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Abstract. Intertidal mangrove forests are harsh environ-
ments that can naturally experience hypoxia in association
with low tide. However, we know relatively little about dis-
solved oxygen (DO) fluctuations and DO-induced responses
by fish, although DO is a fundamental water quality parame-
ter. This study examines DO as a potential factor regulating
the utilisation of intertidal mangrove forests by fish and con-
sequently their widely recognised feeding, refuge and nurs-
ery values. We deployed underwater video cameras, coupled
with DO and depth loggers, in a mangrove forest to record
changes in fish assemblages in response to tidal variations in
DO and other associated environmental parameters. Our re-
sults indicate that DO underwent extreme tidal fluctuations,
reaching levels as low as 14 % saturation. As DO was identi-
fied as a significant factor for explaining variability in fish as-
semblage composition, we further investigated fish responses
to DO fluctuations. Higher taxonomic richness and frequen-
cies of occurrence were observed once DO reached 70 %–
80 % saturation. More detailed examination revealed species-
specific responses. Three distinct patterns of mangrove utili-
sation in response to DO were identified, driven by apparent
taxa’s behavioural DO avoidance thresholds. Most taxa did
not display any behavioural avoidance, including presence at
the lowest DO levels, while other taxa were not observed ei-
ther below 50 %–60 % saturation or below 70 %–80 % sat-
uration. This implies that tidal migrations, often observed
in intertidal environments, could be the result of differen-
tial DO tolerances and are not simply initiated by changes
in water depth. Taxa remaining in the mangrove forest even
at low DO were on average more frequently observed than

the other taxa and were mostly species commonly associated
with mangrove habitats. This suggests that being adapted to
withstand low DO might be an important condition for using
mangrove habitats extensively. The need of being tolerant to
low DO could constrain fish utilisation and explain the rela-
tively low species richness often observed in other intertidal
mangrove forests.

1 Introduction

Mangrove forests are recognised as important habitats for
fish (Robertson and Duke, 1990; Nagelkerken et al., 2002,
2008). However, their commonly recognised feeding, refuge
and nursery value has been shown to be heterogenous and
influenced by local environmental factors influencing man-
grove forests’ accessibility and suitability (Faunce and Ser-
afy, 2006; Bradley et al., 2019). Mangroves can be challeng-
ing habitats, especially in regions where they are subjected to
tide (Unsworth et al., 2007; Olds et al., 2012), as tidal varia-
tion generates a range of constraints. Mangrove forests gen-
erally become only accessible for short periods while flooded
at high tide, and the decrease in water depth as the tide ebbs
leads to eventual drainage of the forest (Sheaves, 2005; Baker
et al., 2015). Tidal variation also induces short-term changes
in environmental conditions, such as salinity, temperature,
water depth, turbidity, light and dissolved oxygen (DO), that
can lead to a temporarily unsuitable habitat for fish utilisation
(Davis, 1988; Rountree and Able, 2007; Brady and Targett,
2013; Dubuc et al., 2017; Mattone and Sheaves, 2017).
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Several studies have demonstrated that fish undertake reg-
ular migrations in intertidal mangrove forests. Migration pat-
terns have been shown to be species-specific and influenced
by tide (Laroche et al., 1997; Krumme, 2004; Ellis and Bell,
2008; Meynecke et al., 2008; Sheaves et al., 2016; Dubuc
et al., 2019). Tidal migrations indicate that fish respond to
one or several factors varying with tide. However, there is
still uncertainty on what environmental factors induce these
tidal migrations. The factors driving these species-specific
tidal migrations could be changing water depth (Bretsch and
Allen, 2006; Ellis and Bell, 2008; Reis-Filho et al., 2016)
or alternatively the result of active avoidance of adverse
changes in water quality.

A key factor determining water quality and that can change
drastically across tide is DO. DO is crucial for all aer-
obic organisms, including fish (Driedzic and Hochachka,
1978; Falkowski and Raven, 1997). However, DO availabil-
ity varies extremely over the tidal and diel cycle in mangrove
habitats, reaching levels that can lead to physiological stress
(Knight et al., 2013; Dubuc et al., 2017; Gedan et al., 2017;
Mattone and Sheaves, 2017). Consequently, it is likely that
some fish species respond to changes in DO by undertak-
ing tidal migrations or by avoiding mangrove forests perma-
nently to prevent the adverse effects following exposure to
low DO. Despite the importance of DO and its extreme vari-
ability in shallow-water environments, our understanding on
how DO fluctuations shape patterns of fish utilisation on a
tidal and diel scale is limited (Davis, 1988; Smith and Able,
2003; Rountree and Able, 2007).

DO is maybe the most complex and variable parameter to
study, as it is influenced by multiple interacting biotic and
abiotic parameters at a range of spatial and temporal scales
(Buffoni and Cappelletti, 1999; Diaz and Rosenberg, 2008;
Nezlin et al., 2009). The main factor responsible for DO fluc-
tuations is the autotrophic cycle, with photosynthesis occur-
ring during daylight hours and respiration during nighttime
hour, creating a diel cycle in DO. Another important param-
eter to consider, especially in intertidal environments, is tide,
as it is responsible for many physical and chemical changes
susceptible to impact oxygen cycle. If these two factors are
considered, DO can be partially predicted, with the lowest
DO levels occurring at night or dawn at low tide, following
nighttime respiration, while maximum levels are recorded
in the afternoon at high tide, following autotrophic produc-
tion (Kenney et al., 1988; Mazda et al., 1990; D’Avanzo and
Kremer, 1994; Tyler et al., 2009). This diel pattern gives
part of the answer of when fish could be able to use man-
grove habitats without being exposed to high risks of low
DO. However, fish species have developed physiological and
behavioural adaptation strategies (Kramer, 1987; Breitburg,
1994; Diaz and Rosenberg, 1995), leading to species-specific
hypoxia tolerances (Vaquer-Sunyer and Duarte, 2008). Con-
sequently, these adaptations could result in species-specific
tidal migrations, as species highly tolerant to hypoxia would
be adapted to use more often and remain longer in mangrove

forests compared to other less-tolerant species that would be
restricted to access mangrove forests at higher DO levels.

