality and Bit Truncation Analysis 

Fig. 13 compares WPSNR values and the number of truncated bits of 60 videos 

with ROI using the proposed technique to the state-of-the art [7]. As shown, the proposed 

technique can enable 26.46% additional truncated bits as compared to [7]. Meanwhile, with 

the ROI awareness, the proposed technique can effectively enhance the quality of the 

majority of videos. On average, the proposed technique can increase the WPSNR values 

by 20.17% videos, as compared to [7]. 

Further analyziong the impact of the MB variance characteristics (low, medium, 

and high variance) on the effectiveness of the proposed technique. The results are shown 
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in Fig. 14. As can be seen, the WPSNR improvement strongly depends on the MB variance 

of videos. Specifically, videos with high variance achieve the most significant quality 

improvement using the proposed technique, with 47.31% WPSNR increase on average. 

With the proposed technique, all videos with medium variance also demonstrate quality 

improvement, with 13.74% WPSNR increase on average. However, the proposed 

technique shows little video quality improvement for videos with low variance and even 

results in minimal video quality degradation (with 1.75% WPSNR loss on average. This 

suggests that the proposed technique is particularly effective for videos with high and 

medium MB variance.  

Analyzeing the results of 14 videos without ROI. As shown in Table 3, the proposed 

technique can enable a significant number of truncated bits, with a minimal PSNR drop. 

On average, 44.61% additional truncated bits can be achieved, with 3dB PSNR loss.  

Finally, the average SSIM was calculated for all video streams without ROI to 

verify the quality drop within each video. Table 4 verify that the quality loss within each 

video was minimal. With the average loss in each video being 0.0223 for videos with ROI, 

and 0.0167 for videos without ROI respectively. This is the expected result, as videos 

without ROI experience color truncation in all regions of the video, thus the user is more 

susceptible to noticing quality loss.  
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7.6 Video Level Power Savings Analysis 

To compare the power effectiveness of the proposed ROI-aware technique to the 

traditional memory design and the state-of-the art [7], a model was built to simulate the 

power consumption of the memory for a video as: 

  ( ) ( )
=

=
iN

j

k

i

i jP
N

VideoP
1

1
                

  ( )3,2,1,0k                                                (3)  

where Ni is the total number of bytes for the video i, Pk(j) is the normalized power 

consumption to store byte j with k truncated bits. For the proposed memory, k = 3; for the 

traditional memory, k = 0; for the memory in [7],  k = 0, 1, 2, or 3. For a fair comparison, 

the normalized power consumption Pk(j) is based on the power consumption reported in 

[9]. The results are listed in Fig. 13 and Table 3. As observed, the proposed technique only 

consumes 83.79% and 76.56% total power on average for videos with ROI and videos 

without ROI, respectively, as compared to the traditional memory. Also, the proposed 

technique achieves 3.06% and 8.26% power savings for videos with ROI and videos 

without ROI, respectively, as compared to [7].  It is worth mentioning that, our analysis 

only considers the facial features as ROI of videos and integrating advanced ROI 

identification algorithms will covert videos without ROI to videos with ROI, thereby 

further increasing the effectiveness of our proposed technique to general videos. 
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Figure 13. VISUAL COMPARISON OF SELECTED VIDEO FRAMES 
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7.7 Statistical Analysis 

Various videos were analyzed using the proposed method. In-order to confirm that 

the selected video analysis results are a representation of the full population of all videos, 

a statistical analysis of the results was conducted. to verified the statistical analysis to 

determine that the results are relevant across all videos not analyzed. Specifically, the 

Pearson’s Chi-square test [37], which is also known as the Chi-Squared goodness-of-fit 

test, is used in our analysis. The goodness-of-fit test checks whether the sample data is 

likely to be from a specific theoretical distribution, and therefore represents the data 

expected in the actual population. The idea is, if the sample data does fit an expected 

distribution, then it shows that the sample data represents the full population of the video 

data in existence. The statistical results will either reject or accept the working statement 

called the null hypothesis, H0, which is the opposite of the alternative hypothesis, H1. To 

reject or accept the null hypothesis, several methods exist, one of which is the Probability 

value method i.e. P-Value method. The P-Value is the evidence against the null hypothesis, 

i.e., the smaller the P-Value, the stronger the evidence that the null hypothesis should be 

rejected. The P-Value method is based on a critical value, which is determined based on 

the distribution. For example, if the data shows a normally distributed population – which 

according to the statistical results shown later, this critical value is a z-score. The z-score 

is a value that is then used to lookup the P-Value in a Standard Normal z-table, which is 

used to then test the null hypothesis. If a P-Value is greater than an alpha or 𝛂 value of 

0.10, then the statistical results are “not significant” and thus, the null hypothesis is 

accepted. However, if the P-Value is less than or equal to 𝛂 values of 0.05 or 0.01, then the 
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results are “significant” or “highly significant” respectively, and thus, the null hypothesis 

is rejected in favor of the alternative hypothesis. The rejection regions depend on the 

confidence level that the results are significant, e.g., if a confidence level is 95%, then an 

𝛂 value of 5% or 0.05 is chosen: 100% - 95%. 

In our analysis, the null hypothesis for the Chi-Squared goodness-of-fit test, H0, is, 

“For the given set of video data points, a specified distribution accurately represents the 

data”, and therefore, the alternative hypothesis, H1, is, “For the given set of video data 

points, a specified distribution does not accurately represent the data.” Hence, the goal of 

the statistical analysis is to validate the null hypothesis and thus deduce that the specified 

distribution would fit the data. To achieve this statistical result, P-values were calculated 

for each data set – low, medium, and high variance – for WPSNR metrics, Power Savings, 

and video noise introduced. The Chi-Squared goodness-of-fit test can only be used for data 

put into classes (or bins); therefore, the data sets are put into histograms:  Figs 14, 15, 16, 

and 17 used the MathWave Technologies EasyFit software[38], to find the Chi-Squared 

goodness-of-fit test, in order to determine the type of distribution. In the video analysis 

results, the WPSNR metrics, power savings, and video noise were calculated and 

introduced for all 74 videos for both the truncation method in [9] and the proposed method. 

As well, the data was split into three sets referred to as low, medium, and high variance, 

which corresponded to 1-bit, 2-bit, and 3-bit truncation videos using the truncation method 

in [9], respectively. These data are what are refer to as video data points in our statistical 

analysis. 
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Fig. 15 demonstrates how categorizing the data creates clear groupings when 

comparing the truncation method in [7] to the proposed method. The figure shows three 

distinct 3-parameter Weibull distributions that describe the quality improvement between 

the proposed and [7]. These Weibull distributions are within the 95% confidence interval 

required. Each distribution reports a P-value greater than 0.1, implying that we cannot 

reject the null hypothesis and accept this distribution as a possible representation of the 

data. Fig. 16 shows the power savings distribution for each video type as a 3-parameter 

Weibull distribution. Power savings is  reported as a percentage increase, using the total 

number of bits truncated in each video and the power consumption shown in Fig. 12. All 

of these distributions pass the 95%  

confidence interval. 17 shows the probability of noise increase in a random video 

stream. All distributions shown fall into the category of normal distributions with a 95% 

confidence interval. Fig. 18 shows the probability of quality drop measured in SSIM for a 

random video stream, with a 95% confidence interval that the probability lies within a 

normal distirbution. The most notable differences between the Figure 16 and Figure 17 is 

that the Medium and Low Variance videos show very little difference for the SSIM loss, 

whereas the loss is very distinct in the PSNR distribtuion.  

It was determined that because all videos are compared to themselves for 

improvement, e.g., video after the proposed method is applied verses the original video, 

video resolution has no statistical impact in the data set. Power Consumption will be 

presented by improvement percentage, thus ignoring linear growth in watts saved in larger 

scale videos. Similarly, it is statistically sound that a larger dataset is not needed to affirm 
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the distributions. As all distributions shown fall within the 95% confidence interval, there 

is only a 5% chance that the data collected is far from the specified distribution. 

In summary, videos categorized as high variance show the biggest improvements 

in WPSNR quality, the most power saving by percentage, and introduce the least noise as 

measured by PSNR and SSIM. With medium variance videos also saving on power 

consumption, with a more noticeable drop in quality and increase in noise. As such, videos 

classified as low variance often have little to gain using this method, and sometimes even 

cause video quality degradation. 
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TABLE 3. Results of ROI Videos 

Videos with ROI Truncated bits Normalized power consumption WPSNR (Alpha = 0.9) 

Ref. [7] Proposed diff Ref. [7] Proposed diff Ref. [7] Proposed diff 
akiyo_cif 30,412,800 32,922,081 8.25% 90.97% 93.55% -2.83% 57.53 55.14 -4.16% 

claire_qcif 50,079,744 44,009,266 -12.12% 90.97% 94.76% -4.16% 57.61 57.10 -0.88% 

dinner_1080p30 1,969,920,000 1,629,113,461 -17.30% 90.97% 95.07% -4.50% 57.32 58.21 1.56% 

grandma_qcif 88,197,120 78,023,685 -11.53% 90.97% 94.73% -4.12% 57.57 57.21 -0.62% 

intros_422_cif 36,495,360 43,295,433 18.63% 90.97% 92.93% -2.15% 57.45 55.15 -4.01% 

Johnny_1280x720_60 553,881,600 456,595,131 -17.56% 90.97% 95.09% -4.52% 57.07 58.44 2.39% 

KristenAndSara_1280x720_60 553,881,600 488,596,289 -11.79% 90.97% 94.74% -4.14% 56.99 57.37 0.65% 

miss_am_qcif 15,206,400 10,966,364 -27.88% 90.97% 95.70% -5.20% 57.60 58.54 1.63% 

news_cif 30,412,800 36,162,420 18.91% 90.97% 92.91% -2.13% 57.52 54.48 -5.27% 

rush_hour_1080p25 1,036,800,000 1,134,324,798 9.41% 90.97% 93.48% -2.75% 57.49 55.78 -2.97% 

sign_irene_cif 54,743,040 64,431,060 17.70% 90.97% 92.98% -2.21% 57.48 55.01 -4.29% 

trevor_qcif 15,206,400 16,565,578 8.94% 90.97% 93.50% -2.78% 57.31 54.99 -4.05% 

vidyo1_720p_60fps 553,881,600 597,801,678 7.93% 90.97% 93.57% -2.85% 57.54 56.05 -2.58% 

west_wind_easy_1080p 1,181,952,000 1,086,498,282 -8.08% 90.97% 94.52% -3.90% 56.81 55.68 -1.99% 

720p50_mobcal_ter 928,972,800 1,325,076,458 42.64% 86.60% 82.99% 4.17% 47.88 54.16 13.12% 

720p50_shields_ter 928,972,800 1,245,591,004 34.08% 86.60% 84.01% 2.99% 47.69 54.48 14.25% 

aspen_1080p 2,363,904,000 3,041,639,112 28.67% 86.60% 84.66% 2.24% 47.92 54.97 14.71% 

blue_sky_1080p25 899,942,400 1,060,438,048 17.83% 86.60% 85.95% 0.75% 47.66 55.10 15.61% 

bowing_cif 60,825,600 76,915,166 26.45% 86.60% 84.92% 1.94% 48.02 53.69 11.81% 

bridge_close_cif 405,504,000 560,890,106 38.32% 86.60% 83.51% 3.57% 47.95 54.13 12.88% 

carphone_qcif 77,451,264 88,390,034 14.12% 86.60% 86.39% 0.24% 48.04 54.52 13.48% 

controlled_burn_1080p 2,363,904,000 2,937,098,762 24.25% 86.60% 85.18% 1.63% 47.96 55.18 15.06% 

crew_4cif 121,651,200 172,691,140 41.96% 86.60% 83.07% 4.07% 47.54 53.54 12.61% 

crowd_run_1080p50 2,073,600,000 3,005,452,078 44.94% 86.60% 82.72% 4.48% 47.42 53.55 12.93% 

deadline_cif 278,581,248 334,134,316 19.94% 86.60% 85.70% 1.04% 48.02 54.48 13.45% 

