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ABSTRACT 

Securing applications on untrusted platforms can involve protection against legitimate end-

users who act in the role of malicious reverse engineers and hackers. Such adversaries have access 

to the full execution environment of programs, whether the program comes in the form of software 

or hardware. In this thesis, we consider the nature of obfuscating algorithms that perform iterative, 

stepwise transformation of programs into more complex forms that are intended to increase the 

complexity (time, resources) for malicious reverse engineers. 

We consider simple Boolean logic programs as the domain of interest and examine a 

specific transformation technique known as Iterative Selection and Replacement (ISR), which 

represents a practical, syntactic approach for obfuscation. Specifically, we focus on improving the 

security of ISR by maximizing the flexibility and potential security of the replacement step of the 

algorithm which can be formulated in the following question: Given a selection of Boolean logic 

gates (i.e., a subcircuit), how can we produce a semantically equivalent (polymorphic) version of 

the subcircuit such that the distribution of potential replacements represents a random, uniform 

distribution from the set of all possible replacements? 

This practical question is related to the theoretic study of indistinguishability obfuscation, 

where a transformer for a class of circuits guarantees that given any two semantically equivalent 

circuits from the class, the distribution of variants from their obfuscation are computationally 

indistinguishable. Ideally, polymorphic circuits that follow a random, uniform distribution provide 

stronger protection against malicious analyzers that target identification of distinct patterns as a 

basis for deobfuscation and simplification. 
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We introduce a novel approach for polymorphic circuit replacement called Random 

Boolean Logic Expansion (RBLE), which applies Boolean logic laws (of reduction) in reverse. 

We compare this approach against another proposed method of polymorphic replacement that 

relies on static circuit libraries. As a contribution, we show the strengths and weaknesses of each 

approach, examine initial results from empirical studies to estimate the uniformity of polymorphic 

distributions, and provide the argument for how such algorithms can be readily applied in software 

contexts. RBLE provides a unique method to generate polymorphic variants of arbitrary input, 

output, and gate size. We report initial findings for studying variants produced by this method and, 

from empirical evaluation, show that RBLE has promise for generating distributions of unique, 

uniform circuits when size is unconstrained, but for targeted size distributions, the approach 

requires adjustment for reaching potential circuit variant. 
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INTRODUCTION 

Intellectual property (IP) is currently embedded in both software and hardware that are 

used in almost every area of society today. Companies can typically have billions of dollars 

invested in such IP. Theft of IP has therefore become a major concern for tech companies across 

the globe and, in particular, the United States. This research project concerns polymorphism and 

circuit protection for the purpose of approaching an efficient obfuscation algorithm which could 

serve as a defense against adversarial reverse engineering and, ultimately, IP theft. 

This approach would involve transforming programs such that the amount of time and 

resources necessary for a malicious reverse engineer to recover IP in a circuit program becomes 

undesirable or, in the best case, complete infeasible [1]. A solution to this problem of reverse 

engineering could be applied in the areas of circuit and software protection to the effect that IP of 

any manner could be safeguarded to a degree against attacks meant to discern the function and 

form of said programs [2]. 

One particular type of obfuscating transformation, known as a selection/replacement 

algorithm [3], involves taking small parts of a circuit and replacing that small part with a 

functionally equivalent version, or variant, with some different structure. This process is repeated 

over and over again (iteratively) until some desired level of overhead or security is reached, and 

the program is deemed to be obfuscated. 

In order to reach this solution, the specific question we look to answer is: Can we create a 

deterministic circuit generation algorithm that approaches a uniform random selection from the set 

of all circuits that implement a specific function? Such an algorithm could greatly improve the 

efficiency and capacity of selection/replacement algorithms over, for example, other approaches 
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that involve the enumeration and selection of circuits from static libraries that must be stored on 

disk or randomly generated [4]. 

In order to answer this question, we plan to implement a Random Boolean Logic Expansion 

(RBLE) algorithm as a part of the existing Program Encryption Toolkit (PET) software. As 

combinational circuits are, in essence, no different from Boolean expressions [5], we will be using 

this algorithm while introducing random choices so that we can create polymorphic circuit variants 

from their manipulated Boolean expressions as part of a selection/replacement algorithm [6], 

thereby reducing the quantity of resources required to perform operations and introducing 

interesting potential avenues for program protection. 

After a component of a circuit’s Boolean expression is selected in the process of 

obfuscation, this RBLE algorithm would be employed in order to randomly determine from a list 

of Boolean logic laws one to apply to the subexpression that would alter its form while preserving 

its function. The resulting subexpression would take the place of the original selected from the 

circuit’s expression so that a portion of the circuit has been obfuscated with no change made to its 

overall function. Each output function of the circuit would be represented with separate Boolean 

expressions, though the functions themselves may be closely connected [7] and this method 

applied to each. This process would be repeated, with different portions of the expression being 

transformed randomly, until such a time as the circuit’s expression is considered to be 

appropriately obfuscated. 

With a similar intent as McDonald, Kim, and Koranek’s research to compare the 

efficiencies of obfuscation algorithms [3], to ensure that this RBLE algorithm truly approaches a 

uniform random selection from the set of all circuits that implement a specific function, we will 
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create distributions of the functions of the circuit families produced by each of the following 

methods: the random and iterative application of Boolean logic laws to a circuit’s expression to 

produce a variant, the enumeration and random selection of a circuit from a circuit family, and the 

generation of a circuit until a functionally equivalent variant is produced. Comparing these 

distributions will allow us to verify that our RBLE algorithm is truly as random as these other 

methods of random selection/replacement and random generation. 

MOTIVATING CONTEXT 

We provide two motivating scenarios that give context to this work: one primarily 

hardware-based and one primarily software-based. Nohl et al. [8] were some of the first researchers 

to illustrate the relative ease of physically reverse engineering hardware implementations of 

integrated circuit boards to recover gate-level programs (also known as netlists). In their work, 

they analyzed the Mifare Classic RFID cipher that was used as part of a public transit system card. 