Although it is known that mangrove forests experience
natural low DO in some locations (Knight et al., 2013; Mat-
tone and Sheaves, 2017), it is unknown how general this phe-
nomenon is and what the potential consequences on fish pop-
ulations are. Understanding DO dynamics and the impacts on
fish utilisation and value of highly productive habitats such
as mangroves is crucial, especially in the context of global
ocean deoxygenation (Diaz and Rosenberg, 2008; Breitburg
et al., 2018). Ocean deoxygenation is mainly due to the in-
crease in human activities along the coastlines during the past
50 years (Vaquer-Sunyer and Duarte, 2008), implying that
mangrove ecosystems are especially prone to experiencing
anthropogenic deoxygenation due to their location along the
coasts. By addressing the gaps of knowledge around hypoxia
in mangrove forests, managers would be in a stronger posi-
tion to implement adequate action plans to limit the impact
of hypoxia that is predicted to worsen in the coming years
(Breitburg et al., 2018).

This study examines the impact of DO fluctuations on the
utilisation of mangrove forests by fish in a mangrove–coral-
reef seascape in the Indo–West Pacific (IWP). We assessed
how fish utilisation changes across tidally varying DO levels,
and we determined the relative importance of DO, depth, lu-
nar phase (neap vs spring), location within the mangrove for-
est (edge vs in forest), time of day and tide direction (flooding
vs ebbing) in explaining variations in fish assemblages. To
address this aim, we used unbaited underwater video cam-
eras, simultaneously deployed at dawn and mid-afternoon
on the edge and 5 m inside a mangrove forest, coupled with
high-frequency DO and depth loggers. The study site was lo-
cated in an IWP mangrove–coral-reef seascape experiencing
a microtidal regime.

2 Materials and methods

2.1 Study site

The study was conducted in a semi-enclosed lagoon
(1.2 km long, 60 m wide and 1–2 m depth) located in
Bouraké, South Province, New Caledonia (21◦56.971 S,
165◦59.481 E; Fig. 1). The system comprises a 2.5 km2 man-
grove forest dominated by Rhizophora stylosa on the seaward
edge and Avicennia marina on the landward margin. A chan-
nel (20–70 m wide, 2–6 m depth and 700 m long) bisects the
mangrove forest and connects the semi-enclosed lagoon to
the coastal waters of Pritzbuer Bay (∼ 20 km2). The chan-
nel comprises two sheltered inlets (approximately 0.01 km2

each) and a shallow (1–2 m depth) coral-reef platform that
extends from the middle of the channel to the edge of the
mangrove forest. New Caledonia is an archipelago located
in the South–Western Pacific, around 1500 km east of Aus-
tralia. It is characterised by a semi-arid to tropical climate,
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with an annual total rainfall of 1000 mm and a mixed semi-
diurnal microtidal regime (maximum 1.8 m tidal range). The
study system receives little freshwater inflow, with no defined
drainages.

2.2 Data collection

Nine sites were selected on an inland–offshore gradient along
the channel (Fig. 1). Sites 1 to 8 were four paired sites, with
odd site numbers located on the mangrove forest edge (de-
fined as the boundary between mangrove prop roots and bare
substrate) and even site numbers located 5 m inside the man-
grove forest. Site 9 was located on the edge of scattered man-
grove trees growing on the reef platform of the innermost
inlet and was considered to be an edge site.

Fish assemblages were examined at the sites using un-
baited underwater video cameras (UVCs). UVCs were de-
ployed at dawn until the battery was discharged (around
2.5 h) and again in the mid-afternoon, during neap (21
to 23 February 2017) and spring tides (28 February to
1 March 2017), simultaneously at the nine sites. This sam-
pling design was applied to capture fish assemblages as close
as possible to the expected lowest daily DO levels (dawn)
and the expected highest DO levels (mid-afternoon; Dubuc et
al., 2017). Cameras were positioned around 7 cm above the
substrate, facing towards the channel. A marker was placed
0.5 m in front of the camera lens as a visibility indicator to
ensure that all videos had a minimum visibility of 0.5 m. Vis-
ibility was relatively consistent during the sampling period,
and fish could be identified confidently up to approximately
2 m from the UVCs in all videos.

Over this study, we examined the effects of tidal factors
(depth, lunar phase – spring vs. neap – and tide direction
– flooding vs. ebbing) related to habitat accessibility; DO,
temperature and salinity related to habitat suitability; and
two different components of the mangrove forest (edge and
in forest) related to the nature of mangrove habitats. Be-
tween 21 February and 1 March 2017, near-bottom (∼ 5 cm
above the sediment) DO (% saturation) and water tempera-
ture (◦C) were measured every 15 min at each site using cali-
brated multi-parameter loggers (YSI ProODO model – accu-
racy ±1 % saturation). A depth logger (In-Situ Inc. Rugged
TROLL 100 model) was coupled with each multi-parameter
logger to measure water depth (cm) every 15 min. Salinity
was measured every 15 min from 21 to 23 February and be-
tween 28 February and 1 March 2017 using another multi-
parameter logger (YSI 6920 V2-2) positioned at site 5. The
tidal range was obtained from the SHOM website (SHOM,
2017).

2.3 Data extraction from videos

Methodological details to extract data from the videos are
reported in Dubuc et al. (2019). Briefly, as considerable
time is required to process videos, we subsampled the ac-

quired recordings. One neap tide and one spring tide sam-
pling were randomly selected for processing. Five sites from
the second neap tide and spring tide sampling were also pro-
cessed, so one randomly selected replicate on the reef plat-
form (site 9) and two replicates of randomly selected paired
sites, not located on the reef platform, were acquired (sites 5–
8). Videos were viewed using the VideoLAN Client media
player (VLC) and subdivided into 5 min intervals to follow
the temporal variations in fish assemblages. All taxa ob-
served in each 5 min interval were identified and recorded.
Only presence or absence data were recorded to avoid bi-
ases induced by count data when using UVCs (Sheaves et
al., 2016). Fish were identified to the lowest possible taxo-
nomic level, with all fish identifications validated by two ad-
ditional experts. For each 5 min interval video, information
about depth, DO, time of day, lunar phase (neap vs spring),
habitat (edge vs in forest) and tide direction (flooding vs
ebbing) was recorded.