FourPeople_1280x720_60 1,107,763,200 1,318,759,148 19.05% 86.60% 85.80% 0.92% 47.96 55.12 14.94% 

Lecture_1080P-412e 1,034,726,400 998,909,402 -3.46% 86.60% 88.49% -2.18% 48.07 57.01 16.91% 

life_1080p30 3,421,440,000 4,187,455,252 22.39% 86.60% 85.41% 1.38% 48.04 54.99 14.46% 

mother_daughter_cif 60,825,600 79,283,536 30.35% 86.60% 84.46% 2.47% 48.03 53.78 11.95% 

pamphlet_cif 60,825,600 83,561,818 37.38% 86.60% 83.62% 3.44% 47.93 53.27 11.14% 

paris_cif 215,930,880 302,557,572 40.12% 86.60% 83.29% 3.82% 47.88 53.81 12.40% 

pedestrian_area_1080p25 1,555,200,000 1,749,179,384 12.47% 86.60% 86.59% 0.01% 48.05 55.59 15.70% 

rush_field_cuts_1080p 2,363,904,000 3,080,806,912 30.33% 86.60% 84.46% 2.47% 47.86 54.09 13.01% 

salesman_qcif 91,035,648 127,208,586 39.73% 86.60% 83.34% 3.77% 47.97 53.74 12.03% 

station2_1080p25 1,298,073,600 1,803,902,208 38.97% 86.60% 83.43% 3.66% 47.79 53.71 12.39% 

students_cif 204,171,264 283,317,790 38.76% 86.60% 83.45% 3.63% 47.92 53.64 11.93% 

sunflower_1080p25 2,073,600,000 2,874,084,316 38.60% 86.60% 83.47% 3.61% 47.81 53.79 12.52% 

suzie_qcif 30,412,800 31,039,198 2.06% 86.60% 87.83% -1.42% 48.07 55.79 16.07% 

touchdown_pass_1080p 2,363,904,000 2,715,649,830 14.88% 86.60% 86.30% 0.35% 47.94 55.38 15.52% 

tractor_1080p25 2,861,568,000 4,031,161,306 40.87% 86.60% 83.20% 3.92% 47.50 53.67 12.99% 

vidyo3_720p_60fps 1,107,763,200 1,368,042,822 23.50% 86.60% 85.27% 1.53% 48.11 54.54 13.36% 

vidyo4_720p_60fps 1,107,763,200 1,206,225,090 8.89% 86.60% 87.02% -0.48% 48.13 55.78 15.89% 

720p50_parkrun_ter 1,393,459,200 2,074,332,336 48.86% 82.11% 73.37% 10.64% 36.71 53.47 45.63% 

720p5994_stockholm_ter 1,669,939,200 2,434,415,832 45.78% 82.11% 73.93% 9.97% 35.49 53.38 50.41% 

ducks_take_off_1080p50 3,110,400,000 4,661,102,586 49.86% 82.11% 73.20% 10.86% 36.36 53.30 46.61% 

football_422_cif 109,486,080 161,366,445 47.39% 82.11% 73.64% 10.32% 36.54 53.96 47.67% 

football_cif 79,073,280 114,873,738 45.28% 82.11% 74.02% 9.86% 36.58 53.79 47.03% 

foreman_cif 91,238,400 123,714,882 35.60% 82.11% 75.75% 7.75% 37.01 54.04 46.01% 

hall_monitor_cif 91,238,400 136,539,606 49.65% 82.11% 73.23% 10.82% 36.66 53.56 46.12% 

harbour_4cif 182,476,800 268,811,991 47.31% 82.11% 73.65% 10.31% 36.34 53.91 48.34% 

ice_4cif 145,981,440 183,650,610 25.80% 82.11% 77.50% 5.62% 35.22 52.91 50.21% 

mobile_calendar_422_cif 109,486,080 163,476,849 49.31% 82.11% 73.29% 10.74% 36.37 53.06 45.88% 

old_town_cross_420_720p50 1,382,400,000 2,060,977,467 49.09% 82.11% 73.33% 10.69% 36.44 53.60 47.07% 

riverbed_1080p25 1,555,200,000 2,285,697,270 46.97% 82.11% 73.71% 10.23% 36.62 53.29 45.54% 

silent_cif 91,238,400 130,669,137 43.22% 82.11% 74.38% 9.41% 36.70 53.46 45.64% 

soccer_4cif 182,476,800 249,118,389 36.52% 82.11% 75.58% 7.96% 36.49 53.36 46.25% 

tennis_sif 45,619,200 67,173,204 47.25% 82.11% 73.66% 10.29% 36.27 54.29 49.69% 

tt_sif 34,062,336 50,343,861 47.80% 82.11% 73.56% 10.41% 36.16 54.24 49.98% 

vtc1nw_422_ntsc 109,486,080 146,642,766 33.94% 82.11% 76.04% 7.39% 36.67 53.74 46.55% 

washdc_422_ntsc 109,486,080 163,223,193 49.08% 82.11% 73.33% 10.69% 36.48 53.62 46.99% 

AVE   26.46% 86.27% 83.79% 3.06%   20.17% 
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TABLE 4. RESULTS OF NON-ROI VIDEOS  

Videos without ROI Truncated bits Normalized power consumption PSNR loss (dB) 

Ref. [7] Proposed diff  Ref. [7] Proposed diff  Ref. [7] Proposed diff  
bus_cif 30,412,800 43,042,560 41.53% 86.60% 82.47% 4.77% 48.15 40.82 7 dB 

galleon_422_cif 72,990,720 102,643,456 40.63% 86.60% 83.23% 3.89% 48.20 40.72 7 dB 

highway_cif 405,504,000 569,610,752 40.47% 86.60% 83.25% 3.87% 48.24 41.14 7 dB 

tempete_cif 52,715,520 77,495,808 47.01% 86.60% 83.12% 4.01% 48.12 40.81 7 dB 

bridge_far_cif 638,972,928 958,070,016 49.94% 82.11% 73.18% 10.88% 42.56 40.60 2 dB 

city_4cif 182,476,800 271,175,040 48.61% 82.11% 73.42% 10.59% 42.48 40.84 2 dB 

coastguard_cif 91,238,400 120,874,752 32.48% 82.11% 76.30% 7.08% 42.48 41.07 1 dB 

container_cif 91,238,400 125,445,888 37.49% 82.11% 75.41% 8.17% 42.45 41.01 1 dB 

flower_cif 76,032,000 107,439,360 41.31% 82.11% 74.72% 9.00% 42.50 40.93 2 dB 

flower_garden_422_cif 109,486,080 162,798,336 48.69% 82.11% 73.40% 10.61% 42.57 40.62 2 dB 

garden_sif 34,974,720 52,448,256 49.96% 82.11% 73.18% 10.88% 42.52 40.73 2 dB 

husky_cif 76,032,000 111,882,240 47.15% 82.11% 73.68% 10.27% 42.48 40.91 2 dB 

mobile_cif 91,238,400 136,164,864 49.24% 82.11% 73.31% 10.73% 42.57 40.70 2 dB 

waterfall_cif 79,073,280 118,609,920 50.00% 82.11% 73.17% 10.89% 42.40 40.63 2 dB 

AVE   44.61% 

 

83.40% 76.56% 8.26% 

 

  3dB 
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Low Variance Videos: Average = -1.75%

Medium Variance Videos: Average = 13.74%

High Variance Videos: Average = 47.31%
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FIGURE 14.  Impact of the video content characteristics on the effectiveness of the proposed technique, compared to 

old technique. 

 



52 
 

  

WPSNR (dB)

D
en

si
ty

 (
%

)

Data Set                  Number of Samples            P-Value
High Variance             28                           0.4982
Medium Variance           32                           0.8094
Low Variance              14                           0.3078

FIGURE 15. Histogram of quality Improvement distributions. Number of data points and P-value shown, 

between the truncation method in [7] and the proposed method. All distributions are 3-parameter 

Weibull distributions that fall within a 95% Confidence Interval. 
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High Variance             28                           0.2450
Medium Variance           32                           0.2296
Low Variance              14                           0.3390

 

FIGURE 16 Histogram of power savings, measured in percentage improvement, between the truncation 

method in [7] and the proposed method. All distributions are 3-parameter Weibull distributions that fall 

within a 95% Confidence Interval. 
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Data Set                  Number of Samples            P-Value
High Variance             28                           0.6849
Medium Variance           32                           0.7879
Low Variance              14                           0.5062

 

FIGURE 17. Histogram of PSNR noise increase, between the truncation method in [7] and the proposed 

method. All distributions are Normal Distributions that fall within a 95% Confidence Interval. 

 

FIGURE 18. Histogram of SSIM noise increase, measured in between the truncation method in [7] and the 

proposed method. All distributions are 3-parameter Weibull distributions that fall within a 95% 

Confidence Interval. 
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CHAPTER VIII 

COMPARISON WITH PRIOR WORK 

 

Table 5 compares this work against state-of-the art low-power video memory designs. As 

shown, the proposed memory enables more-flexible run-time power-quality adaptation 

according to video content characteristics of each frame, while considering the important 

region within one frame from a perceptual point of view.  

 

8.1 Compared to State-of-the-Art Approximate Video Memories 

To enhance the power efficiency of video storage, approximate video-specific 

memories have been developed to store the MSBs of video data in more robust memory 

bitcells, such as more-than-6T SRAM bitcells [8, 9], upsized 6T  [10], which usually brings 

implementation overhead. In order to minimize the implementation cost, those techniques 

typically store LSBs in error-prone but area-efficient bitcells (e.g., basic 6T [8, 10]), 

thereby leading to a tolerable output quality degradation with power reduction. However, 

for those techniques, the achieved video quality is fixed during design-time, so they lack 

of adaptation at run-time to meet different requirements of a variety of video applications.  
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8.2 Compared to State-of-the-Art Adaptive Video SRAM 

To enable run-time power-quality adaptation, recently, several video SRAM 

designs have been presented, such as data-dependent memory [39], SRAM with selective 

hamming (15,11) [11], and SRAM with error-correction-code (ECC) adaptation [40]. The 

data-dependent SRAM consists of 10T bitcells and associated conditional pre-charge 

circuitry to adapt to the stored data’s statistical dependencies. SRAM with selective 

hamming (15,11) [11] can switch between no ECC and hamming (15,11) based on the 

quality targets of the applications. The SRAM with ECC adaptation [40] supports three 

power-quality tradeoff levels, hamming code-74, hamming code-1511, and no ECC. 

However, those memory designs focus on hardware-level quality optimization, without 

considering the viewer’s experience, and therefore they may cause large and inefficient 

design margins. 