Once these gate level constructs were recovered, design-level components could be reverse 

engineered to reveal the implementation of the cipher itself which led to the discovery of numerous 

flaws in the cryptographic design. Obfuscation of gate-level netlists programs through algorithms 

such as ISR would offer one potential countermeasure to design-level recovery of components: 

this specifically involves preventing recovery of the number, type, and inter-connectivity of 

building block components used to create more complex circuits. ISR has been utilized in prior 

work to evaluate the security of component recovery algorithms [9, 10, 11] and thus RBLE would 

provide new directions for such research. 

Although our focus is primarily on circuit-to-circuit transformation, ISR with RBLE-based 

replacement has implications for software-to-software transformation. First, we note two different 

3 



 

        

      

       

    

      

   

      

       

        

       

        

    

      

      

    

     

        

   

        

  

         

     

       

domains where software is converted into hardware representation. In the area of secure multi-

party computation (MPC) [12], the predominant question of interest is how to securely compute a 

joint function on private inputs from distrusting participants while revealing nothing more than the 

result of the function. MPC schemes beginning with the seminal work of Yao on garbled circuits 

[13] have traditionally taken the joint function of interest and represented it in a standard circuit 

form consisting of AND, OR, and NOT gates. The cryptographic aspect of MPC protocols involves 

garbling the circuit in such a way that its evaluation by two or more parties results in the privacy 

of inputs as well as intermediate computations. MPC research has seen a rebirth of interest in 

recent years as well as a multitude of practical implementations that support translation of 

functions into circuits in Boolean, arithmetic, or formula form. Fairplay [14] was one of the first 

implementations of a two-party protocol: it comprised a high-level procedural language to support 

the expression of secure functions and the translation to one-pass Boolean circuits. Since then, 

multiple implementations of software-to-circuit compilers for MPC construction based on C and 

C++ have appeared such as OblivC [15, 16], ABY [17], EMP [18], and PICCO [19]. 

In the domain of systems design and synthesis, the distinction between hardware and 

software has become less clear for some time. The advent of field programmable gate arrays 

(FPGAs) has moved the defining aspect of hardware programs into a more fluid form, where 

reprogrammable hardware is becoming the norm. Almost 20 years ago, Wirth [20] pointed out the 

ease by which traditional software constructs (sequence and choice) are easily translatable to 

combinational logic while looping constructs can be handled with sequential logic forms. He was 

one of the first researchers to argue for a common language to express both software and hardware 

constructs. Since then, several realizations of this concept have made their way into commercial 

synthesis tools and systems design thought. SystemC [21] is probably the more well-known and 
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earliest examples of this hardware/software marriage and is now an IEEE standard. Such 

programming environments support hardware description languages such as Verilog or VHDL and 

their translation to C++ [22]. 

The growing use of software-to-hardware programming environments for both MPC and 

systems design provides context for how circuit transformation algorithms might eventually be 

used for software protection against MATE attacks. In particular, software-based hardware 

abstractions pose an ideal method to frustrate traditional software analysis and reverse engineering 

techniques [23]. RBLE thus also has possibility to translate directly into software protection 

schemes based on hardware abstraction in the future, though this is not the focus of this paper. 

The primary motivation for our research was whether an efficient (deterministic) circuit 

generation algorithm could be used to create polymorphic circuit variants. Ideally, this algorithm 

should produce distributions that approach a random, uniform selection from the set of all possible 

choices of semantically equivalent circuits. We compare our approach against a known static 

enumeration approach that, despite its ability to generalize to arbitrary circuit selections, does 

generate random, uniform distributions. To understand the generational approaches, we provide a 

review of basic definitions and concepts related to RBLE in the following sections. 
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BOOLEAN LOGIC 

The definition used by Svensson to describe a Boolean algebra [24] is as follows: 

“By a Boolean algebra we mean a lattice that is both distributive and complementary. We 

note a couple of immediate consequences of the definition. 

• Any Boolean algebra is a bounded lattice. This is because a Boolean algebra is 

complementary, and by definition a complementary lattice has to be bounded, 

• The cancellation law holds in a Boolean algebra, since a Boolean algebra is a 

distributive lattice, 

• Each element in a Boolean algebra has exactly one complement.” 

The corresponding notation for a general Boolean algebra is then (𝐵, ∧, ∨, ′, 0𝐵, 1𝐵), 

where 𝐵 is a set; ∧ and ∨ are binary operators for intersection and union, respectively; ′ is the unary 

operator for complementation; and 0𝐵 and 1𝐵 are the two possible values for any element of 𝐵. 

This is a more simplified form of the way in which we choose to represent Boolean expressions, 

or functions. As a combinational circuit is, in essence, equivalently representable as a Boolean 

expression by its function [5], we have chosen certain symbols and rules for describing this 

notation. 

BOOLEAN LOGIC FUNCTIONS & LAWS 

A Boolean function is a function with a domain of values {0, 1} and of a finite number of 

variables of value {0, 1}. Theorem 1 [25] lists some of the properties by which a Boolean function 

is defined on the set 𝐵 = {0, 1} with binary operations of conjunction (∨, OR, +) and disjunction 
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(∧, AND, ∗), and a unary operation of negation (𝑥, NOT, 𝑥′ ). These are the basis for the application 

of Boolean algebra laws. 