2.4 Data analysis

To graphically investigate temporal dynamics of DO on the
edge and in forest, and covariance with depth and temper-
ature, cubic spline smoothers were fitted to the three time
series using R. DO residuals were graphically added to em-
phasise extreme DO levels. Kendall’s correlation test (as DO
did not follow a normal distribution) was used to determine
whether patterns of change in DO were significantly corre-
lated between edge and in-forest sites. Cumulative DO fre-
quency curves (Dubuc et al., 2017) were plotted for each site
to highlight differences in spatial and temporal dynamics.

Following the methodology described in Dubuc et
al. (2019), an index depending on observation per unit ef-
fort (OPUE) was used to calculate frequencies of occurrence
for each taxa (the total number of 5 min intervals in which
a taxon was observed in one sample unit was divided by the
total number of 5 min intervals recorded for the same sample
unit). We acknowledge the existence of a non-independence
issue created by subsampling videos in 5 min intervals. In-
deed, this can potentially lead to the count of the same indi-
vidual fish in sequential time windows. However, the objec-
tive here was to characterise environmental conditions suit-
able for the utilisation of mangrove habitats through time by
different taxa. Therefore, we assumed that if an individual of
a taxon was present (no matter if it was the same individual or
another one to any recorded in previous 5 min intervals), then
conditions were suitable. Frequencies of occurrence were
first calculated per site. Only taxa with a frequency of occur-
rence ≥ 0.05 on at least one site were retained for analyses
(hereafter referred to as “common taxa”).

We hypothesised that DO is an important factor in explain-
ing the presence of fish taxa. To test this hypothesis, a random
forest (RF) model (Breiman, 2001) was used to quantify the
relative importance of DO and the other measured environ-
mental factors and identify how well the combination of the
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Figure 1. Map of the study system in Bouraké, South Province, New Caledonia. The nine study sites sampled from 21 February to
1 March 2017 are indicated by their corresponding numbers. Light grey areas represent mangrove forest, dark grey areas represent mainland
and white areas represent water.

selected environmental factors predicted fish taxonomic rich-
ness. This machine learning algorithm permits analysis of
data that do not meet the requirements of normality and ho-
moscedasticity required for approaches such as general lin-
ear models and include repeated measurements (Mercier et
al., 2011). The taxonomic richness was determined for each
5 min interval recorded (a total of 1434 intervals of 5 min).
The dataset was then split into two to obtain a training dataset
(875 intervals of 5 min obtained from the 2 entire sampling
days processed) to build the RF model and a test dataset (559
intervals of 5 min obtained from the five replicate sites pro-
cessed) to test the robustness of the model at predicting tax-
onomic richness. The RF model, consisting of 1000 regres-
sion trees generated using two predictors at each split (de-
fault value), was created to predict taxonomic richness, with
“Habitat” (edge vs in forest), “Depth”, “DO”, “Lunar phase”
(neap vs spring), “Time of day” (morning vs afternoon) and
“Tide direction” (flooding vs ebbing) as predictors. The out-
of-bag error estimate, corresponding to a measure of the pre-
diction error of the random forest, was used to validate the
model. The increased mean-square error (MSE) was calcu-
lated to determine the variable importance in predicting tax-
onomic richness. The model was then run on the test dataset
to generate a confusion matrix. From the confusion matrix,
the percentage of cases when the model was able to predict
the exact taxonomic richness observed was calculated as well
as the percentage of cases where the model was able to pre-
dict the taxonomic richness observed at ±1 taxon. All RF
model-related analyses were conducted using the “random-
Forest” package in R (Breiman, 2001). As a RF model is
built from many classification trees, it is not accurate to draw
a single tree from this model. Therefore, a univariate classi-
fication tree analysis was carried out on the training dataset
with the same variables as the RF, and the tree obtained from

this analysis was used to visually interpret the RF model. The
univariate classification tree analysis was performed using
the package “party” in R (Hothorn et al., 2010).

After quantifying the importance of DO, the goal was
to understand when fish initiated responses to DO. Each
5 min video interval was allocated to a DO percentage sat-
uration class in 10 % intervals (from 30 %–40 % satura-
tion to 100 %–110 % saturation) according to the DO level
recorded. The frequency of occurrence of each common
taxon per class of DO was then calculated to investigate
whether intensity of utilisation varied in response to DO.
A general additive mixed model (GAMM) was built with
log10(X+ 1)-transformed frequencies of occurrence of each
common taxon as the response variable, “DO” as a smooth
term and “Habitat” (edge vs. in forest) as a parametric term,
using a Gaussian distribution and an identity link function.
The model was built using the package “mgcv” in R (Wood,
2007). Frequencies were log10(X+1)-transformed to reduce
the impact of extreme values and improve visualisation. The
frequencies of occurrence of each common taxon across DO
were also plotted individually using a loess curve. Patterns
were then investigated individually and visually grouped by
similarity of mangrove utilisation in response to DO. No
grouping was imposed, and visualisation of the data iden-
tified three common patterns of mangrove utilisation across
DO among all common taxa. These three patterns were based
on distinct preferences for DO with taxa recorded from 30 %
to 110 % saturation, taxa recorded from 50 % to 110 % satu-
ration and taxa recorded from 70 % to 110 % saturation.