TABLE 5 COMPARISION WITH PRIOR WORK 

 

6T/8T 

SRAM 

[8] 

Heterogeneous 

sizing SRAM 

[10] 

Split-

data 

SRAM 

[9] 

Data-

dependent 

SRAM [39] 

SRAM with 

hamming 

[11] 

SRAM 

with ECC 

[40] 

Viewer-

aware 

memories 

[4, 5, 6] 

Content-

aware 

memory 

[7] 

This 

Work 

Quality 

runtime 

adaptation 

No No Yes Yes Yes Yes Yes Yes Yes 

Considering 

viewer’s 

experience 

No No No No No No Yes Yes Yes 

Video content 

adaptation 
No No No No No No No Yes Yes 

ROI awareness No No No No No No No No Yes 

Induced bitcell 

area overhead  

Yes  

(6T and 

8T) 

Yes  

(Larger 6T) 

Yes  

(8T and 

10T) 

No 

Yes  

(10T) 

No No No No 
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8.3 Compared to State-of-the-Art Viewer Aware Video Memory 

By introducing viewer’s experience to video memory design process, a study was 

conducted that showed that memory failures can be leveraged to improve video system 

power efficiency without sacrificing viewer's experience [4, 5, 6]. The basic idea is that in 

high noise-tolerance viewing contexts with high-illuminance levels, memory failures are 

intentionally introduced by adaptively disabling LSBs of the video data stored in memories. 

This line of studies illustrates a new dimension of power savings for hardware design 

through the introduction of memory failures. However, those designs did not consider the 

variance of different videos and they are not sufficient to support videos with various 

content characteristics. 

 

8.4 Compared to State-of-the-Art Content-Aware Video Memory 

The content-aware SRAM presented in [7] is another recent viewer-aware memory 

design that can enable run-time power-quality adaptation based on the video content 

characteristics of the applications. However, it adapts the number of truncated LSBs of 

video data based on the average plain macroblock percentage of an entire video sample, so 

it is not suitable for the videos with frame-level difference. Figure 13 also compares the 

video output quality of the proposed memory and memory presented in [7]. As shown, the 

proposed memory enables more truncated bits and more power savings. 
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8.5 Comparison Summary 

In the developed video memory technique, the ROI is identified and utilized to 

enable intelligent tradeoff between video quality and power efficiency of video storage in 

mobile devices. Accordingly, the proposed memory enables run-time quality adaptation 

with significantly reduced pixel bits and further power savings, as compared to existing 

techniques. To the best of my knowledge, this is the first work that can adapt the video 

storage to frame-level video content and important region from viewer’s perceptual 

experience point of view. The proposed ROI-aware video memory is orthogonal to existing 

viewer-aware or data-dependent schemes and therefore can be simultaneously utilized to 

further optimize power efficiency. 
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CHAPTER IX 

SUMMARY AND FUTURE WORK 

 

9.1 Thesis Summary 

In this thesis, a video content-adaptable Region-of-Interest (ROI)-aware video storage 

technique to optimize the power efficiency was presented. The ROI of videos is identified 

and protected to preserve the video quality, while other regions are truncated with 3-LSB 

truncation for power savings. To support the proposed method, a low-power frame buffer 

was developed that implemented 3-LSB truncation which enabled runtime quality and 

power adaptation. The results show that the proposed technique only uses 83.79% and 

76.56% of the power on average for videos with ROI and without ROI respectively, as 

compared to the traditional memory and the state-of-the art [9], respectively. Meanwhile, 

the proposed technique can increase the quality (i.e. WPSNR values) by 20.17% on average 

for the videos with ROI and 26.46% additional truncated bits as compared to [9]. For the 

videos without ROI, the proposed technique can realize 44.61% additional truncated bits 

and 8.26% power savings as compared to [9], while maintaining a healthy above 40dB 

PSNR and 0.95 SSIM. This thesis focuses on the facial features as ROI of videos;  
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9.2 Future Work 

Future investigations would include extensions of ROI, finding a general solution for ROI 

extraction for all video types will expand the fesability of this technology to all types of 

video streams. The possibility of using multiple ROI extraction algorithms to determin 

various types of ROIs will also be explored. Additionally, psychological experiments will 

be conducted to access the visual experience of viewers for hardware optimization. Another 

point of investigation will be to adapt the transmission protocol to include useful 

information within the bits that have been truncated, similar to many Steganography 

techniques.  
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APPENDICES 

 

Appendix A1: ROI Video Metrics (cont. 1/2) 

FIGURE A1. ROI Video Metrics for all videos presented in paper. This is the raw results of each video using 

the proposed and old circuitry [7]. Videos with a WPSNR of ‘nan’ are videos that do not contain a single 

ROI. 

Video Metrics 

For Videos With ROI 

OLD CIRCUIT (OC) [7] NEW CIRCUIT (NC) 

SSIM PSNR WPSNR SSIM PSNR WPSNR 
akiyo_cif 0.9982 52.89 57.53 0.9703 41.96 55.14 

claire_qcif 0.9981 53.36 57.61 0.9792 42.77 57.10 

dinner_1080p30 0.9982 52.78 57.32 0.9766 43.28 58.21 

grandma_qcif 0.9984 52.91 57.57 0.9774 43.03 57.21 

intros_422_cif 0.9985 52.89 57.45 0.9686 41.71 55.15 

Johnny_1280x720_60 0.9980 52.96 57.07 0.9780 43.29 58.44 

KristenAndSara_1280x720_60 0.9980 52.91 56.99 0.9745 42.75 57.37 

miss_am_qcif 0.9978 52.90 57.60 0.9762 43.88 58.54 

news_cif 0.9985 52.90 57.52 0.9710 41.40 54.48 

rush_hour_1080p25 0.9980 52.88 57.49 0.9621 42.03 55.78 

sign_irene_cif 0.9983 52.89 57.48 0.9703 41.69 55.01 

trevor_qcif 0.9986 52.53 57.31 0.9729 41.66 54.99 

vidyo1_720p_60fps 0.9981 52.90 57.54 0.9658 42.12 56.05 

west_wind_easy_1080p 0.9987 51.70 56.81 0.9760 41.90 55.68 

720p50_mobcal_ter 0.9945 48.11 47.88 0.9672 41.14 54.16 

720p50_shields_ter 0.9951 48.11 47.69 0.9713 41.23 54.48 

aspen_1080p 0.9936 48.15 47.92 0.9692 41.38 54.97 

blue_sky_1080p25 0.9929 48.11 47.66 0.9749 41.70 55.10 

bowing_cif 0.9922 47.97 48.02 0.9678 41.24 53.69 

bridge_close_cif 0.9962 48.36 47.95 0.9667 41.11 54.13 

carphone_qcif 0.9931 48.10 48.04 0.9709 41.74 54.52 

controlled_burn_1080p 0.9939 48.16 47.96 0.9690 41.50 55.18 

crew_4cif 0.9938 48.13 47.54 0.9648 40.84 53.54 

crowd_run_1080p50 0.9957 48.13 47.42 0.9687 40.84 53.55 

deadline_cif 0.9951 48.15 48.02 0.9791 41.75 54.48 

FourPeople_1280x720_60 0.9920 48.10 47.96 0.9660 41.65 55.12 

Lecture_1080P-412e 0.9900 48.15 48.07 0.9665 42.64 57.02 

life_1080p30 0.9938 48.25 48.04 0.9680 41.51 54.99 

mother_daughter_cif 0.9925 47.99 48.03 0.9642 41.14 53.78 

pamphlet_cif 0.9940 47.92 47.93 0.9657 40.84 53.27 

paris_cif 0.9960 48.15 47.88 0.9773 41.04 53.81 

pedestrian_area_1080p25 0.9920 48.43 48.05 0.9632 41.88 55.59 

rush_field_cuts_1080p 0.9932 48.14 47.86 0.9634 41.12 54.09 

salesman_qcif 0.9946 48.13 47.97 0.9657 41.03 53.74 

station2_1080p25 0.9923 48.14 47.79 0.9550 40.92 53.71 

students_cif 0.9941 48.14 47.92 0.9701 40.98 53.64 

sunflower_1080p25 0.9921 48.13 47.81 0.9602 41.03 53.79 

suzie_qcif 0.9918 48.12 48.07 0.9709 42.57 55.79 

touchdown_pass_1080p 0.9910 48.14 47.94 0.9617 41.95 55.38 

tractor_1080p25 0.9936 48.11 47.50 0.9626 40.96 53.67 

vidyo3_720p_60fps 0.9911 48.12 48.11 0.9630 41.35 54.54 

vidyo4_720p_60fps 0.9916 48.19 48.13 0.9686 42.11 55.78 

720p50_parkrun_ter 0.9909 42.47 36.71 0.9727 40.80 53.47 

720p5994_stockholm_ter 0.9800 42.47 35.49 0.9638 40.77 53.38 

ducks_take_off_1080p50 0.9894 42.49 36.36 0.9760 40.72 53.30 

football_422_cif 0.9832 42.49 36.54 0.9709 40.96 53.96 
football_cif 0.9818 42.44 36.58 0.9703 40.95 53.79 

foreman_cif 0.9800 42.48 37.01 0.9695 41.32 54.04 

hall_monitor_cif 0.9743 42.50 36.66 0.9568 40.84 53.56 

harbour_4cif 0.9946 42.50 36.34 0.9790 41.00 53.91 

ice_4cif 0.9703 41.94 35.22 0.9619 40.66 52.91 

mobile_calendar_422_cif 0.9915 42.46 36.37 0.9806 40.59 53.06 
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Appendix A1: ROI Video Metrics (CONT. 2/2) 

Video Metrics 

For Videos With ROI 

OLD CIRCUIT (OC) [7] NEW CIRCUIT (NC) 

SSIM PSNR WPSNR SSIM PSNR WPSNR 
sunflower_1080p25 0.9921 48.13 47.81 0.9602 41.03 53.79 

suzie_qcif 0.9918 48.12 48.07 0.9709 42.57 55.79 

touchdown_pass_1080p 0.9910 48.14 47.94 0.9617 41.95 55.38 

tractor_1080p25 0.9936 48.11 47.50 0.9626 40.96 53.67 

vidyo3_720p_60fps 0.9911 48.12 48.11 0.9630 41.35 54.54 

vidyo4_720p_60fps 0.9916 48.19 48.13 0.9686 42.11 55.78 

720p50_parkrun_ter 0.9909 42.47 36.71 0.9727 40.80 53.47 

720p5994_stockholm_ter 0.9800 42.47 35.49 0.9638 40.77 53.38 

ducks_take_off_1080p50 0.9894 42.49 36.36 0.9760 40.72 53.30 

football_422_cif 0.9832 42.49 36.54 0.9709 40.96 53.96 

football_cif 0.9818 42.44 36.58 0.9703 40.95 53.79 

foreman_cif 0.9800 42.48 37.01 0.9695 41.32 54.04 

hall_monitor_cif 0.9743 42.50 36.66 0.9568 40.84 53.56 

harbour_4cif 0.9946 42.50 36.34 0.9790 41.00 53.91 

ice_4cif 0.9703 41.94 35.22 0.9619 40.66 52.91 

mobile_calendar_422_cif 0.9915 42.46 36.37 0.9806 40.59 53.06 

old_town_cross_420_720p50 0.9751 42.48 36.44 0.9583 40.87 53.60 

riverbed_1080p25 0.9765 42.48 36.62 0.9575 40.71 53.29 

silent_cif 0.9820 42.48 36.70 0.9689 40.94 53.46 

soccer_4cif 0.9783 42.49 36.49 0.9667 40.93 53.36 

tennis_sif 0.9796 42.50 36.27 0.9676 41.08 54.29 

tt_sif 0.9805 42.48 36.16 0.9677 41.09 54.24 

vtc1nw_422_ntsc 0.9774 42.37 36.67 0.9678 41.09 53.74 

washdc_422_ntsc 0.9883 42.40 36.48 0.9774 40.91 53.62 

tempete_cif 0.9966 48.12 nan 0.9779 40.81 nan 

galleon_422_cif 0.9956 48.20 nan 0.9707 40.72 nan 

highway_cif 0.9925 48.24 nan 0.9536 41.14 nan 

bus_cif 0.9970 48.15 nan 0.9725 40.82 nan 

bridge_far_cif 0.9660 42.56 nan 0.9453 40.60 nan 

city_4cif 0.9869 42.48 nan 0.9702 40.84 nan 

coastguard_cif 0.9877 42.48 nan 0.9735 41.07 nan 

container_cif 0.9766 42.45 nan 0.9669 41.01 nan 

flower_cif 0.9929 42.50 nan 0.9844 40.93 nan 

flower_garden_422_cif 0.9894 42.57 nan 0.9782 40.62 nan 

garden_sif 0.9911 42.52 nan 0.9813 40.73 nan 

husky_cif 0.9949 42.48 nan 0.9784 40.91 nan 

mobile_cif 0.9925 42.57 nan 0.9855 40.70 nan 

waterfall_cif 0.9883 42.40 nan 0.9775 40.63 nan 
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Appendix A2: Main.py (cont. 1/2) 

FIGURE A2. Main.py, This Main Function calls all other scripts. Written by William Oswald, using Python 

2.7. The input is a YUV422 video and produces as outputs the digital results of the proposed and previous 

circuits, calculates PSNR, SSIM and WPSNR for both. It also saves each from of the output video as a .png 

file. 