Theorem 1. For all 𝑥, 𝑦, 𝑧 𝜖 𝐵, the following identities hold: 

(1) Annulment: 𝑥 ∨ 1 = 1 and 𝑥 ∧ 0 = 0; 

(2) Identity: 𝑥 ∨ 0 = 𝑥 and 𝑥 ∧ 1 = 𝑥; 

(3) Commutativity: 𝑥 ∨ 𝑦 = 𝑦 ∨ 𝑥 and 𝑥 ∧ 𝑦 = 𝑦 ∧ 𝑥; 

(4) Associativity: (𝑥 ∨ 𝑦) ∨ 𝑧 = 𝑥 ∨ (𝑦 ∨ 𝑧) and 𝑥 ∧ (𝑦 ∧ 𝑧) = (𝑥 ∧ 𝑦) ∧ 𝑧; 

(5) Idempotence: 𝑥 ∨ 𝑥 = 𝑥 and 𝑥 ∧ 𝑥 = 𝑥; 

(6) Absorption: 𝑥 ∨ (𝑥 ∧ 𝑦) = 𝑥 and 𝑥 ∧ (𝑥 ∨ 𝑦) = 𝑥; 

(7) Distributivity: 𝑥 ∨ (𝑦 ∧ 𝑧) = (𝑥 ∨ 𝑦) ∧ (𝑥 ∨ 𝑧) and 𝑥 ∧ (𝑦 ∨ 𝑧) = (𝑥 ∧ 𝑦) ∨ (𝑥 ∧ 𝑧); 

(8) Complementation: 𝑥 ∨ 𝑥 = 1 and 𝑥 ∧ 𝑥 = 0; 

(9) Involution: 𝑥 = 𝑥; 

(10) De Morgan’s Laws: (𝑥 ∨ 𝑦) = 𝑥 ∧ 𝑦 and (𝑥 ∧ 𝑦) = 𝑥 ∨ 𝑦; 

The following table (Table 1) lists the combinational circuit gate types representable in 

Boolean expressions along with their symbols and truth tables, which describe for every 

combination of possible values the resulting value of a circuit gate: 
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Table 1: Logic Gate Types and Truth Tables 

Name Notation Truth Table 

NOT 𝐴′ 
𝐴 𝐴′ 
0 1 
1 0 

AND 𝐴 ∗ 𝐵 

𝐴 𝐵 𝐴 ∗ 𝐵 
0 0 0 
0 1 0 
1 0 0 
1 1 1 

NAND (𝐴 ∗ 𝐵)′ 

𝐴 𝐵 (𝐴 ∗ 𝐵)′ 
0 0 1 
0 1 1 
1 0 1 
1 1 0 

OR 𝐴 + 𝐵 

𝐴 𝐵 𝐴 + 𝐵 
0 0 0 
0 1 1 
1 0 1 
1 1 1 

NOR (𝐴 + 𝐵)′ 

𝐴 𝐵 (𝐴 + 𝐵)′ 
0 0 1 
0 1 0 
1 0 0 
1 1 0 

XOR 𝐴 ^ 𝐵 

𝐴 𝐵 𝐴 ^ 𝐵 
0 0 0 
0 1 1 
1 0 1 
1 1 0 

NXOR (𝐴 ^ 𝐵)′ 

𝐴 𝐵 (𝐴 ^ 𝐵)′ 
0 0 1 
0 1 0 
1 0 0 
1 1 1 

BOOLEAN LOGIC EXPRESSIONS 

A typical way to represent Boolean functions are with Boolean expressions, which are 

logical statements that, upon evaluation, have a value of either 0 or 1, false or true. For notation 

purposes, we express the three primary operators within Boolean expression as follows: 
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disjunction (∨, OR) with +; conjunction (∧, AND) with ∗; and negation, (𝑥, NOT) with 𝑥′. There 

is an additional operator, XOR, represented in our notation as the traditional programmatic binary 

XOR (^), which is a derived operation based on disjunction, conjunction, and negation rules as 

follows: 

𝑥 XOR 𝑦 = (𝑥 ∧ 𝑦) ∨ (𝑥 ∧ 𝑦) 

with our notation for the above expression being: 

𝑥^𝑦 = (𝑥 ∗ 𝑦′) + (𝑥′ ∗ 𝑦). 

Table 2 illustrates Boolean expressions derived from Boolean algebra laws where the left-

hand side (LHS) is equivalent functionally to the right-hand side (RHS). These algebraic laws are 

normally applied repeatedly to reduce Boolean expressions to their simplest forms [26]. 

The following is an example of Boolean expression from the C2-1-2 circuit family, which 

consists of those circuits with two inputs (C2-1-2), one output (C2-1-2), and two gates (C2-1-2): 

𝑔1 = ((𝑖1 ^ 𝑖0) + 𝑖0)′. (1) 

Here, 𝑔1 represents the value of the single output belonging to the circuit, and 𝑖0 and 𝑖1 

represent the values of the two inputs to the circuit. Using the notations detailed in Table 1, we see 

that this expression describes a circuit consisting of a NOR gate of input 𝑖0 and the XOR of inputs 

𝑖0 and 𝑖1. We can perform on this expression an operation known as reduction, which simplifies 

the form of a Boolean expression while preserving its overall function. This can be done by 

applying to it the Boolean logic laws included in Table 2. 
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Original Reduction Law 
1 A*A A ldempotence 
2 A + A A ldempotence 
3 A*B B*A Commutat ivity 
4 A + B B+ A Commutat ivity 
5 A* (B * C) {A* B) * C Associat ivity 
6 A + (B + C) {A + B) + C Associat ivity 
7 A* {A + B) A Absorpt ion 
8 A + {A* B) A Absorpt ion 
9 A* (B + C) {A * B) + {A * C) Distribut ivity 
10 A + (B * C) {A + B) * {A + C) Distribut ivity 
11 A*0 0 Annihilat ion 
12 A + 0 A Ident ity 
13 A" 0 A Ident ity 
14 A* 1 A Ident ity 
15 A + l 1 Annihilat ion 
16 A" 1 A' Negat ion 
17 A* A' 0 Complementat ion 
18 A + A' 1 Complementat ion 
19 {A')' A Involut ion 
20 {A + B)' A' * B' De Morgan's 
21 {A* B)' A' + B' De Morgan's 
22 {A + B) * {A' + B') A" B Derivat ion 
23 {A' * B) + {A * B') A" B Derivat ion 
24 {A + B)' + {A * B) {A " B)' Negat ion 
25 A"A 0 Annihilat ion 
26 {A" A)' 1 Annihilat ion 
27 {A * B') + {A * B) A Annihilat ion 
28 {A' * B') + {A' * B) A' Negat ion 
29 {A + B) * {A + B') A Annihilat ion 
30 {A' + B) * {A' + B') A' Negat ion 