Taxa observed in mangrove habitats even at low DO (from
30 % to 110 % saturation) may indicate that these fish are
well adapted to using mangrove habitats extensively and
therefore expected to be observed more frequently than the
other taxa. To test this hypothesis, overall frequencies of oc-
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currence were calculated for each common taxon by dividing
the total number of 5 min intervals in which a taxon was ob-
served by the total number of 5 min intervals recorded during
the study at the DO range corresponding to that taxon’s as-
signed pattern of utilisation (30 %–110 % saturation; 50 %–
110 % saturation; 70 %–110 % saturation). Following this
methodology allows for calculating frequencies of occur-
rence according to the effective sample size; it therefore over-
comes the unbalanced sampling effort, as species recorded
across the entire range of DO would automatically be more
frequent than species only recorded from 70 % to 110 % sat-
uration, since it represents a smaller proportion of the sample
size. Species-specific overall frequencies of occurrence were
then plotted by the type of patterns of utilisation assigned
using boxplots. To test for differences in overall frequencies
of occurrence among the different types of patterns of utilisa-
tion, a Kruskal–Wallis test, followed by a post hoc Dunn test,
was performed (data did not follow a normal distribution).

3 Results

All relevant data are freely available online on the
Tropical Data Hub repository: https://doi.org/10.25903/
5cd4d312cbcfb (Dubuc, 2019).

DO was highly variable at the mangrove study sites in
Bouraké (Fig. 2). DO reached levels as low as 14 % satura-
tion at night low-neap tides during the entire logging period
and as low as 35 % saturation during the morning hours that
coincided with low spring tides while UVCs were deployed
(Fig. 2; Table 1). DO closely followed the diel and tidal cy-
cles, with daily maximum levels recorded during the after-
noon high tide and minimum levels recorded during the night
or early morning low tide. Temperatures followed a typical
diel cycle, peaking during the late afternoon and declining at
night, reaching minimum levels in the early morning hours.
Salinity was relatively constant during the study, ranging be-
tween 32.1 and 34.9.

Temporal dynamics in DO were significantly correlated
between in-forest and edge habitats (p<0.0001; r = 0.95;
Fig. 2; Fig. A1 in Appendix). DO minima and maxima were
also similar between edge and in-forest sites (Table 1). Most
DO levels were between 70 % and 80 % saturation; never-
theless, DO levels were equal to or below 50 % saturation
(adopted threshold for hypoxia; Breitburg, 2002; Dubuc et
al., 2017) for around 11 % of the time inside the forest and
21 % on the edge (Fig. 3). Mean and minimum DO levels
were lower during neap tides than spring tides for both edge
and in-forest sites (Table 1). The duration of low DO tended
to increase with distance from the mouth of the channel, with
DO at or below 50 % saturation 4 % of the time at the in-
forest site closest to the channel entrance (site 2) and 14 %
of the time at the in-forest site furthest from the channel en-
trance (site 8; Fig. 3).

Fifty-six video deployments were processed (totalling
more than 118 h of video); 72 taxa from 29 families were
recorded, with 36 common taxa (frequency of occurrence
≥ 0.05) retained for further statistical analyses (Table 2). The
full list of taxa identified is provided in Table A1. Among
the 36 common taxa identified, only 23 taxa were recorded
in forest, while on the edge 34 were recorded.

We used a RF model to assess the relative importance of
several environmental factors in determining taxonomic rich-
ness. The robustness of the model in predicting taxonomic
richness at this location was also tested. The RF model con-
sisted of 875 intervals of 5 min and six independent environ-
mental factors. It explained 50.2 % of the total variance in
taxonomic richness. “Depth” was the most important factor
for predicting taxonomic richness, with its exclusion from
the model increasing the MSE by more than 61 % (Fig. 4a).
“Lunar phase”, “DO” and “Habitat” were also important pre-
dictors of taxonomic richness (between 45 % and 55 % in-
crease in MSE). “Time of day” and “Tide direction” were of
less importance but still accounted for an increase in MSE
of more than 35 %. The RF model successfully predicted the
exact taxonomic richness observed on the replicate sites for
23 % of the 5 min intervals recorded and for 60 % of them
at ±1 taxon (Table S1 in the Supplement). DO and depth
were highly correlated, which can potentially impact the RF
prediction of variable importance, although there is no agree-
ment on what the effects of multicollinearity are (Gregorutti
et al., 2017). However, RF is a very robust method, and in
this study, considering the large dataset used with only few
predictors that are all relevant to explaining fish assemblages,
we believe that overfitting is not an issue. Nevertheless, a RF
model was built only with “Depth” and then only with “DO”
to test for the effect of multicollinearity on their relative im-
portance. In both cases, the total variability explained by the
model was much lower (33.42 % with only “Depth” included
and 26.36 % with only “DO” included) than when “Depth”
and “DO” were both included (50.22 %). The univariate tree
corroborated the results of the RF in terms of variable impor-
tance and proved to be an effective way of getting a visual
interpretation of the RF (Fig. 4b). The taxonomic richness
was the lowest at in-forest sites and on the edge during spring
tides. Conversely, taxonomic richness was the highest when
water depth was the deepest during neap tides and when DO
was greater than 83 % saturation.

The RF model showed that DO was an important factor
in explaining variations in taxonomic richness. We therefore
further investigated fish responses to DO; log10-transformed
frequencies of occurrence of all taxa combined varied signifi-
cantly across DO (GAMM: F = 3.693; p = 0.0166) and dif-
fer between habitats (GAMM: F = 11.48; p<0.0001). On
average, frequencies of occurrence were highest once DO
reached 70 %–80 % saturation (Fig. 5a and b). The spread
of the frequencies of occurrence around the median was also
substantially reduced once DO was between 70 % and 110 %
saturation, indicating that taxa were more equally frequent,

www.biogeosciences.net/16/3959/2019/ Biogeosciences, 16, 3959–3976, 2019
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Table 1. Summary of the environmental factors during the study period. For each factor, the minimum, maximum and mean (±SE) values
are provided for neap tides and spring tides on the edge and in-forest sites.