#written by Liam Oswald 
import struct 
import sys 
import math 
import pickle 
import cv2 
import numpy as np 
from tqdm import tqdm 
import os 
from skimage.measure import compare_ssim 
import Macroblock 
import OpenCVROI 
import MBTruncation 
import FlatTruncation 
import ROIMBTruncation 
import pulldatatocsv 
import WeightedPSNR 
 
def FlatTruncateAmountViaFile(FileName): 
    fin = open(str(FileName), 'r') 
    list = str(fin.read()).split(',') 
    MBpercent = list[19] 
    fin.close() 
 
    if float(MBpercent) >= 21.5571: 
        i = 1 
    elif float(MBpercent) >= 1.96405: 
        i = 2 
    else: 
        i = 3 
    return i 
 
VideoRepositoryDir = '/home/student/Desktop/Duplicate/vid' 
#VideoRepositoryDir = '/home/student/Desktop/Duplicate/D3/Videos' 
#VideoRepositoryDir = '/home/student/PycharmProjects/H264Project/Videos' 
ResultsRepositoryDir = '/home/student/PycharmProjects/H264Project/Results' 
#here 
 
# PixelWidth = 1920 
# PixelHight = 1080 
# FPS = 25 
# FrameCount = 600 
 
# 
PixelWidth = 352 
PixelHight = 288 
FPS = 24 
FrameCount = 300 
 
def main(): 
    VideoRepository = os.listdir(VideoRepositoryDir) 
    print "Videos To Process: ", VideoRepository 
 
    for Video in VideoRepository: 
        VideoIn = str(VideoRepositoryDir + '/' + Video) 
        ResultsOut = str(ResultsRepositoryDir + '/' + Video[:-4]) 
        cap = Macroblock.VideoCaptureYUV(VideoIn, (PixelHight, PixelWidth)) 
        FrameCount = cap.framecount 
 
        temp_folder = os.path.join(os.getcwd(), 'temp') 
 
        frames_path = os.path.join(os.getcwd(), 'Results', str(VideoIn[:-4].rsplit('/', 1)[-
1]) + "/frames/") 
        MBframe_path = os.path.join(os.getcwd(), 'Results', str(VideoIn[:-4].rsplit('/', 1)[-
1]) + "/MBTruncation_Results/") 
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Appendix A2: Main.py (cont. 2/2) 

  

def main(): 
    VideoRepository = os.listdir(VideoRepositoryDir) 
    print "Videos To Process: ", VideoRepository 
 
    for Video in VideoRepository: 
        VideoIn = str(VideoRepositoryDir + '/' + Video) 
        ResultsOut = str(ResultsRepositoryDir + '/' + Video[:-4]) 
        cap = Macroblock.VideoCaptureYUV(VideoIn, (PixelHight, PixelWidth)) 
        FrameCount = cap.framecount 
 
        temp_folder = os.path.join(os.getcwd(), 'temp') 
 
        frames_path = os.path.join(os.getcwd(), 'Results', str(VideoIn[:-4].rsplit('/', 1)[-
1]) + "/frames/") 
        MBframe_path = os.path.join(os.getcwd(), 'Results', str(VideoIn[:-4].rsplit('/', 1)[-
1]) + "/MBTruncation_Results/") 
 
        cap = Macroblock.VideoCaptureYUV(VideoIn, (PixelHight, PixelWidth)) 
        ROIMBTruncation.OpenCVMBTruncate(cap, FPS, ResultsOut, 1.25) 
        ROIMBT_dir = str(ResultsOut + '/ROIMBTruncation/' + str(1.25) + 
'/ROIMBTruncation_output.yuv') 
        Macroblock.Main(VideoIn, ROIMBT_dir, cap.width, cap.height, str(ResultsOut + 
'/ROIMBTruncation/' + str(1.25) + '/ROIMBTruncation_output/')) 
 
        n = FlatTruncateAmountViaFile(str(ResultsOut + '/ROIMBTruncation/' + str(1.25) + 
'/ROIMBTruncation_output/' + Video[:-4] + '.csv')) 
 
        cap = Macroblock.VideoCaptureYUV(VideoIn, (PixelHight, PixelWidth)) 
        FlatTruncation.FlatTruncate(cap, str(ResultsOut + '/flat/'), FPS, n) 
        Macroblock.Main(VideoIn, str(ResultsOut + '/flat/' + str(n) + '_OUTPUT.yuv'), 
cap.width, cap.height, str(ResultsOut + '/flat/' + str(n) + '/')) 
 
        Old_method_Frame = str(ResultsOut + '/flat/' + str(n) + '_OUTPUT.yuv') 
        WeightedPSNR.Main(VideoIn, ROIMBT_dir, Old_method_Frame, cap.width, cap.height, 
str(ResultsOut + '/WeightedPSNR/' + str(1.25) + '/'), alpha=0.90) 
 
 
        pullFile = '/home/student/PycharmProjects/H264Project/Results/' + Video[:-4] + '/' 
        pulldatatocsv.main(pullFile, PixelWidth, PixelHight, n, FrameCount) 
 
 
        cap.release() 
 
 
 
if __name__ == "__main__": 
    main() 
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Appendix A3: Macroblock.Py (cont. 1/5)  

 FIGURE A3. Macroblock.py, originally written by Ali Haidous. This file has been heavily modified by 

Williiam Oswald. This Script calculates the Macroblock variance on a per-frame basis. 

#!/usr/bin/python 
#Script written by Ali Haidous, modified by Liam Oswald 
 
import struct 
import sys 
import math 
import pickle 
import cv2 
import numpy as np 
from tqdm import tqdm 
import os 
from skimage.measure import compare_ssim 
 
FIRST_PLAIN_MB = 21.5571 
SECOND_PLAIN_MB = 1.96405 
class VideoCaptureYUV(object): 
    def __init__(self, filename, size): 
        self.height, self.width = size 
        self.filename = filename 
        self.filesize = os.stat(filename).st_size 
        self.framecount = ( 2 * self.filesize ) / ( self.height * self.width * 3 ) 
        self.frame_len = self.width * self.height * 3 / 2 
        self.f = open(filename, 'rb') 
        self.shape = (int(self.height*1.5), self.width) 
 
    def file_statistics(self): 
        return (self.filesize, self.framecount) 
 
    def read_raw(self): 
        try: 
            raw = self.f.read(self.frame_len) 
            yuv = np.frombuffer(raw, dtype=np.uint8) 
            yuv = yuv.reshape(self.shape) 
        except Exception as e: 
            print str(e) 
            return False, None 
        return True, yuv 
 
    def read(self): 
        ret, yuv = self.read_raw() 
        if not ret: 
            return ret, yuv 
        bgr = cv2.cvtColor(yuv, cv2.COLOR_YUV2BGR_I420) 
        return ret, bgr 
 
    def fetch_raw_frame(self, frame_num): 
        f = open(self.filename, 'rb') 
        raw = None 
        for _ in range(frame_num): 
            raw = f.read(self.frame_len) 
 
 
 
 
 
 
        try: 
            yuv = np.frombuffer(raw, dtype=np.uint8) 
            yuv = yuv.reshape(self.shape) 
        except Exception as e: 
            print str(e) 
            return None 
        return yuv 
 
    def display_raw_frame(self, raw_frame, name="frame"): 
        frame = cv2.cvtColor(raw_frame, cv2.COLOR_YUV2BGR_I420) 
        #cv2.imshow(name, frame) 
        cv2.imwrite(name, frame) 
 
    def play_video(self): 
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        try: 
            yuv = np.frombuffer(raw, dtype=np.uint8) 
            yuv = yuv.reshape(self.shape) 
        except Exception as e: 
            print str(e) 
            return None 
        return yuv 
 
    def display_raw_frame(self, raw_frame, name="frame"): 
        frame = cv2.cvtColor(raw_frame, cv2.COLOR_YUV2BGR_I420) 
        #cv2.imshow(name, frame) 
        cv2.imwrite(name, frame) 
 
    def play_video(self): 
        while True: 
            ret, frame = self.read(cv2.COLOR_YUV2BGR_I420) 
            if ret: 
                cv2.imshow("frame", frame) 
                cv2.waitKey(30) 
            else: 
                break 
 
    def release(self): 
        self.f.close() 
 
class VideoWriter(object): 
    def __init__(self, filename): 
        self.filename = filename 
        self.f = open(filename, 'wb') 
 
    def writeFrame(self, yuvFrame): 
        self.f.write(yuvFrame) 
 
    def release(self): 
        self.f.close() 
 
 
 
def calc_macroblock_per(yuv_frame, low_variance_threshold=1.25): 
    offset = int(len(yuv_frame)/3) 
    rows = len(yuv_frame) - offset 
    columns = len(yuv_frame[0]) 
 
    y = yuv_frame[0:rows, 0:columns] 
    u = yuv_frame[rows:rows+(offset/2), 0:columns] 
    v = yuv_frame[rows+(offset/2):rows+offset, 0:columns] 
 
    def macbroblock_per(sub_frame): 
        total_macroblocks = 0 
        plain_macroblocks = 0 
        macroblock_per = 0 
        for row_position in range(0, len(sub_frame), 16): 
            for column_position in range(0, len(sub_frame[0]), 16): 
                macroblock = [] 
                total_macroblocks += 1 
 
                for j in range(row_position, row_position+16): 
                    for i in range(column_position, column_position+16): 
                        try: 
                            macroblock.append(0.0001560911143834408 * 
pow(int(sub_frame[j][i]), 2.628389343175764)) 
                        except IndexError: 
                            break 
 
 
 
 
 
                try: 
                    avg_lum = sum(macroblock) / len(macroblock) 
                    variance = sum([pow(byte - avg_lum, 2) / len(macroblock) for byte in 
macroblock]) 
                except ZeroDivisionError: 
                    pass 
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        if ret: 
            (y_per, u_per, v_per) = calc_macroblock_per(frame) 
            #print (y_per, u_per, v_per) 
            macroblock_per_y.append(y_per) 
            macroblock_per_u.append(u_per) 
            macroblock_per_v.append(v_per) 
        else: 
            break 
 
    return (macroblock_per_y, macroblock_per_u, macroblock_per_v) 
 
 
#This main function has been heavily modified by Liam Oswald. 
def Main(VideoOld, VideoNew, xRez, yRez, path): 
    # Get arguments 
    filename = VideoOld 
    xres = int(xRez) 
    yres = int(yRez) 
 
    frames_path = path + 'frames/' 
 