Table 2: Boolean Expression Reductions 

For each Boolean logic law detailed above, the LHS of the expression is functionally 

equivalent to the RHS of the expression. This fact allows us to substitute a portion of an expression 

that matches the LHS or RHS of a logic law with its corresponding RHS or LHS, respectively. To 

demonstrate this concept, the following steps detail the reduction of the Boolean expression (1) 

belonging to the circuit family C2-1-2 to the expression representing the C2-1-1 circuit of the same 

function: 
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𝑔1 = ((𝑖1 ^ 𝑖0) + 𝑖0)′ 

Step 1:     (((𝑖1′ ∗ 𝑖0) + (𝑖1 ∗ 𝑖0′)) + 𝑖0)′ (applied law #23) 

Step 2:     ((𝑖0 + (𝑖1′ ∗ 𝑖0)) + (𝑖1 ∗ 𝑖0′))′ (applied law #6) 

Step 3:     (𝑖0 + (𝑖1 ∗ 𝑖0′))′ (applied law #8) 

Step 4:     ((𝑖0 + 𝑖1) ∗ (𝑖0 + 𝑖0′))′ (applied law #10) 

Step 5:     ((𝑖0 + 𝑖1) ∗ 1)′ (applied law #18) 

Step 6:     (𝑖0 + 𝑖1)′ (applied law #14) 

𝑔1 = (𝑖0 + 𝑖1)′ 

DIGITAL LOGIC CIRCUITS 

Combinational circuits directly implement Boolean logic via a set of logic gates (called the 

basis set Ω) such as AND, OR, XOR, NOT, NAND, NOR, and NXOR. Structurally, they can be 

expressed in a number of ways including textually in netlist languages such as BENCH format 

[27] and visually in schematic form. Figure 1 illustrates a combinational circuit belonging to the 

family C5-2-6 in schematic form with corresponding BENCH netlist. Behaviorally, an 𝑛-input, 

𝑚-output circuit combinational circuit can be seen as an array of Boolean functions 𝑓𝑖 ∶ 𝐵𝑛 → 

{0, 1}, where 𝑖 = 1. . 𝑚 [26]. 

A Boolean expression can directly represent combinational logic netlists by assigning each 

circuit output a function, assigning circuit inputs as Boolean variables in the expression, and 

directly translating each circuit gate to its corresponding logic expression. Thus, combinational 

circuits are equivalently represented structurally as a Boolean expression [26, 28]. Figure 1 

illustrates the corresponding Boolean expression for the circuit structure. 
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Netlist 
INPUT ( 1 ) 
INPUT (2) 

INPUT ( 3 ) 
INPUT ( 6 ) 
INPUT ( ? ) 

OUTPUT (22 ) 
OUTPUT (23) 

10 = NAND(l , 3 ) 
11 = AND (3, 6) 
16 = OR ( 2 , 11) 
19 = NOR ( 11 , 7 ) 
22 = XOR(l0 , 16) 
23 = NXOR(16 , 19) 

Boolean Expression 

, 
I 

Circuit Schematic 

024 (( il*i3)'A(i2+ (i3*i6 ))) 
025 (( i2 + ( i3 * i6 )) A (( i3 * i6) + i7 ) ' ) ' 

Figure 1: Equivalent Circuit Representations 

Logic circuits are typically grouped in families based on their input, output, and gate sizes. 

We use the notation δX-Y to define the set of all circuits the same input size X and output size Y. 

We use the notation δX-Y-S to represent families of circuits with gate size S. We assume circuits 

that are within a family are derived from a common basis set Ω, where typical basis sets may 

include Ω = {AND, OR, NOT}, Ω = {NAND}, Ω = {NOR}, or Ω = {AND, OR, XOR, NAND, 

NOR, NXOR}. The fan-in of a gate is the number of unique inputs fed to the gate. Legal circuits 

within a family are also governed by rules related to their structure: 

(1) Symmetry: Should we consider a gate with inputs (X1, X2) as equivalent to a gate with 

inputs (X2, X1)? 

12 



 

   

 

    

          

   

  

    

 

    

      

  

     

      

     

         

 

(2) Redundant Gates: Should we allow gates that are identical to other gates (same fan-in and 

same gate type)? 

(3) Constant Signals: Should we allow the circuit immediate access to the constants 0 or 1? 

(4) Degeneracy: Should we allow both inputs to a gate to originate from the same source gate? 

(5) Fan-in: Should we allow gates with multiple fan-in versus simple binary (2 fan-in) gates? 

(6) Basis: What set of gates Ω can constitute the circuit structure? 

(7) Size: Does the set contain all circuits up to a certain gate size bound or only circuits with 

an exact gate size? 

(8) Outputs: For multiple output circuits, which gates should be allowed as outputs? 

Given answers to these constraints, different circuit families can be produced, with more 

relaxed constraints producing larger numbers of circuits in the same identical family. As an 

example, families of legal circuits that minimize redundancy, disallow degenerate conditions and 

constant signals, use exact size, and allow only binary gates are typical for standard building blocks 

in larger combinational circuits. Figure 1 illustrates the legal family of δ2−1−1 circuits given basis 

Ω = {AND, OR, XOR, NAND, NOR, NXOR}, which consists of only the six basic logic gates 

themselves. 
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2-1-1 

• 

' ' ' ' ' 
:t:,.........,,:: ' ' : 3 : 
' ' ' ' ' ' ' ' 
l____ -~~~! 