Environmental Values Neap Spring
factors

Edge In forest Edge In forest

DO (% saturation) Min 13.7 14.3 30.9 22.6
Max 110.6 114.4 105.5 103.3
Mean (±SE) 67.2 (±0.6) 71.4 (±0.6) 75.8 (±0.7) 79.5 (±0.7)

Temperature (◦C) Min 26.2 25.8 25.9 25.1
Max 32.0 31.5 30.5 30.4
Mean (±SE) 29.1 (±0.0) 28.9 (±0.0) 28.0 (±0.0) 28.0 (±0.0)

Water depth (cm) Min 1.1 0.0 2.4 0.0
Max 118.1 77.8 133.7 95.5
Mean (±SE) 55 (±0.7) 34 (±0.6) 71 (±1.2) 48 (±1.1)

Tidal range (m) Min 0.35 0.35 1.25 1.25
Max 0.59 0.59 1.38 1.38
Mean 0.46 0.46 1.31 1.31

Figure 2. Cubic spline smoothers for dissolved oxygen (DO), depth and temperature. Data are from 21 to 25 February 2017 and from
27 February to 1 March 2017. For DO, edge sites are represented by the blue smoother and black points and in-forest sites by the grey
smoother and red points. For the other factors, edge sites are represented by the black smoothers and in-forest sites by the grey smoothers.
Shaded areas represent sunset to sunrise. Each red box represents an underwater camera sampling.

Biogeosciences, 16, 3959–3976, 2019 www.biogeosciences.net/16/3959/2019/
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Figure 3. Site-specific cumulative DO frequencies. Each colour
represents a paired site (edge and in forest), and edge sites are repre-
sented by solid coloured lines and in-forest sites by dashed coloured
lines. The solid black line indicates the mean cumulative DO fre-
quencies across edge sites and the dashed one the mean cumula-
tive DO frequencies across in-forest sites. The frequency of hypoxia
(DO≤ 50 % saturation) at sites 2 and 8 is indicated to help read the
figure.

whereas at low DO levels only a few taxa were abundant,
with the rest being rarely observed or absent entirely. The
patterns of utilisation across DO intervals differed between
the in-forest and edge habitat (Fig. 5a and b). Although, on
average, the highest frequencies of occurrence were recorded
once DO reached 70 %–80 % saturation for both habitats;
there were larger disparities between taxa at edge sites, with
some being frequently observed at low DO and some being
rarely observed or absent entirely until DO reached 70 %–
80 % saturation (Fig. 5a), while at in-forest sites, frequencies
of occurrence were more stable across DO (Fig. 5b).

Disparities in frequencies of occurrence between taxa
were explained as fish appeared to respond differently to DO
variations. We identified three distinct types of patterns of
mangrove utilisation across DO while investigating species-
specific variations in frequencies of occurrence across DO:

1. Pattern 1: “High tolerance”. These taxa (19 taxa) were
recorded across the entire range of DO (30 %–110 %
saturation) and were usually known to use mangrove
habitats extensively (Fig. 6; Table 2; Fig. A2a and b).

2. Pattern 2: “Medium tolerance”. These taxa (seven taxa)
were not observed once DO was below 50 %–60 % sat-
uration and were also usually known to use mangrove
habitats extensively (Fig. 6; Table 2; Fig. A2c).

3. Pattern 3: “Low tolerance”. These taxa (10 taxa) were
not observed once DO was below 70 %–80 % saturation
and were usually reef-associated taxa (Fig. 6; Table 2;
Fig. A2d).

Table 2. The 36 common fish taxa identified by underwater video
cameras at Bouraké, New Caledonia. The superscript number cor-
responds to the type of patterns of mangrove utilisation across DO
followed by the taxon (Fig. 6): Pattern 1 – “High tolerance”, Pat-
tern 2 – “Medium tolerance” – and Pattern 3 – “Low tolerance”.
Taxa highlighted in bold represent the 10 most common taxa. Taxa
recorded in forest (5 m inside the forest) are underlined.

Family Taxon

Acanthuridae Acanthurus auranticavus 1

Acanthurus grammoptilus3

Apogonidae Fibramia lateralis 1

Carangidae Caranx papuensis1

Chaetodontidae Chaetodon auriga 1

Chaetodon bennetti1

Chaetodon lineolatus 1

Chaetodon lunula3

Chaetodon vagabundus3

Heniochus acuminatus3

Clupeidae Clupeidae spp.3

Gerreidae Gerres oyena 2

Gobiidae Amoya gracilis 1

Asterropteryx sp. cf. striata1

Cryptocentrus leptocephalus3

Gobiidae spp. 1

Redigobius balteatus 1

Haemulidae Plectorhinchus spp.2

Pomadasys argenteus2

Lethrinidae Lethrinus harak 2

Lethrinus lentjan3

Lutjanidae Lutjanus argentimaculatus 1

Lutjanus fulviflamma 1

Lutjanus fulvus 1

Lutjanus russellii 1

Monodactylidae Monodactylus argenteus 1

Mugilidae Mugilidae spp. 1

Mullidae Mulloidichthys flavolineatus1

Parupeneus indicus 3

Upeneus tragula 2

Pomacanthidae Pomacanthus sexstriatus 3

Pomacentridae Neopomacentrus spp.1

Scaridae Scarus sp. cf. ghobban3

Siganidae Siganus canaliculatus2

Siganus lineatus 1

Sparidae Acanthopagrus sp. cf. akazakii2

Figure 6 only shows one example of taxa per type of pat-
terns; however, all the species-specific patterns are provided
in Fig. A2a, b, c and d.

The type of patterns followed by a taxon appeared to
significantly influence its overall frequency of occurrence
(Fig. 7; Kruskal–Wallis: χ2

= 9.8757; p<0.01). Taxa fol-
lowing a “High tolerance” pattern were on average signifi-
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Figure 4. Importance of different environmental factors in explaining variations in taxonomic richness. (a) Random forest importance plot.
Importance plot was obtained from a random forest model built with Depth (cm), Lunar phase (neap vs spring), DO (dissolved oxygen;
% saturation), Time (time of day; morning vs afternoon), Tide dir (tide direction; flooding vs. ebbing) and Habitat (in forest vs. edge)
as predictors for taxonomic richness. (b) Univariate classification tree. The tree was built using the same variables and provides a visual
interpretation of the random forest model. Numbers in the boxes in each terminal leaf represent the average taxonomic richness, the number
of 5 min intervals (n) and the total percentage of 5 min intervals that n represents.

cantly more frequently observed than taxa following a “Low
tolerance” pattern (Dunn test: p<0.01). Overall frequencies
of occurrence of taxa following a “Medium tolerance” pat-
tern were intermediate but not significantly different than
“High tolerance” taxa (Dunn test: p>0.5) or “Low toler-
ance” taxa (Dunn test: p>0.1).