    # Do OS operations 
    #path = os.path.join(os.getcwd(), str(filename[:-4].rsplit('/', 1)[-1])) 
    #path = os.path.join(os.getcwd(),'Results', str(filename[:-4].rsplit('/', 1)[-1])) 
    #frames_path = os.path.join(os.getcwd(), str(filename[:-4].rsplit('/', 1)[-1])+"/frames/") 
    try: 
        #os.makedirs(path) 
        os.makedirs(frames_path[:-1]) 
    except OSError: 
        print ("Creation of the directory %s failed" % frames_path) 
    else: 
        print ("Successfully created the directory %s " % frames_path) 
 
    # Read in the file 
    cap = VideoCaptureYUV(filename, (yres, xres)) 
    filesize, framecount = cap.file_statistics() 
 
    capNew = VideoCaptureYUV(VideoNew, (yres, xres)) 
    filesizeNew, framecountNew = capNew.file_statistics() 
 
    print "Size of file in bytes: %d\nNumber of frames: %d\n" % (filesize, framecount) 
    #cap.play_video() 
 
    # Calculate macroblock percentage per frame 
    (macroblock_per_y, macroblock_per_u, macroblock_per_v) = 
CalculateMacroblockPercentage(cap, framecount) 
    (macroblock_per_y_new, macroblock_per_u_new, macroblock_per_v_new) = 
CalculateMacroblockPercentage(capNew, framecountNew) 
 
    # Calculate average macroblock percentages 
    macroblock_per_y_avg = sum(macroblock_per_y) / len(macroblock_per_y) 
    macroblock_per_u_avg = sum(macroblock_per_u) / len(macroblock_per_u) 
    macroblock_per_v_avg = sum(macroblock_per_v) / len(macroblock_per_v) 
    macroblock_per_y_avg_new = sum(macroblock_per_y_new) / len(macroblock_per_y_new) 
    macroblock_per_u_avg_new = sum(macroblock_per_u_new) / len(macroblock_per_u_new) 
    macroblock_per_v_avg_new = sum(macroblock_per_v_new) / len(macroblock_per_v_new) 
    #Filter >= 99% macroblocks 
    for x in range(len(macroblock_per_y)): 
        if macroblock_per_y[x] >= 99: 
            macroblock_per_y[x] = macroblock_per_y_avg 
    for x in range(len(macroblock_per_u)): 
        if macroblock_per_u[x] >= 99: 
            macroblock_per_u[x] = macroblock_per_u_avg 
 
 
    for x in range(len(macroblock_per_v)): 
        if macroblock_per_v[x] >= 99: 
            macroblock_per_v[x] = macroblock_per_v_avg 
    #Filter >= 99% for new video as well 
    for x in range(len(macroblock_per_y_new)): 
        if macroblock_per_y_new[x] >= 99: 
            macroblock_per_y_new[x] = macroblock_per_y_avg_new 
    for x in range(len(macroblock_per_u_new)): 
        if macroblock_per_u_new[x] >= 99: 
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    for x in range(len(macroblock_per_v)): 
        if macroblock_per_v[x] >= 99: 
            macroblock_per_v[x] = macroblock_per_v_avg 
    #Filter >= 99% for new video as well 
    for x in range(len(macroblock_per_y_new)): 
        if macroblock_per_y_new[x] >= 99: 
            macroblock_per_y_new[x] = macroblock_per_y_avg_new 
    for x in range(len(macroblock_per_u_new)): 
        if macroblock_per_u_new[x] >= 99: 
            macroblock_per_u_new[x] = macroblock_per_u_avg_new 
    for x in range(len(macroblock_per_v_new)): 
        if macroblock_per_v_new[x] >= 99: 
            macroblock_per_v_new[x] = macroblock_per_v_avg_new 
    # Calculate average psnr and ssim for the whole video 
    cap = VideoCaptureYUV(filename, (yres, xres)) 
    capNew = VideoCaptureYUV(VideoNew, (yres, xres)) 
    psnr_old = [] 
    ssim_old = [] 
    psnr_new = [] 
    ssim_new = [] 
    for index in tqdm(range(framecount), unit="MacroBlock PSNR and SSIM Calc"): 
        try: 
            ret, frame = cap.read_raw() 
            retNew, frameNew = capNew.read_raw() 
        except Exception: 
            break 
        if (ret & retNew): 
            frame_truncate_old = frame 
            frame_truncate_new = frameNew 
 
            psnr_old.append(psnr(frameNew, frame_truncate_old)) 
            (ssim, _) = compare_ssim(frameNew, frame_truncate_old, full=True) 
            ssim_old.append(ssim) 
            # psnr_new.append(psnr(frame, frame_truncate_new)) 
            # (ssim, _) = compare_ssim(frame, frame_truncate_new, full=True) 
            # ssim_new.append(ssim) 
            psnr_new.append("Liam Lazy") 
            ssim_new.append("Liam Lazy") 
            #cap.display_raw_frame(frame, frames_path+str(filename[:-4].rsplit('/', 1)[-
1])+"_frame"+str(index)+".png") 
            cap.display_raw_frame(frame_truncate_old, frames_path+str(filename[:-
4].rsplit('/', 1)[-1])+"_Original"+str(index)+".png") 
            capNew.display_raw_frame(frame_truncate_new, frames_path+str(filename[:-
4].rsplit('/', 1)[-1])+"_New"+str(index)+".png") 
        else: 
            break 
    # Calculate max and min macroblock frame index for y u and v 
    max_frame_y_index = macroblock_per_y.index(max(macroblock_per_y)) 
    min_frame_y_index = macroblock_per_y.index(min(macroblock_per_y)) 
    max_frame_u_index = macroblock_per_u.index(max(macroblock_per_u)) 
    min_frame_u_index = macroblock_per_u.index(min(macroblock_per_u)) 
    max_frame_v_index = macroblock_per_v.index(max(macroblock_per_v)) 
    min_frame_v_index = macroblock_per_v.index(min(macroblock_per_v)) 
    psnr_old_avg = sum(psnr_old) / len(psnr_old) 
    ssim_old_avg = sum(ssim_old) / len(ssim_old) 
 
    # Write data to CSV file 
    with open(os.path.join(path,str(filename[:-4].rsplit('/', 1)[-1])+".csv"), "wb") as file: 
        file.write("Original Video,"+ 
                   "New Video,"+ 
                   ","+ 
                   "MB % Y Avg:,"+ 
                   "MB % U Avg:,"+ 
                   "MB % V Avg:,"+ 
 
 
 
 
                   "MB Y Max Idx:,"+ 
                   "MB Y Min Idx:,"+ 
                   "MB U Max Idx:,"+ 
                   "MB U Min Idx:,"+ 
                   "MB V Max Idx:,"+ 
                   "MB V Min Idx:,"+ 
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                   "MB Y Max Idx:,"+ 
                   "MB Y Min Idx:,"+ 
                   "MB U Max Idx:,"+ 
                   "MB U Min Idx:,"+ 
                   "MB V Max Idx:,"+ 
                   "MB V Min Idx:,"+ 
                   "PSNR Avg,"+ 
                   "SSIM Avg:,"+ 
                   #"PSNR New Avg:,"+ 
                   #"SSIM New Avg:,"+"\n") 
                   "," + 
                   "," + "\n") 
        file.write(str(VideoOld[:-4].rsplit('/', 1)[-1])+","+ 
                   str(VideoNew[:-4].rsplit('/', 1)[-1])+","+ 
                   str(',')+ 
                   str(macroblock_per_y_avg)+","+ 
                   str(macroblock_per_u_avg)+","+ 
                   str(macroblock_per_v_avg)+","+ 
                   str(max_frame_y_index)+","+ 
                   str(min_frame_y_index)+","+ 
                   str(max_frame_u_index)+","+ 
                   str(min_frame_u_index)+","+ 
                   str(max_frame_v_index)+","+ 
                   str(min_frame_v_index)+","+ 
                   str(psnr_old_avg)+","+ 
                   str(ssim_old_avg)+","+ 
                   #str(psnr_new_avg)+","+ 
                   #str(ssim_new_avg)+"\n\n\n") 
                   str('') + "\n\n\n") 
        file.write("Frame,MB % Y,MB % U,MB % V,PSNR ,SSIM, \n") 
        for index, mb_y, mb_u, mb_v, psnr_o, ssim_o, in zip(range(framecount), 
                                                                           macroblock_per_y, 
                                                                           macroblock_per_u, 
                                                                           macroblock_per_v, 
                                                                           psnr_old, 
                                                                           ssim_old, 
                                                                           #psnr_new, 
                                                                           #ssim_new): 
                                                                           ): 
            
#file.write(str(index)+","+str(mb_y)+","+str(mb_u)+","+str(mb_v)+","+str(psnr_o)+","+str(ssim_
o)+","+str(psnr_n)+","+str(ssim_n)+"\n") 
            file.write(str(index) + "," + str(mb_y) + "," + str(mb_u) + "," + str(mb_v) + "," 
+ str(psnr_o) + "," + str(ssim_o) + "," + "\n") 
 
 
if __name__ == "__main__": 
 
    Main() 
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Appendix A4: FlatTruncate.Py (cont. 1/2) 

FIGURE A4. FlatTruncate.py This script was written by William Oswald, this takes a YUV 422 video, and 

writes a flat truncated video to a desired location. For our purposes 3-bit truncation was use 

import cv2 
import os 
import tqdm 
import numpy as np 
import Macroblock 
 
def TruncateIntValue(a, n): 
    if (n == 1): 
        return (int(a) & 0b11111111 | 0b00000001) 
    elif (n==2): 
        return (int(a) & 0b11111110 | 0b00000010) 
    elif (n==3): 
        return (int(a) & 0b11111100 | 0b00000100) 
    elif (n==4): 
        return (int(a) & 0b11111000 | 0b00001000) 
    elif (n==5): 
        return (int(a) & 0b11110000 | 0b00010000) 
    elif (n==6): 
        return (int(a) & 0b11100000 | 0b00100000) 
    elif (n==7): 
        return (int(a) & 0b11000000 | 0b01000000) 
    elif (n==8): 
        return (int(a) & 0b10000000 | 0b10000000) 
    elif (n==0): 
        return a 
 
def FlatTruncate(CapturedVideo, fileOutDirectory, FPS, n=2): 
    try: 
        os.makedirs(fileOutDirectory[:-1]) 
    except OSError: 
        print ("Creation of the directory failed") 
    else: 
        print ("Successfully created the directory") 
 
    try: 
        os.makedirs(str(fileOutDirectory) + str(n)) 
    except OSError: 
        print ("Creation of the directory failed") 
    else: 
        print ("Successfully created the directory") 
    cap = CapturedVideo 
 
    print str(fileOutDirectory) + str(n) 
    # Setup output mp4 video that will show blue box around ROI's 
 
    name = str(fileOutDirectory + str(n) + '_OUTPUT.yuv') 
 
 
    #Reference FOURCC values from http://www.fourcc.org/codecs.php 
    Frame = Macroblock.VideoWriter(str(fileOutDirectory + str(n) + '_OUTPUT.yuv')) 
    print (str(fileOutDirectory + str(n) + '_OUTPUT.yuv')) 

 

 

 

 

 
 
    try: 
 
 
        countTotal = 0 
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d. 