4 

' ' ' ' ' 

l 1,7 i ' ' 
--------4~: : ' ' ' ' '- --- ~~~~! 

4 

' ' ' ' ' 

,ij: i ' ' ' ' ' ' ' ' ' ' ' ' \____ ~~~! 
4 

Figure 2: δ2−1−1 Circuit Family 

RANDOM SELECTION & REPLACEMENT 

An algorithm that could be applied to a Boolean expression such that polymorphic circuit 

variants can be produced could be a useful application of the theory towards hindering the efforts 

of adversarial attacks against IP. McDonald and Kim [1] perform such research to examine the 

effects of random and deterministic techniques of obfuscation on logic-level definitions. 

The Random Selection and Replacement (RSR) algorithm they describe operates by 

selecting subcircuits of an original circuit and replacing those subcircuits with functionally 

equivalent variants chosen either from static libraries or produced through the repeated application 

of Boolean logic laws to the Boolean expression of a subcircuit. They found that there are tradeoffs 

to using either an obfuscation algorithm that implements random choice or one that targets specific 

hiding properties of a circuit. 
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If we can consider incorporating an algorithm to manipulate Boolean expressions as part 

of an existing RSR algorithm, potentially our implementation would lessen the number of 

resources required to perform operations while also demonstrating uniform random selection for 

a distribution of circuits. This algorithm would also hopefully circumvent the issue McDonald, 

Kim, and Koranek [4] noticed with typical RSR algorithms that required the enumeration of all 

possible variants for a selection: as the size of the selection increased, performing this task became 

intractable. 

In addition to creating an algorithm that approaches a uniform random selection of circuits, 

it would be preferable that the variants produced by the algorithm also approach the effectiveness 

of the random selection of variants in terms of the information revealed by the intermediate gate 

transformations. The Random Program Model (RPM) used by McDonald, Kim, and Grimaila [29] 

to study this exact problem used white-box and black-box transformations for protecting the intent 

of a circuit such that there would be no correlation between the behavioral information leaked by 

the obfuscated circuit and the behavior of the original circuit and that there would be no more 

correlation between the structural topology of the obfuscated circuit and the original circuit than 

for any randomly selected circuit. Such an arrangement would be preferable, as an obfuscated 

variant that can be analyzed to derive the original circuit from leaked behavioral or structural 

information would make for poor protection against malicious reverse engineering. 

15 



 

 

   

     

     

   

 

       

         

     

      

       

  

     

    

      

    

 

 

  

BOOLEAN REDUCTION & EXPANSION 

Decades of research have been devoted to finding efficient algorithms for reducing circuit 

logic functions to their smallest size, thereby minimizing power and layout space in realized 

physical circuits. All reductions can ultimately be related to the application of one or more laws as 

seen in Table 2. Random Boolean Logic Expansion (RBLE) works by applying these laws in 

reverse. 

The list of Boolean logic laws used by the RBLE algorithm to perform expansion versus 

reduction can be reduced to include only those logic laws which change the structure of the circuit. 

For example, associativity or distributivity are laws which change the number of variables or 

values represented in part of the overall Boolean expression and result in polymorphic variation. 

Laws such as commutativity would not, and therefore we can remove laws #3 and #4 from Table 

2, leaving us with an optimized and reordered list of Boolean logic laws seen in Table 3. 

The laws have been rearranged such that their original expressions are ordered by lowest-

to-highest form. This ordering allows us to easily recognize that, for example, the Boolean value 

0 has three possible expansions, the Boolean value 1 has three possible expansions, and any 

Boolean variable 𝐴 has ten possible expansions. 
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Original Expansion Law Relative Gates 

1 0 = A* 0 Annihilation CONST0 
2 0 = A* A' Complementation CONST0 
3 0 = AAA Annihilation CONST0 
4 1 = A+ l Annihilat ion CONSTl 
5 1 = A+A' Complementation CONSTl 
6 1 = {A A A)' Annihilat ion CONSTl 

7 A = A*A ldempotence ANO 
8 A = A+A ldempotence OR 
9 A = A* {A+ B) Absorption ANO,OR 

10 A = A+ {A* B) Absorption OR,ANO 

11 A = A+0 Identity OR, CONST0 
12 A = A A 0 Identity XOR, CONST0 
13 A = A* 1 Identity ANO, CONSTl 
14 A = {A')' Involution NOT 
15 A = {A * B') +{A* B) Annihilation ANO,OR,NOT 
16 A = {A+ B) * {A+ B') Annihilation ANO,OR,NOT 
17 A' = A A 1 Negation XOR, CONSTl 

18 A' = {A' * B') + {A' * B) Negation ANO,OR,NOT 
19 A' = {A' + B) * {A' + B') Negation ANO,OR,NOT 
20 {A+ B)' = A' * B' De Morgan's NOR 
21 {A * B)' = A' +B' De Morgan's NANO 
22 AAB = {A+ B) * {A' + B') Derivation XOR 
23 AAB = {A' * B) +{A* B') Derivation XOR 
24 {A AB)' = {A+ B)' +{A* B) Negation NXOR 
25 A* {B + C) = {A * B) + {A * C) Distributivity ANO,OR 
26 A+ {B * C) = {A + B) * {A + C) Distributivity OR,ANO 
27 {A* B) * C = A* {B * C) Associativity ANO 
28 {A +B) + C = A+ {B+ C) Associativity OR 

Table 3: Boolean Expression Expansions 

To perform RBLE, we take a candidate circuit 𝐶 and represent its circuit structure as a 