4 Discussion

4.1 Depth and DO are both potential factors for
observed tidal migrations

Fish assemblages were shown to be highly variable over time
and space in the study area (Dubuc et al., 2019). About half
of this variability was explained by multiple environmen-
tal factors, among which depth, DO, lunar phase and loca-
tion within the mangrove forest (edge or in forest) were the
most important. The main trend identified among the tem-
poral variability in fish assemblages occurred at a tidal scale
(Dubuc et al., 2019), highlighting that fish were responding
to one or several factors covarying with tide. The effects of

lunar phase and location on fish assemblages were investi-
gated in detail in Dubuc et al. (2019); therefore the follow-
ing discussion focuses on water depth and DO, which both
varied at a tidal scale. Tidal variations in fish assemblages
are common in intertidal environments (Laroche et al., 1997;
Ellis and Bell, 2008; Becker et al., 2012); however, the fac-
tors responsible for their occurrence have rarely been investi-
gated. There was a high collinearity between depth and DO,
as both varied across the tidal cycle, and these two factors
were greatly important in explaining variations in fish assem-
blages. Consequently, it is likely that depth and DO play an
essential role in triggering tidal migrations. Previous studies
have shown that fish can respond to both water depth and DO
changes (Wannamaker and Rice, 2000; Bretsch and Allen,
2006; Johnston and Sheaves, 2007; Rountree and Able, 2007;
Ellis and Bell, 2008; Brady and Targett, 2013), emphasising
the idea that fish could be using depth and DO interchange-
ably as cues to initiate tidal migrations, a trigger that might
be dependent on the perceived upcoming risk (stranding or
hypoxia).
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Figure 5. Variation in frequencies of occurrence of fish across DO
class. Frequencies of occurrence were log10-transformed. Each data
point used to draw the boxplots represents the frequency of occur-
rence of one common taxon during a specific DO class. The blue
line represents the GAMM model fitted with DO as the smooth
term using a Gaussian distribution and an identity link function
for (a) edge sites and (b) in-forest sites. Shaded areas represent the
confidence interval at 95 %.

Depth becomes limiting when fish cannot safely access the
area because it is too shallow, with associated risk of strand-
ing. However, many taxa, including small-sized species,
avoided mangrove habitats even when they potentially had
enough water (Dubuc et al., 2019). On the other hand,
changes in DO can rapidly impair fish fitness (Chabot and
Claireaux, 2008; Vaquer-Sunyer and Duarte, 2008). Indeed,
in aquatic environments, DO is considered to be the primary
limiting factor (Fry, 1971; Claireaux and Chabot, 2016), as
it is naturally scarcer than in the atmosphere (Diaz, 2001),
making it a perpetual challenge for fish to access available
oxygen in the water. In the mangrove forest examined here,
changes in DO across tide were extreme, with up to 80 % loss
during half of a tidal period (high to low), supporting the no-
tion that DO could be an important constraint for fish to ac-
cess mangrove habitats even when depth is suitable. Consid-

Figure 6. The three common patterns of mangrove utilisation across
DO identified. Each loess curve represents one example of taxon
per type of patterns of mangrove utilisation across DO: (1) Pat-
tern 1 – “High tolerance” – represented by taxon Fibramia lateralis,
(2) Pattern 2 – “Medium tolerance” – represented by taxon Acan-
thopagrus sp. – and (3) Pattern 3 – “Low tolerance” – represented
by taxon Heniochus acuminatus. Loess curves were built with the
log10-transformed frequencies of occurrence.

Figure 7. Relationship between frequencies of occurrence and type
of patterns followed. Overall frequencies of occurrence were cal-
culated for each common taxon at the DO range corresponding to
that taxon’s assigned pattern of utilisation. Differential letters above
boxes denote statistically different means of frequency of occur-
rence among types of patterns of utilisation (Dunn test: p<0.05).

ering the relevance of both factors, and the fact that the risk
of stranding and hypoxia are concomitant, it is likely that fish
are adapted to respond to either depth or DO, depending on
which one becomes limiting first, and this may vary among
taxa.

The hypothesis that fish can interchangeably respond and
tolerate adverse depth and DO conditions was supported by
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the fact that all taxa that access mangrove habitats at low
depth in Bouraké (Pattern 3 – “Low-depth users”; Dubuc et
al., 2019) were all following a “High tolerance” pattern here
in response to DO, indicating that they were able to tolerate
low depth as well as low DO. The effects of depth and DO
might well be mostly confounded, as DO fluctuations overall
follow depth; however, DO amplitude (difference between
minimum and maximum levels) depends on many interact-
ing factors, including weather (Tyler et al., 2009), local ge-
omorphology, or biological and chemical activities (Mazda
et al., 1990; Peña et al., 2010). Therefore, minimum and
maximum DO levels for a same depth can differ and vary
in complex spatial and temporal scales, independent of the
tidal scale, probably explaining why depth and DO were both
highlighted as important factors. These results emphasise the
importance of understanding the DO dynamics and its im-
pacts on fish to comprehend how mangrove forests are being
used. Future targeted sampling could for instance specifically
investigate fish movements at the end of ebbing tides experi-
encing relatively high DO and low DO, as on the 28 February
afternoon and morning respectively. This would help to de-
termine whether fish consistently leave mangrove habitats at
a same depth or whether responses are indeed affected by DO
levels being abnormally low or high.