  

    try: 
 
 
        countTotal = 0 
        frameNum = 0 
 
        for _ in tqdm.tqdm(range(int(cap.framecount)), unit="Flat Truncation"): 
            frameNum += 1 
            count = 0 
 
            ret, yuvimgRaw = cap.read_raw() 
            if not ret: 
                break 
            yuvimg = np.copy(yuvimgRaw) 
 
            offset = int(len(yuvimgRaw) / 3) 
            rows = len(yuvimgRaw) - offset 
            columns = len(yuvimgRaw[0]) 
 
 
            # print yuvimg.shape 
            # 
            # cv2.imshow("image stack", yuvimg) 
            # cv2.waitKey(1) 
            for i in range(rows): 
                for j in range(int(yuvimg.shape[1])): 
                    yuvimg[i, j] = TruncateIntValue(yuvimg[i,j], n) 
                    count += 1 
            #r.write('Frame Number: ' + str(frameNum) + ' Truncations Preformed: ' + 
str(count) + '\n') 
            countTotal = countTotal + count 
 
            # cv2.imshow("image stack", yuvimg) 
            # cv2.waitKey(1) 
 
 
            #print np.array_equal(yuvimg, yuvimgRaw) 
 
            Frame.writeFrame(yuvimg) 
 
        #r.write('Total Number of Truncations: ' + str(countTotal)) 
        #r.close() 
 
 
    finally: 
        Frame.release() 
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Appendix A5: MBTruncation.py (cont. 1/2) 

FIGURE A4. MBTruncation.py – This Script was written by William Oswald. This takes a YUV 422 video, and 

truncates macroblocks based on variance levels, which it calculates itself 

#Written by Liam Oswald 
import Macroblock 
import OpenCVROI 
import struct 
import sys 
import math 
import pickle 
import cv2 
import numpy as np 
import tqdm 
import os 
from skimage.measure import compare_ssim 
 
def Display2Images(img1, img2): 
    stack = np.hstack((img1, img2)) 
 
    cv2.imshow("image stack", stack) 
    cv2.waitKey(1) 
 
def macroblock_per(yuv_frame, low_variance_threshold=1.25): 
    offset = int(len(yuv_frame)/3) 
    rows = len(yuv_frame) - offset 
    columns = len(yuv_frame[0]) 
 
    y = yuv_frame[0:rows, 0:columns] 
    u = yuv_frame[rows:rows+(offset/2), 0:columns] 
    v = yuv_frame[rows+(offset/2):rows+offset, 0:columns] 
 
    def macbroblock_per(sub_frame, macroblocksize, Ybox): 
        visualFrame = np.copy(sub_frame) 
        truncatedFrame = np.copy(sub_frame) 
 
        bitsTruncated = 0 
 
        for row_position in range(0, len(sub_frame), 16): 
            for column_position in range(0, len(sub_frame[0]), 16): 
                macroblock = [] 
 
                for j in range(row_position, row_position+16): 
                    for i in range(column_position, column_position+16): 
                        try: 
                            macroblock.append(0.0001560911143834408 * 
pow(int(sub_frame[j][i]), 2.628389343175764)) 
                        except IndexError: 
                            break 
 
                try: 
                    avg_lum = sum(macroblock) / len(macroblock) 
                    variance = sum([pow(byte - avg_lum, 2) / len(macroblock) for byte in 
macroblock]) 
                except ZeroDivisionError: 
                    pass 
                else: 
                    if variance >= low_variance_threshold: 
                        if Ybox: 
                            visualFrame[row_position:row_position+4,  

 

 

column_position:column_position + 16] = 255 
                        else: 
                            visualFrame[row_position:row_position+16, 
column_position:column_position+16] = 255 
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                else: 
                    if variance >= low_variance_threshold: 
                        if Ybox: 
                            visualFrame[row_position:row_position+4, 
column_position:column_position + 16] = 255 
                        else: 
                            visualFrame[row_position:row_position+16, 
column_position:column_position+16] = 255 
 
                        for i in range(macroblocksize): 
                            for j in range(16): 
                                if ((row_position + i) < len(sub_frame)): 
                                    truncatedFrame[row_position + i, column_position + j] = 
OpenCVROI.TruncateIntValue(truncatedFrame[row_position + i, column_position + j]) 
                                    bitsTruncated += 1 
        return visualFrame, truncatedFrame, bitsTruncated 
    yVisualFrame, yTruncatedFrame, bits1 = macbroblock_per(y, 16, True) 
    uVisualFrame, uTruncatedFrame, bits2 = macbroblock_per(u, 16, False) 
    vVisualFrame, vTruncatedFrame, bits3 = macbroblock_per(v, 16, False) 
    visualframe = np.vstack((yVisualFrame,uVisualFrame,vVisualFrame)) 
    truncatedframe = np.vstack((yTruncatedFrame, uTruncatedFrame, vTruncatedFrame)) 
    totalbits = bits1 + bits2 + bits3 
    return (visualframe, truncatedframe, totalbits) 
def VisualizePlainMacroblocks(cap, FPS, saveDir, low_variance_threshold): 
    try: 
        newsaveDir = os.path.join(saveDir, "MBTruncation_Results/") 
        os.makedirs(newsaveDir) 
    except OSError: 
        print ("Creation of the directory failed") 
    else: 
        print ("Successfully created the directory") 
    #paramiters for mp4 visual output 
    namemp4 = str(newsaveDir + "/MBVisualization.mp4") 
    fourccmp4 = cv2.VideoWriter_fourcc(*'mp4v') 
    Framemp4 = cv2.VideoWriter(namemp4, fourccmp4, FPS, (cap.width, cap.height)) 
    #paramiters for yuv output video with truncation 
    name = str(newsaveDir + "/MBTruncation_output.yuv") 
    #fourcc = cv2.VideoWriter_fourcc(*'IYUV') 
    #Frame = cv2.VideoWriter(name, fourcc, FPS, (cap.width, cap.height)) 
    Frame = Macroblock.VideoWriter(name) 
 
    f = open(os.path.join(saveDir, "MBTruncation_Results/", 'Macroblock_Report.txt'), 'w') 
    frameNum = 0 
    totalTruncations = 0 
 
    for _ in tqdm.tqdm(range(int(cap.framecount)), unit="MBTruncation Visualize"): 
        ret, yuvimgRaw = cap.read_raw() 
        if not ret: 
            break 
        #copy yuvimg for editing 
        yuvimg = np.copy(yuvimgRaw) 
        visual, truncatedFrame, bitstruncated = macroblock_per(yuvimg, low_variance_threshold) 
        f.write('Frame Num: ' + str(frameNum) + '  Truncations preformed: ' + 
str(bitstruncated) + '\n') 
        totalTruncations = totalTruncations + bitstruncated 
        #save Visual into mp4 file 
        Framemp4.write(cv2.cvtColor(visual, cv2.COLOR_YUV2BGR_I420)) 
        Frame.writeFrame(truncatedFrame) 
        frameNum += 1 
    Frame.release() 
    Framemp4.release() 
 
    f.write('Total Truncations Preformed: ' + str(totalTruncations)) 
    f.close() 
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Appendix A6: OpenCVROI.Py (cont. 1/2) 

FIGURE A6. OpenCVROI.py – This Script was written by William Oswald. This Script uses the 

Hardcascade_frontalFace_mlt2.xml Neural Network model to find faces in a YUV video frame, and writes 

ROI locations in a table as output 

# Script written by William Oswald Python Version 3.6 
 
import cv2 
import os 
import tqdm 
import numpy as np 
def TruncateIntValue(a): 
    return (int(a) & 0b11111100 | 0b00000100) 
def InROIRange(Pixelx, Pixely, faces): 
    for (x, y, w, h) in faces: 
        if ((x < Pixelx < (x + w)) and (y < Pixely < (y + h))): 
            return True 
        else: 
            return False 
 
def ROI_CSV_OUT(faces, fileDirecotry, f): 
    # Setup CSV file to save location of the 4 corners for a ROI 
    count = 0 
    tempstring = '' 
 
    for (x, y, w, h) in faces: 
        tempstring = (tempstring + str(x) + ',' + str(y) + ' ' + str(x) + ',' + str(y + h) + ' 
' + str( 
            x + w) + ',' + str(y) + ' ' + str(x + w) + ',' + str(y + h)) 
        count = count + 1 
 
    f.write((str(count) + ' ' + tempstring + '\n')) 
def FindFaces(RawYUVFrame, face_cascade): 
    # Load the cascade 
    # Convert to grayscale 
    gray = cv2.cvtColor(RawYUVFrame, cv2.COLOR_BGR2GRAY) 
    # Detect the faces 
    faces = face_cascade.detectMultiScale(gray, 1.1, 4) 
    return faces 
 
def TranslatePositon(x,y, hight, width): 
    #YUV file format explained here: https://answers.opencv.org/question/100149/how-to-get-y-
u-v-from-image/ 
    ypos = [x,y] 
    ve = [int(hight + (x / 4)), int(y / 2)] 
    vo = [int(hight + (x / 4)), int((y / 2) + (width / 2))] 
    ue = [int(1.25 * hight + (x / 4)), int(y / 2)] 
    uo = [int(1.25 * hight + (x / 4)), int((y / 2) + (width / 2))] 
    return ypos,ve,vo,ue,uo 
 
def OpenCVTruncate(pixelWidth=1920, pixelHight=1080, FPS=24.0, fileIn='Video.yuv', 
fileDirecotry = os.getcwd(), CapturedVideo = None, frameCount = None): 
 
    try: 
        os.makedirs(os.path.join(os.getcwd(),'Results', str(fileIn[:-4].rsplit('/', 1)[-1]))) 
    except OSError: 
        print ("Creation of the directory failed") 
    else: 
        print ("Successfully created the directory") 
    f = open(os.path.join(os.getcwd(),'Results', str(fileIn[:-4].rsplit('/', 1)[-
1]),'ROI_Locations.csv'), 'w') 
 
 
 
 
 
 
    r = open(os.path.join(os.getcwd(), 'Results', str(fileIn[:-4].rsplit('/', 1)[-1]), 
'ROI_Report.txt'), 'w') 
    name = str(os.path.join(os.getcwd(),'Results', str(fileIn[:-4].rsplit('/', 1)[-1]), 
((fileIn[:-4].rsplit('/', 1)[-1])+'_OUTPUT.yuv'))) 
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    except OSError: 
        print ("Creation of the directory failed") 
    else: 
        print ("Successfully created the directory") 
    f = open(os.path.join(os.getcwd(),'Results', str(fileIn[:-4].rsplit('/', 1)[-
1]),'ROI_Locations.csv'), 'w') 
    r = open(os.path.join(os.getcwd(), 'Results', str(fileIn[:-4].rsplit('/', 1)[-1]), 
'ROI_Report.txt'), 'w') 
    name = str(os.path.join(os.getcwd(),'Results', str(fileIn[:-4].rsplit('/', 1)[-1]), 
((fileIn[:-4].rsplit('/', 1)[-1])+'_OUTPUT.yuv'))) 
 
    face_cascade = cv2.CascadeClassifier('haarcascade_frontalface_alt2.xml') 
 
 
    # To capture video from webcam. 
    cap = CapturedVideo 
 
    # Setup output mp4 video that will show blue box around ROI's 
    #Reference FOURCC values from http://www.fourcc.org/codecs.php 
    #fourcc = cv2.VideoWriter_fourcc(*'YV12') 
    fourcc = cv2.VideoWriter_fourcc(*'IYUV') 
    Frame = cv2.VideoWriter(name, fourcc, FPS, (cap.width, cap.height)) 
 
    try: 
        for _ in tqdm.tqdm(range(int(frameCount)), unit="OpenCV Truncation"): 
            # Read the frame 
 
            ret, yuvimgRaw = cap.read_raw() 
            if not ret: 
                break 
            img = cv2.cvtColor(yuvimgRaw, cv2.COLOR_YUV2BGR_I420) 
            yuvimg = np.copy(yuvimgRaw) 
 
            faces = FindFaces(img, face_cascade) 
 