Boolean expression 𝐵𝐸. The Boolean expression is then profiled to provide a potential set of logic 

expansions that may be applied, based on the presence of original expressions in 𝐵𝐸 seen in Table 

2: 0, 1, 𝐴, 𝐴′, (𝐴 + 𝐵)′, (𝐴 ∗ 𝐵)′, (𝐴 ^ 𝐵), (𝐴 ^ 𝐵)′, 𝐴 ∗ (𝐵 + 𝐶), 𝐴 + (𝐵 ∗ 𝐶), (𝐴 ∗ 𝐵) ∗ 𝐶, and 

(𝐴 + 𝐵) + 𝐶. In Table 3, the (𝐴 + 𝐵)′ expression in rule #20 represents a 2-input NOR gate, 

whereas (𝐴 ∗ 𝐵)′ in rule #21 represents a 2-input NAND gate. In rules #22 and #23, (𝐴 ^ 𝐵) 

represents a 2-input XOR gate and (𝐴 ^ 𝐵)′ represents a 2-input NXOR gate. In rules #17-19, 𝐴′ 

represents the presence of a NOT gate that receives a signal from some part of the circuit netlist. 
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lgorithm 1: Random Boolean Logic Expansion (RBLE) 

input : C,P,n 
output :C', where Vx: C(x) = C'(x) 

1 BE E-- convert(C); done E-- f a/se; 
2 fixed E-- O; attempts E-- O; numexp E-- O; 

3 wh ile not done do 
4 expansions E-- profile(BE); 

8 

9 

10 

11 

12 

13 

14 

15 

16 

17 

18 

19 

20 

21 

22 

23 

24 

25 

26 

27 

28 

expansion E-- select( expansions); 
BE < apply(BE, expansion); 

C E- realize(BE); 
if P == FIXED then 

fixed E-- fixed + 1; 

if fixed = n then 
I C' E- C; done E-- true ; 

end 
else 

if (P == STRICTSIZE and size(C) = n) then 
I C' E- C; done E-- true ; 

else if (P == TARGETSIZE and size(C) >= n) then 
I C' E- C; done E-- true ; 

el se 
numexp E-- numexp + l ; 

if numexp > MAXEXPANSIONS then 
BE E-- convert(C); z E-- O; 

attempts E-- attempts + 1; 

if attempts > MAXATTEMPTS then 
I C' E- null; done E-- true; 

end 
end 

end 
end 

29 end 
30 return C'; 

Thus, each original expression corresponds to a basic digital logic gate or input to a logic gate 

(some variable 𝐴) in the circuit netlist. For purposes of expansion, 0 and 1 represent constant 0 or 

1 signals, which are kept in Boolean expression form until the circuit structure is realized in its 

final form. At that point, any 0 and 1 in the Boolean expression are replaced with a circuit netlist 

structure that generates the constant signal. So, for example, any 0 signal can be replaced with 

(𝐴 ^ 𝐴) or (𝐴 ∗ 𝐴′), where 𝐴 is any arbitrary variable that is already present in the expression. For 

multiple output circuits, each output is represented as its own Boolean logic expression. 
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Algorithm 1 provides a summary of the RBLE approach. Given the profile of a Boolean 

expression 𝐵𝐸 and the set of its potential expansions, one is chosen pseudo-randomly and then 

applied to the expression. The new expression then becomes the input to the next round of 

expansions. Application of Boolean logic laws guarantees semantic equivalence of all intermediate 

Boolean expression forms. Each expansion thus produces a new Boolean expression, semantically 

equivalent to 𝐵𝐸, based on the number of expansions that are applied, until some constraint is 

reached. We express constraints in the form of an input to the RBLE algorithm that we term 

expansion policy (𝑃) with three possible values: 𝑆𝑇𝑅𝐼𝐶𝑇𝑆𝐼𝑍𝐸, 𝑇𝐴𝑅𝐺𝐸𝑇𝑆𝐼𝑍𝐸, and 𝐹𝐼𝑋𝐸𝐷. The 

expansion policy value (𝑛) is provided as input to the RBLE algorithm alongside the policy choice 

𝑃. The condition for completion can be based on either the number of expansions performed or 

the size of the resulting polymorphic circuit. 

Given a candidate circuit (𝐶) with Boolean expression represented as (𝐵𝐸), policy choice 

(𝑃), policy value (𝑛), a number of maximum expansions (𝑀𝐴𝑋𝐸𝑋𝑃𝐴𝑁𝑆𝐼𝑂𝑁𝑆), a number of 

maximum attempts (𝑀𝐴𝑋𝐴𝑇𝑇𝐸𝑀𝑃𝑇𝑆), RBLE will produce as output a polymorphic circuit 

variant 𝐶′. Expansion policies (𝑃) and policy value (𝑛) are defined as: 

(1) 𝐹𝐼𝑋𝐸𝐷: Apply a fixed number of expansions (𝑛) to 𝐵𝐸, which results in an ordered list of 

intermediate Boolean expression forms: 𝐵𝐸 → 𝐵𝐸 , 𝐵𝐸1 2, 𝐵𝐸 , . . ., 𝐵𝐸3 𝑛. The final 

circuit 𝐶′ is directly realized by gate level realization of the expression 𝐵𝐸𝑛. 

(2) 𝑆𝑇𝑅𝐼𝐶𝑇𝑆𝐼𝑍𝐸: Apply expansions to 𝐵𝐸 until the corresponding gate size of 𝐶′ is exactly 

equal to strict size 𝑛. This results in a potential sequence of intermediate Boolean 

expression forms: 𝐵𝐸 → 𝐵𝐸 , 𝐵𝐸1 2, 𝐵𝐸 , . . ., 𝐵𝐸3 MAXEXPANSIONS, where 

𝑀𝐴𝑋𝐸𝑋𝑃𝐴𝑁𝑆𝐼𝑂𝑁𝑆 is some limit of expansions. Each intermediate Boolean expression 
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form 𝐵𝐸𝑥 is converted to its circuit netlist form 𝐶′ and size of the circuit is computed. If 

the size(𝐶′) = 𝑛, the algorithm terminates and returns 𝐶′. If the limit 𝑀𝐴𝑋𝐸𝑋𝑃𝐴𝑁𝑆𝐼𝑂𝑁𝑆 

is reached, the process is repeated with a fresh set of Boolean expansions starting with 𝐵𝐸. 