4.2 Tidally induced dissolved oxygen variations

During this study, we hypothesised that DO could be an im-
portant limiting factor for fish utilising intertidal mangrove
forests, and our findings support this hypothesis. However,
the associated risk of hypoxia in the study system was still
to be tested. Diel hypoxia conditions observed in other man-
grove systems (Knight et al., 2013; Dubuc et al., 2017; Gedan
et al., 2017; Mattone and Sheaves, 2017) were also a seem-
ingly common condition in Bouraké. DO showed extreme
and rapid fluctuations with the diel and tidal cycles. Low
DO was recorded daily and was most severe during night-
time ebbing tide, reaching levels that can compromise fish
fitness (Rogers et al., 2016). It is likely that hypoxia is a com-
mon condition of intertidal mangrove forests due to the min-
eralisation of a large amount of organic matter produced by
mangrove trees, responsible for a high consumption of oxy-
gen by bacteria (Alongi et al., 2004; Dittmar et al., 2006),
but also due to the exchange of porewater between sediments
and the water column, known as “tidal pumping” (Li et al.,
2009; Gleeson et al., 2013; Call et al., 2015; Leopold et al.,
2017). Briefly, at each flooding tide, water infiltrates inter-
tidal sediments and then drains back to the water column
during the next ebbing tide, while in the sediments, water
becomes enriched in reduced compounds such as NH3, H2S
and FeS2, resulting in water acidification and deoxygenation
(Marchand et al., 2011). As porewater accumulates in the wa-
ter column throughout the ebbing tide (Bouillon et al., 2007),
it drives extreme drops of oxygen usually observed at low
tide. Connectivity with the Pritzbuer Bay was crucial here in

this mangrove–coral semi-enclosed lagoon, as the flooding
tide presumably brings oceanic water that is more saturated,
replenishing DO levels. During spring tides, higher DO lev-
els were recorded, probably driven by higher water renewal
compared to neap tides. There was no difference observed
between DO dynamics on the edge and in forest; however
minimum values were slightly lower on the edge because
water remained permanently at low tide, being subjected to
further decline compared to the in-forest site that became
exposed earlier during the tide and therefore experienced a
shorter DO decline period.

4.3 Responses to DO variations

Fish significantly responded to daytime DO variations, with
taxonomic richness and average frequencies of occurrence
being higher and more consistent once DO reached 70 %–
80 % saturation. Even though fish data were only collected
during daytime when photosynthesis occurs, this result indi-
cated that DO levels reached during the study were probably
low enough to cause harmful effects, and, therefore, many
taxa responded by temporarily avoiding the area. Appar-
ent behavioural avoidance thresholds observed were some-
what species-specific, being initiated at different DO lev-
els potentially driven by differential tolerances to low DO
(Claireaux and Chabot, 2016). However, three broad groups
of patterns of mangrove utilisation were identified, driven
by taxa’s behavioural avoidance thresholds. Most taxa did
not display any behavioural avoidance (i.e. most taxa exhib-
ited a “High tolerance” pattern), and some of these taxa even
reached their maximum frequency of occurrence at the low-
est DO levels recorded (30 %–40 % saturation). Most of these
taxa, such as L. argentimaculatus, Mugilidae spp. and Gobi-
idae spp. (Froese and Pauly, 2017), are known to extensively
use mangrove habitats (Sheaves et al., 2016; Dubuc et al.,
2019). On the other hand, other taxa were not observed ei-
ther below 50 %–60 % saturation (“Medium tolerance” pat-
tern) or below 70 %–80 % saturation (“Low tolerance” pat-
tern). Taxa following a “Low tolerance” pattern were mostly
reef-associated species and therefore are not usually seen in
mangrove habitats, such as C. vagabundus, H. acuminatus
and Scarus sp. (Froese and Pauly, 2017). The three different
types of patterns of utilisation observed may highlight that
taxa following a “High tolerance” pattern, and therefore taxa
commonly seen in mangrove habitats, are more tolerant to
low DO than taxa following “Medium tolerance” and “Low
tolerance” patterns.

Even though the underlying adaptations behind these pat-
terns still need to be investigated, these observations sug-
gest that DO tolerance may partly explain species reliance
on mangrove habitats. Indeed, taxa extensively using man-
grove habitats, such as L. argentimaculatus, Mugilidae spp.
and Gobiidae spp., displayed an apparent higher tolerance
to hypoxia than taxa occasionally using mangrove habitats,
such as L. harak and Plectorhinchus spp., displaying a higher
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tolerance themselves than species not usually found in man-
groves but in coral reefs such as C. vagabundus, H. acumi-
natus and Scarus sp. (Sheaves et al., 2016; Froese and Pauly,
2017; Dubuc et al., 2019). Tolerance to low DO provides an
evident benefit, as taxa can use mangrove habitats more often
and for longer periods compared to taxa that need to migrate
temporarily to avoid harmful DO levels. Moreover, remain-
ing in low DO when most other taxa must leave can provide
opportunistic feeding and limited competition (Diaz et al.,
1992; Rahel and Nutzman, 1994). On the other hand, tidal
migrations can have indirect costs, as they can increase risk
exposure to predators as fish travel to open water, aggregate
fish in suboptimal habitats (less food and more predation)
while waiting for DO conditions to improve and increase en-
ergetic costs during extended swimming activities (Eby et al.,
2005; Shoji et al., 2005; Chabot and Claireaux, 2008; Craig,
2012). This implies that being adapted to withstand low DO
might be an important feature of taxa using mangrove habi-
tats extensively and spending a large part of their time in
these habitats.

No differences in DO levels were found between the edge
and inside of the forest, suggesting that observed differences
in fish assemblages between the two habitats could be ex-
plained by depth, especially the fact that in-forest sites get
exposed during low tide while edge sites remain submerged.
However, it was interesting to note that most taxa venturing
in forest (23 taxa) were following a “High tolerance” pattern
(16 taxa; 4 taxa were following a “Medium tolerance” pat-
tern and 3 taxa a “Low tolerance” pattern). In other mangrove
forests, DO can reach levels close to 0 % saturation (Knight
et al., 2013; Mattone and Sheaves, 2017), so it is possible that
such lethal levels are also occasionally reached in Bouraké.
In addition to the risk of stranding, the risk of developing
hypoxia could explain why relatively few taxa venture inside
the forest (Sheaves et al., 2016; Dubuc et al., 2019), and those
that do appear to be highly tolerant to hypoxia.