 
            #if an image is not in an ROI, truncate it across the YUV frame 
            totalTruncatePixels = 0 
            for i in range(cap.height): 
                for j in range(cap.width): 
                    if (not InROIRange(j, i, faces)): 
                        for [h,w] in TranslatePositon(i,j,cap.height,cap.width): 
                            yuvimg[h,w] = TruncateIntValue(yuvimg[h,w]) 
                            #yuvimg[h, w] = 255 
                            totalTruncatePixels += 1 
            ROI_CSV_OUT(faces, fileDirecotry, f) 
 
            Frame.write(cv2.cvtColor(yuvimg, cv2.COLOR_YUV2BGR_I420)) 
 
        r.write(str('OpenCVROI bits Truncated   ' + str(totalTruncatePixels) + '\n')) 
 
    finally: 
        Frame.release() 
        # Release the VideoCapture object 
 
        # Release CSV save file 
        r.close() 
        f.close() 
 
 
 
if __name__ == "__main__": 
    OpenCVTruncate() 
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Appendix A7: ROIMBTruncation.Py (cont. 1/3) 

FIGURE A6. ROIMBTruncation.py – This Script was written by William Oswald. This combines the OpenCV 

ROI Detection with the Macroblock Variance, and produces an output YUV video with both factors  

import cv2 
import numpy as np 
import tqdm 
import os 
import math 
import Macroblock 
 
def TruncateIntValue(a): 
    return (int(a) & 0b11111100 | 0b00000100) 
    #return 0b00000000 
 
def InROIRange(Pixelx, Pixely, faces): 
    for (x, y, w, h) in faces: 
        if ((x < Pixelx < (x + w)) and (y < Pixely < (y + h))): 
            return True 
        else: 
            return False 
 
def ROI_CSV_OUT(faces, fileDirecotry, f): 
    # Setup CSV file to save location of the 4 corners for a ROI 
    count = 0 
    tempstring = '' 
 
    for (x, y, w, h) in faces: 
        tempstring = (tempstring + str(x) + ',' + str(y) + ' ' + str(x) + ',' + str(y + h) + ' 
' + str( 
            x + w) + ',' + str(y) + ' ' + str(x + w) + ',' + str(y + h)) 
        count = count + 1 
    f.write((str(count) + ' ' + tempstring + '\n')) 
 
def FindFaces(RawYUVFrame, face_cascade): 
    # Load the cascade 
    # Convert to grayscale 
    gray = cv2.cvtColor(RawYUVFrame, cv2.COLOR_BGR2GRAY) 
    # Detect the faces 
    faces = face_cascade.detectMultiScale(gray, 1.1, 4) 
    return faces 
 
def TranslatePositon(x,y, hight, width): 
    ypos = [x, y] 
    ve = [int((x / 2)), int(hight + (y / 4))] 
    vo = [int((x / 2)) + (width / 2), int(hight + (y / 4))] 
    ue = [int((x / 2)), int(int(hight * 1.25) + (y / 4))] 
    uo = [int((x / 2)) + (width / 2), int((hight * 1.25) + (y / 4))] 
    return ypos, ve, vo, ue, uo 
 
def macroblock_per(yuv_frame, low_variance_threshold=1.25): 
    offset = int(len(yuv_frame)/3) 
    rows = len(yuv_frame) - offset 
    columns = len(yuv_frame[0]) 
    y = yuv_frame[0:rows, 0:columns] 
    u = yuv_frame[rows:rows+(offset/2), 0:columns] 
    v = yuv_frame[rows+(offset/2):rows+offset, 0:columns] 
    face_cascade = cv2.CascadeClassifier('haarcascade_frontalface_alt2.xml') 
    ROI_Index = FindFaces(cv2.cvtColor(yuv_frame, cv2.COLOR_YUV2BGR_I420), face_cascade) 
 
    def macbroblock_per(sub_frame): 
        MBtruncatedFrame = np.copy(sub_frame) 
        bitsTruncated = 0 
        for row_position in range(0, len(sub_frame), 16): 
            for column_position in range(0, len(sub_frame[0]), 16): 
                macroblock = [] 
 
                for j in range(row_position, row_position+16): 
                    for i in range(column_position, column_position+16): 
                        try: 
                            macroblock.append(0.0001560911143834408 * 



79 
 

Appendix A7: ROIMBTruncation.Py (cont. 2/3)  

    face_cascade = cv2.CascadeClassifier('haarcascade_frontalface_alt2.xml') 
    ROI_Index = FindFaces(cv2.cvtColor(yuv_frame, cv2.COLOR_YUV2BGR_I420), face_cascade) 
 
    def macbroblock_per(sub_frame): 
        MBtruncatedFrame = np.copy(sub_frame) 
        bitsTruncated = 0 
        for row_position in range(0, len(sub_frame), 16): 
            for column_position in range(0, len(sub_frame[0]), 16): 
                macroblock = [] 
 
                for j in range(row_position, row_position+16): 
                    for i in range(column_position, column_position+16): 

 

 
                        try: 
                            macroblock.append(0.0001560911143834408 * 
pow(int(sub_frame[j][i]), 2.628389343175764)) 
                        except IndexError: 
                            break 
                try: 
                    avg_lum = sum(macroblock) / len(macroblock) 
                    variance = sum([pow(byte - avg_lum, 2) / len(macroblock) for byte in 
macroblock]) 
                except ZeroDivisionError: 
                    pass 
                else: 

 
                    if variance >= low_variance_threshold: 
 
                        for i in range(16): 
                            for j in range(16): 
                                #print(len(sub_frame)) 
                                if ((row_position + i) < len(sub_frame)): 
                                    MBtruncatedFrame[row_position + i, column_position + j] = 
TruncateIntValue(MBtruncatedFrame[row_position + i, column_position + j]) 
                                    bitsTruncated += 1 
 
 
        return MBtruncatedFrame, bitsTruncated 
 
    def repairROI(MBTruncatedImage, originalImage): 
        ROIBitsSaved = 0 
        MBROIFrame = np.copy(MBTruncatedImage) 
        for (x, y, w, h) in ROI_Index: 
            x_MB_Translated = int(x - (x % 16)) 
            y_MB_Translated = int(y - (y % 16)) 
            MB_width = math.ceil(w / 16) 
            MB_hight = math.ceil(h / 16) 
 
            for i in range(int(MB_width * 16)): 
                for j in range(int(MB_hight * 16)): 
                    pixel_x = x_MB_Translated + i 
                    pixel_y = y_MB_Translated + j 
 
                    for [image_x, image_y] in TranslatePositon(pixel_x, pixel_y, rows, 
columns): 
                        if (MBROIFrame[image_y, image_x] != originalImage[image_y, image_x]): 
                            MBROIFrame[image_y, image_x] = originalImage[image_y, image_x] 
                            #MBROIFrame[image_y, image_x] = 255 
                            ROIBitsSaved += 1 
 
 
 

 



80 
 

Appendix A7: ROIMBTruncation.Py (cont. 3/3) 

  

 

  

        return (MBROIFrame, ROIBitsSaved) 
    uMBTruncatedFrame, bits2 = macbroblock_per(u) 
    vMBTruncatedFrame, bits3 = macbroblock_per(v) 
    yMBTruncatedFrame, bits1 = macbroblock_per(y) 
    MBtruncatedframe = np.vstack((yMBTruncatedFrame, uMBTruncatedFrame, vMBTruncatedFrame)) 
    totalbits = bits1 + bits2 + bits3 

 
    ROIMBFrame, totalsaved = repairROI(MBtruncatedframe, yuv_frame) 
    return (ROIMBFrame, MBtruncatedframe, totalbits, totalsaved) 
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Appendix A8: WeightedPSNR.Py (cont. 1/5) 

FIGURE A8. WeightedPSNR.py – This Script was written by William Oswald. This calculates WPSNR for a 
YUV 422 video, and records the ouput into a file. 

#!/usr/bin/python #Script written by Liam Oswald 
import struct 
import sys 
import math 
import pickle 
import cv2 
import numpy as np 
from tqdm import tqdm 
import os 
import Macroblock 
import ROIMBTruncation 
from skimage.measure import compare_ssim 
 
def psnr_rw(img1_ROI, img1_NROI, img2_ROI, img2_NROI, img3_ROI, img3_NROI, alpha): 
    img1_ROI = img1_ROI.astype(np.float128) 
    img1_NROI = img1_NROI.astype(np.float128) 
    img2_ROI = img2_ROI.astype(np.float128) 
    img2_NROI = img2_NROI.astype(np.float128) 
    img3_ROI = img3_ROI.astype(np.float128) 
    img3_NROI= img3_NROI.astype(np.float128) 
    mse_img2_ROI = np.mean((img1_ROI - img2_ROI) ** 2) 
    mse_img3_ROI = np.mean((img1_ROI - img3_ROI) ** 2) 
    mse_img2_NROI = np.mean((img1_NROI - img2_NROI) ** 2) 
    mse_img3_NROI = np.mean((img1_NROI - img3_NROI) ** 2) 
 
    def Critical_Alpha(MSE_1_ROI, MSE_1_NROI, MSE_2_ROI, MSE_2_NROI): 
        return (MSE_1_NROI - MSE_2_NROI) / (MSE_1_NROI + MSE_2_ROI - MSE_1_ROI -MSE_2_NROI) 
 
    Crit_alpha = Critical_Alpha(mse_img2_ROI, mse_img2_NROI, mse_img3_ROI, mse_img3_NROI) 
    D_frame_img2 = alpha * mse_img2_ROI + (1 - alpha) * mse_img2_NROI 
    D_frame_img3 = alpha * mse_img3_ROI + (1 - alpha) * mse_img3_NROI 
    psnr_rw_img2 = 20 * math.log10((255 / D_frame_img2)) 
    psnr_rw_img3 = 20 * math.log10((255 / D_frame_img3)) 
    return psnr_rw_img2, psnr_rw_img3, Crit_alpha 
 
def psnr(img1, img2): 
    img1 = img1.astype(np.float128) 
    img2 = img2.astype(np.float128) 
    mse = np.mean((img1 - img2) ** 2) 
    if mse == 0: 
        return 100 
    PIXEL_MAX = 255.0 
    return 20 * math.log10(PIXEL_MAX / math.sqrt(mse)) 
 
def WeightedPSR(frameNew, frameOld): 
    hight = len(frameOld) 
    width = len(frameOld[0]) 
    offset = int(len(frameOld)/3) 
    rows = len(frameOld) - offset 
    columns = len(frameOld[0]) 
    face_cascade = cv2.CascadeClassifier('haarcascade_frontalface_alt2.xml') 
    ROI_Index = ROIMBTruncation.FindFaces(cv2.cvtColor(frameOld, cv2.COLOR_YUV2BGR_I420), 
face_cascade) 
 
 
 