The algorithm will terminate when a maximum number of attempts (𝑀𝐴𝑋𝐴𝑇𝑇𝐸𝑀𝑃𝑇𝑆) 

have been reached, which may result in failure to produce a polymorphic circuit 𝐶′ with 

gatesize(𝐶′) = 𝑛. 

(3) 𝑇𝐴𝑅𝐺𝐸𝑇𝑆𝐼𝑍𝐸: Apply expansions to 𝐵𝐸 until the corresponding gate size of 𝐶′ is greater 

than or equal to target size 𝑛. This results in a potential sequence of intermediate Boolean 

expression forms: 𝐵𝐸 → 𝐵𝐸 , 𝐵𝐸1 2, 𝐵𝐸3 MAXEXPANSIONS, . . ., 𝐵𝐸 , where 

𝑀𝐴𝑋𝐸𝑋𝑃𝐴𝑁𝑆𝐼𝑂𝑁𝑆 is some limit of expansions. Each intermediate Boolean expression 

form 𝐵𝐸𝑥 is converted to its circuit netlist form 𝐶′ and size of the circuit is computed. If 

the size(𝐶′) ≥ 𝑛, the algorithm terminates and returns 𝐶′. If the limit 𝑀𝐴𝑋𝐸𝑋𝑃𝐴𝑁𝑆𝐼𝑂𝑁𝑆 

is reached, the process is repeated with a fresh set of Boolean expansions starting with 𝐵𝐸. 

The algorithm will terminate when a maximum number of attempts (𝑀𝐴𝑋𝐴𝑇𝑇𝐸𝑀𝑃𝑇𝑆) 

have been reached, which may result in failure to produce a polymorphic circuit 𝐶′ with 

size(𝐶′) ≥ 𝑛. 

Of the three policies, 𝑆𝑇𝑅𝐼𝐶𝑇𝑆𝐼𝑍𝐸 and 𝑇𝐴𝑅𝐺𝐸𝑇𝑆𝐼𝑍𝐸 are nondeterministic in the sense 

that they could fail to generate a polymorphic circuit variant with an exact or target gate size within 

pre-determined bounds, and thus they also have non-deterministic runtimes. However, the 𝐹𝐼𝑋𝐸𝐷 

expansion policy is deterministic and will always produce a variant in some predictable, linear 

amount of time. 
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l = (i0 * il) 
1: ((i0 + i0) * i l ) 
2: (((i0 + i0) + 0) * i l ) 
3: (((i0 + i0) + (il * 0)) * il) 
4: (((i0 + i0) + (il * (i0 • i0))) * il) 
5: (((i0 + i0) + (il * (i0 • i0))) * (il * il)) 
ol = (((i0 + i0) + (i l * (i0 • i0))) * (i l * i l )) 

size(C)=l 
rule 8, size(C')=2 
rule 11, size(C')=6 
rule 1, size(C')=7 
rule 3, size(C')=5 
rule 7, size(C')=6 
size(C')=6 

In discussing Algorithm 1, an overview of the functions involved in computation is 

necessary to understand the execution of the program. The 𝑝𝑟𝑜𝑓𝑖𝑙𝑒 function returns the set of all 

potential subexpressions within a Boolean expression which can have a Boolean expansion applied 

to it. The function 𝑐𝑜𝑛𝑣𝑒𝑟𝑡 takes a circuit netlist and returns a Boolean expression consistent with 

the structure of the circuit. The function 𝑟𝑒𝑎𝑙𝑖𝑧𝑒 takes a Boolean expression and returns a circuit 

netlist, where all constant 0 and 1 signals are converted into logic gate constructions. The function 

𝑎𝑝𝑝𝑙𝑦 takes as input a Boolean expression and a selected part of the expression that corresponds 

to a legal Boolean expansion rule then applies the expansion and returns a new Boolean expression. 

The function 𝑠𝑒𝑙𝑒𝑐𝑡 takes as input a set of legal Boolean expansions and returns a pseudo-random 

choice from the set. 

Table 4 provides an example of applying a 𝐹𝐼𝑋𝐸𝐷 policy on a Boolean expression where 

five expansions are applied to the expression 𝑜1 = (𝑖0 ∗ 𝑖1). Figure 3 illustrates circuit realization 

of the corresponding Boolean expressions created through expansion in Table 4. 

Table 4: Example Boolean Expansion Sequence 
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1 2 

Expansion: 1 

6 

2 

' ' ' l ____ _ 

7 

3 

' ' ' ' ' ' ' ' ' ' ' ' ' ' ' 
' ' ' ' ' ' ' '' '' ' ' 

C' 

: '-------w -· 

5 6 

4 5 

Figure 3: Example Expansion Circuit Realization 

EXPERIMENTAL METHODS 

To provide an initial evaluation of the efficacy of RBLE in comparison to pre-generated 

static libraries, we ran two types of experiments that generated distributions of replacement circuits 

using both approaches. The goal of the experiments was to understand the limits of RBLE in 

approaching a uniform distribution similar to what is possible with fully enumerating all possible 

circuit structures and storing them statically, thus being able to choose a replacement randomly 

from the set of all possible functionally equivalent polymorphic variants (referred to as CIRCLIB 

[11]). 