5 Conclusions

The overall value of mangrove forests has been linked to pa-
rameters such as geographical location, tidal range (micro-,
meso- or macrotidal), setting (coastal, estuarine, island or
embayment) and connectivity to adjacent habitats (Unsworth
et al., 2008; Igulu et al., 2014; Bradley et al., 2019). While
these factors provide important information, this study also
shows that for a same mangrove forest, its value is tempo-
rally and spatially variable. About half of the variability in
fish assemblages was explained by changes in depth, DO, lu-
nar phase, position within the mangrove forest, time of day
and tide direction. Most of the temporal variability occurred
on a tidal scale, highlighting the importance of tide in driv-
ing mangrove forests’ utilisation. Here, depth and DO were
mostly considered to explain tidal variations in fish assem-
blages; however, tide can induce variations in many other

factors. For instance, a recent study suggested that the resus-
pension of mangrove-derived organic matter via porewater
exchange could temporally boost primary and secondary pro-
duction, attracting fish regardless of water quality conditions
(David et al., 2018). These results highlight the complexity
of quantifying the utilisation and, consequently, the value of
mangrove forests and call for more investigations especially
on the effects of tide.

This study is the first to provide insights on how mangrove
forests’ utilisation by fish is influenced by DO. It suggests
that tolerance to low DO may be a widespread adaptation
for taxa commonly using mangrove forests and could explain
why they manage to thrive in these harsh environments. The
need of being tolerant to low DO, or being able to undertake
tidal migrations while limiting alternative costs, is likely to
limit the number of taxa using intertidal mangrove habitats
that experience low DO. However, with only field data, it is
difficult to attribute specific fish responses to DO. Physiolog-
ical techniques could be used to determine whether a differ-
ence in hypoxia tolerance could explain why some species
access mangrove habitats at low DO levels while others ac-
cess them at higher DO levels (Lawton, 1991; McGill et al.,
2006). This is the first study to look at, and suggest, a rela-
tionship between DO and fish utilisation of mangrove habi-
tats. It adds to our knowledge on factors determining man-
grove habitat value and highlights the importance of consid-
ering DO to be a key controlling factor. More in-depth eval-
uation of DO dynamics and its impacts on fish populations
in other locations would certainly help in understanding the
heterogeneous value of intertidal mangrove forests.

Data availability. All relevant data are freely avail-
able online on the Tropical Data Hub repository:
https://doi.org/10.25903/5cd4d312cbcfb (Dubuc, 2019).
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Appendix A

Figure A1. Kendall’s correlation test used to determine whether
patterns of change in DO were significantly correlated between edge
and in-forest sites. DOedge: DO recorded in edge sites; DOinside:
DO recorded in in-forest sites.
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Table A1. The full list of taxa identified by underwater video cam-
eras at Bouraké, New Caledonia.

Family Taxon

Acanthuridae Acanthurus auranticavus
Acanthurus grammoptilus
Acanthurus sp. cf. blochii
Ctenochaetus sp.
Zebrasoma velifer

Apogonidae Fibramia lateralis
Ostorhinchus septemstriatus

Belonidae Belonidae spp.
Blenniidae Blenniidae spp.
Carangidae Caranx ignobilis

Caranx papuensis
Caranx sp.

Chaetodontidae Chaetodon auriga
Chaetodon bennetti
Chaetodon ephippium
Chaetodon flavirostris
Chaetodon lineolatus
Chaetodon lunula
Chaetodon melannotus
Chaetodon speculum
Chaetodon vagabundus
Heniochus acuminatus

Clupeidae Clupeidae spp.
Diodontidae Diodon hystrix
Ephippidae Platax pinnatus
Fistulariidae Fistularia spp.
Gerreidae Gerres filamentosus

Gerres oyena
Gobiidae Amblygobius linki

Amblygobius nocturnus
Amoya gracilis
Asterropteryx sp. cf. striata
Cryptocentrus leptocephalus
Eviota sp.
Exyrias puntang
Gobiidae spp.
Gobiidae spp. 2
Redigobius balteatus

Haemulidae Plectorhinchus lineatus
Plectorhinchus spp.
Pomadasys argenteus

Hemiramphidae Hyporhamphus sp.
Labridae Choerodon graphicus

Labridae spp.
Lethrinidae Lethrinus harak

Lethrinus lentjan
Lethrinus obsoletus

Lutjanidae Lutjanus argentimaculatus
Lutjanus fulviflamma
Lutjanus fulvus
Lutjanus russellii

Table A1. Continued.

Family Taxon

Monodactylidae Monodactylus argenteus
Mugilidae Mugilidae spp.
Mullidae Mulloidichthys flavolineatus

Parupeneus ciliatus
Parupeneus indicus
Upeneus tragula

Pomacanthidae Pomacanthus sexstriatus
Pomacentridae Neopomacentrus spp.
Scaridae Bolbometopon muricatum

Scarus sp. cf. ghobban
Scatophagidae Scatophagus argus
Serranidae Epinephelus caeruleopunctatus

Epinephelus lanceolatus
Epinephelus malabaricus
Epinephelus sp.

Siganidae Siganus canaliculatus
Siganus lineatus
Siganus punctatus

Sparidae Acanthopagrus sp. cf. akazakii
Sphyraenidae Sphyraena barracuda
Tetraodontidae Arothron hispidus
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Figure A2.
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Figure A2. Species-specific patterns of mangrove utilisation
grouped by type of patterns: (a) Pattern 1 – “High tolerance, (b)
Pattern 1 – “High tolerance” (continued), (c) Pattern 2 – “Medium
tolerance” – and (d) Pattern 3 – “Low tolerance”.
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