 
 
    def TranslatePositon(x, y, hight, width): 
        # YUV file format explained here: https://answers.opencv.org/question/100149/how-to-
get-y-u-v-from-image/ 
        ypos = [x, y] 
        ve = [int((x / 2)), int(hight + (y / 4))] 
        vo = [int((x / 2)) + (width / 2), int(hight + (y / 4))] 
        ue = [int((x / 2)), int(int(hight * 1.25) + (y / 4))] 
        uo = [int((x / 2)) + (width / 2), int((hight * 1.25) + (y / 4))] 
        return ypos, ve, vo, ue, uo 
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    columns = len(frameOld[0]) 
    face_cascade = cv2.CascadeClassifier('haarcascade_frontalface_alt2.xml') 
    ROI_Index = ROIMBTruncation.FindFaces(cv2.cvtColor(frameOld, cv2.COLOR_YUV2BGR_I420), 
face_cascade) 
 
    def TranslatePositon(x, y, hight, width): 
        # YUV file format explained here: https://answers.opencv.org/question/100149/how-to-
get-y-u-v-from-image/ 
        ypos = [x, y] 
        ve = [int((x / 2)), int(hight + (y / 4))] 
        vo = [int((x / 2)) + (width / 2), int(hight + (y / 4))] 
        ue = [int((x / 2)), int(int(hight * 1.25) + (y / 4))] 
        uo = [int((x / 2)) + (width / 2), int((hight * 1.25) + (y / 4))] 
        return ypos, ve, vo, ue, uo 
 
    def InROIRange(Pixelx, Pixely, faces): 
        for (x, y, w, h) in faces: 
            #translate ROI to macroblock edges 
            x_u = int(x - (x % 16)) 
            y_u = int(y - (y % 16)) 
            w_u = int(math.ceil(w / 16) * 16) 
            h_u = int(math.ceil(h / 16) * 16) 
            if ((x_u < Pixelx < (x_u + w_u)) and (y_u < Pixely < (y_u + h_u))): 
                return True 
            else: 
                return False 
 
    def ExtractROIPixels(frameNew, frameOld, ROI_Index): 
        inside_ROI_new = [] 
        inside_ROI_old = [] 
        outside_ROI_new = [] 
        outside_ROI_old = [] 
        picked_table = np.zeros((hight, width)) 
        for i in range(columns): 
            for j in range(rows): 
                ROI_flag = InROIRange(i,j,ROI_Index) 
                locations = TranslatePositon(i, j, rows, columns) 
 
                for [image_x, image_y] in locations: 
                    if picked_table[image_y, image_x] == 1: 
                        pass 
                    elif (image_y >= hight or image_x >= (width)): 
                        pass 
                    elif (ROI_flag): 
                        inside_ROI_new.append(frameNew[image_y,image_x]) 
                        inside_ROI_old.append(frameOld[image_y,image_x]) 
                    else: 
                        outside_ROI_new.append(int(frameNew[image_y, image_x])) 
                        outside_ROI_old.append(int(frameOld[image_y, image_x])) 
 
                    picked_table[image_y, image_x] = 1 
 
        inside_ROI_new = np.array(inside_ROI_new) 
        inside_ROI_old = np.array(inside_ROI_old) 
        outside_ROI_new = np.array(outside_ROI_new) 
        outside_ROI_old = np.array(outside_ROI_old) 
        return (inside_ROI_new, inside_ROI_old, outside_ROI_new, outside_ROI_old) 
    inside_ROI_new, inside_ROI_old, outside_ROI_new, outside_ROI_old = 
ExtractROIPixels(frameNew, frameOld, ROI_Index) 
    psnr_ROI = psnr(inside_ROI_new, inside_ROI_old) 
    psnr_not_ROI = psnr(outside_ROI_new, outside_ROI_old) 
    return psnr_ROI,psnr_not_ROI 
 
 
 
 
        for i in range(columns): 
            for j in range(rows): 
                ROI_flag = InROIRange(i,j,ROI_Index) 
                locations = TranslatePositon(i, j, rows, columns) 
 
                for [image_x, image_y] in locations: 
 
                    if picked_table[image_y, image_x] == 1: 
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        for i in range(columns): 
            for j in range(rows): 
                ROI_flag = InROIRange(i,j,ROI_Index) 
                locations = TranslatePositon(i, j, rows, columns) 
 
                for [image_x, image_y] in locations: 
 
                    if picked_table[image_y, image_x] == 1: 
                        pass 
 
                    elif (image_y >= hight or image_x >= (width)): 
                        pass 
 
                    elif (ROI_flag): 
                        inside_ROI_new.append(frameNew[image_y,image_x]) 
                        inside_ROI_old.append(frameOld[image_y,image_x]) 
                        inside_ROI_M2.append(frameM2[image_y, image_x]) 
                    else: 
                        outside_ROI_new.append(int(frameNew[image_y, image_x])) 
                        outside_ROI_old.append(int(frameOld[image_y, image_x])) 
                        outside_ROI_M2.append(int(frameM2[image_y, image_x])) 
                    picked_table[image_y, image_x] = 1 
 
        inside_ROI_new = np.array(inside_ROI_new) 
        inside_ROI_old = np.array(inside_ROI_old) 
        inside_ROI_M2 = np.array(inside_ROI_M2) 
        outside_ROI_new = np.array(outside_ROI_new) 
        outside_ROI_old = np.array(outside_ROI_old) 
        outside_ROI_M2 = np.array(outside_ROI_M2) 
 
        return (inside_ROI_new, inside_ROI_old, outside_ROI_new, outside_ROI_old, 
inside_ROI_M2, outside_ROI_M2) 
    inside_ROI_new, inside_ROI_old, outside_ROI_new, outside_ROI_old, inside_ROI_M2, 
outside_ROI_M2 = ExtractROIPixels(frameNew, frameOld, frameM2, ROI_Index) 
    psnr_rw_img2, psnr_rw_img3, Crit_alpha = psnr_rw(inside_ROI_old, outside_ROI_old, 
inside_ROI_new, outside_ROI_new, inside_ROI_M2, outside_ROI_M2, alpha) 
 
    return psnr_rw_img2, psnr_rw_img3, Crit_alpha 
 
def Main(VideoOld, VideoNew, Old_method_Frame, xRez, yRez, path, alpha =0.9): 
    # Get arguments 
    filename = VideoOld 
    xres = int(xRez) 
    yres = int(yRez) 
 
    frames_path = path + 'frames/' 
 
    # Do OS operations 
    #path = os.path.join(os.getcwd(), str(filename[:-4].rsplit('/', 1)[-1])) 
    #path = os.path.join(os.getcwd(),'Results', str(filename[:-4].rsplit('/', 1)[-1])) 
    #frames_path = os.path.join(os.getcwd(), str(filename[:-4].rsplit('/', 1)[-1])+"/frames/") 
    try: 
        #os.makedirs(path) 
        os.makedirs(frames_path[:-1]) 
    except OSError: 
        print ("Creation of the directory %s failed" % frames_path) 
    else: 
        print ("Successfully created the directory %s " % frames_path) 
 
    # Read in the file 
    capNew = Macroblock.VideoCaptureYUV(VideoNew, (yres, xres)) 
    capOld = Macroblock.VideoCaptureYUV(VideoOld, (yres, xres)) 
    capM2 = Macroblock.VideoCaptureYUV(Old_method_Frame, (yres, xres)) 
 
 
    filesize, framecount = capNew.file_statistics() 
 
 
    print "Size of file in bytes: %d\nNumber of frames: %d\n" % (filesize, framecount) 
 
 
    # Calculate average psnr and ssim for the whole video 
    psnr_rw_img2_list = [] 
    psnr_rw_img3_list = [] 
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    filesize, framecount = capNew.file_statistics() 
    print "Size of file in bytes: %d\nNumber of frames: %d\n" % (filesize, framecount) 
    # Calculate average psnr and ssim for the whole video 
    psnr_rw_img2_list = [] 
    psnr_rw_img3_list = [] 
    Crit_alpha_list = [] 
    for index in tqdm(range(framecount), unit="WeightedPSNR - ROI and non-ROI PSNR, critical 
Alpha calc"): 
        try: 
            retOld, frameOld = capOld.read_raw() 
            retNew, frameNew = capNew.read_raw() 
            retM2, frameM2 = capM2.read_raw() 
 
        except: 
            print("ERROR") 
            print(retOld) 
            print(retNew) 
            print(VideoNew) 
            print("ERROR") 
        frame_truncate_old = frameOld 
        #CALCULATE ALL PSNR VALUES 
        psnr_rw_img2, psnr_rw_img3, Crit_alpha = WeightedPSR_Two_Videos(frameNew, frameOld, 
frameM2, alpha) 
 
        psnr_rw_img2_list.append(psnr_rw_img2) 
        psnr_rw_img3_list.append(psnr_rw_img3) 
        Crit_alpha_list.append(Crit_alpha) 
 
        #cap.display_raw_frame(frame, frames_path+str(filename[:-4].rsplit('/', 1)[-
1])+"_frame"+str(index)+".png") 
        capNew.display_raw_frame(frame_truncate_old, frames_path+str(filename[:-4].rsplit('/', 
1)[-1])+"_Original"+str(index)+".png") 
    psnr_rw_img2_avg = np.nansum(psnr_rw_img2_list) / 
np.count_nonzero(~np.isnan(psnr_rw_img2_list)) 
    psnr_rw_img3_avg = np.nansum(psnr_rw_img3_list) / 
np.count_nonzero(~np.isnan(psnr_rw_img3_list)) 
    Crit_alpha_avg = np.nansum(Crit_alpha_list) / 
np.count_nonzero(~np.isnan((Crit_alpha_list))) 
    print len(Crit_alpha_list) 
    # Write data to CSV file 
    with open(os.path.join(path,str(filename[:-4].rsplit('/', 1)[-1])+".csv"), "wb") as file: 
        file.write("Original Video,"+ 
                   "New Video,"+ 
                   ","+ 
                   "psnr_wr_OUR METHOD avg,"+ 
                   "psnr_wr_OLD METHOD avg,"+ 
                   "Critical_Alpha avg,"+ 
 
                   "," + 
                   "," + "\n") 
        file.write(str(VideoOld[:-4].rsplit('/', 1)[-1])+","+ 
                   str(VideoNew[:-4].rsplit('/', 1)[-1])+","+ 
                   str(',')+ 
                   str(psnr_rw_img2_avg) + "," + 
                   str(psnr_rw_img3_avg) + "," + 
                   str(Crit_alpha_avg) + "," + 
 
 
                   #str(ssim_new_avg)+"\n\n\n") 
                   str('') + "\n\n\n") 
 
        file.write("Frame,psnr_wr_OUR METHOD,psnr_wr_OLD METHOD,Critical_Alpha, \n") 
        for index, psnr_rw_img2_list, psnr_rw_img3_list, Crit_alpha_list in 
zip(range(framecount), 
                                                                           psnr_rw_img2_list, 
                                                                           psnr_rw_img3_list, 
                                                                           Crit_alpha_list, 
 
                                                                           #psnr_new, 
                                                                           #ssim_new): 
                                                                           ): 
            
#file.write(str(index)+","+str(mb_y)+","+str(mb_u)+","+str(mb_v)+","+str(psnr_o)+","+str(ssim_
o)+","+str(psnr_n)+","+str(ssim_n)+"\n") 
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Appendix A8: WeightedPSNR.Py (cont. 5/5) 

 

  

 
        for index, psnr_rw_img2_list, psnr_rw_img3_list, Crit_alpha_list in 
zip(range(framecount), 
                                                                           psnr_rw_img2_list, 
                                                                           psnr_rw_img3_list, 
                                                                           Crit_alpha_list, 
 
                                                                           #psnr_new, 
                                                                           #ssim_new): 
                                                                           ): 
            
#file.write(str(index)+","+str(mb_y)+","+str(mb_u)+","+str(mb_v)+","+str(psnr_o)+","+str(ssim_
o)+","+str(psnr_n)+","+str(ssim_n)+"\n") 
            file.write(str(index) + "," + str(psnr_rw_img2_list) + "," + 
str(psnr_rw_img3_list) + "," + str(Crit_alpha_list) + "," + "\n") 
 
 
 
 
 
 
 
 
if __name__ == "__main__": 
 
    Main() 
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