We also wanted to evaluate the new possibility of creating polymorphic variants with sizes 

well beyond the current size limits of the static chosen-circuit approach. We exercised the 

algorithm on simple circuits to initially assess the characteristics of RBLE distributions. For this 

study, we only considered replacements for the six basic logic gates in the δ2−1−1 circuit family, 

which are seen in Figure 2. 
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2 
2-1-3 Replacement 
Up to 10 Expansions 

Target Size 5 

62-1-s 

62-1-4 

62-1-1 

Experiment 1 
2-1-1 Replacement 

, 
, ,' ,, ,, ,, ,, 

,'/ STRICT SIZE 
,' : Expansion 

Experiment 

Figure 4 provides a visual reference to our experimental framework, which we expand 

next. To generate circuit variants, we implemented RBLE in a Java-based code suite and utilized 

the open-source version of CIRCLIB created by McDonald et al. to generate static circuit libraries 

[10, 11]. All experiments were performed on an HP ZBook 17 G2 laptop with an Intel i7-4710MQ 

2.50 GhZ CPU and 32GB installed RAM. 

Figure 4: Empirical Evaluation Framework 

EXPERIMENT 1: STRICT SIZE REPLACEMENT 

We first evaluate RBLE under a 𝑆𝑇𝑅𝐼𝐶𝑇𝑆𝐼𝑍𝐸 expansion policy, as this is the closest 

comparison to a chosen-circuit approach with CIRCLIB. For each of the six basic gate types in the 

δ2−1−1 family, we performed two sets of generations that created a total of 188,000 circuits: 

(1) 1,000 variants from CIRCLIB and 1,000 variants from RBLE, totaling 6,000 circuits for 

each gate type and method, of target size 2, 3, 4, and 5. The only exception was that the 

δ2−1−2 family has no valid semantically equivalent XOR or NXOR circuits that have gate 

size 2, so only 4,000 circuits were created for this target size family. In total, 22,0000 
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circuits were generated for analysis. In results notation, we refer to this as the 1K 

distribution set. 

(2) 10,000 variants from CIRCLIB and 10,000 variants from RBLE, totaling 60,000 circuits 

for each gate type and method, of target size 2, 3, and 4. The only exception was that the 

δ2−1−2 family has no valid semantically equivalent XOR or NXOR circuits that have gate 

size 2, so only 40,000 circuits were created for this target size family. In total, 160,0000 

circuits were generated for analysis. In results notation, we refer to this as the 10K 

distribution set. 

EXPERIMENT 2: FIXED EXPANSION/TARGETED REPLACEMENT 

We evaluate RBLE under a 𝐹𝐼𝑋𝐸𝐷 expansion policy, using six pairs of circuits chosen 

from the δ2−1−3 family, where each pair of δ2−1−3 circuits (C1, C2) are semantically equivalent 

to one of the basic gate circuits in the δ2−1−1 family (AND, OR, XOR, NAND, NOR, NXOR). 

For each circuit in each circuit pair (C1, C2), we create 100,000 variants chosen from CIRCLIB 

libraries with a target gate size of 5. For RBLE, we create 100,000 variants of each circuit with 

number of expansions n ranging from 𝑛 = 1 . . 10. 

For CIRCLIB, each circuit in the pair (C1, C2) resulted in 100,000 variants of size 5, for a 

total of 200,000 per basic gate type, and 1,200,000 total circuits. For RBLE, each circuit in the 

pair (C1, C2) resulted in 1,000,000 variants given 10 possible expansion values, for a total of 

2,000,000 per basic gate type, and 12,000,000 circuits total. As a result, a total of 13,200,000 

circuits were generated for this experiment. 
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Polymorphic Circuits 
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2-1-1 OR 2-1-1 NOR 

■ Chosen ■ Expanded 

ANALYSIS 

For analysis purposes, we refer to CIRCLIB variants as chosen replacement and RBLE 

variants as expanded replacements. We stored the results of the circuit distributions for each 

experiment type in BENCH netlist circuit files. Analysis was then performed on the BENCH files 

corresponding to each experiment type. We created a form of structural hash to uniquely identify 

the structure of each circuit netlist so that circuits with the same structure could be easily identified 

and grouped together. As part of the study, we learned that static CIRCLIB libraries contain 

structurally identical circuits that are semantically equivalent, even though CIRCLIB creates 

different netlist circuits for them in the static libraries. We explain the ramifications of this more 

in the Results section. 

For Experiment 2, we also recorded sizes of the various circuits that were created based on 

different numbers of expansions being applied to the original circuit. We made special note of 

circuits that matched the target gate size (5) which the CIRCLIB algorithm used. As a result of 

using variable number of expansions with RBLE, an original circuit with 100,000 variants will 

only have some percentage that match target size 5, which we explore further in the Results section. 

Figure 5: Number Circuits for δ2−1−2 Strict Replacement-1K 
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RESULTS & DISCUSSION 

We report first the results of Experiment 1 distributions. Figure 5 shows the results of 1K 

distributions of the four circuit types which are possible for (gate size = 2) replacements of AND, 

OR, XOR, and NAND gates that are part of the (gate size = 1) δ2−1−1 family. Given standard 

circuit creation options for CIRCLIB, each original gate only has 4 possible variants in the 

δ2−1−2 family. The replacement circuits as seen in Figure 5 show that both RBLE and CIRCLIB 

create roughly equal distributions for all 4 circuits, for all 4 gate types. 

Figure 6: Number Circuits for δ2−1−3 Strict Replacement-1K 

Figure 6 shows the results from Experiment 1 where 1,000 variants of size 3 were created 

for the original AND, OR, XOR, NAND, NOR, NXOR gates in δ2−1−1. The chart shows a 

combination of number of circuits for both methods, where circuits with the same structure are 

aligned. CIRCLIB variants follow a fairly uniform distribution for all 6 gate types, whereas RBLE 

replacements only represent a small number of the same circuits from the CIRCLIB potential set, 

with non-uniform distribution ranging from 3-10 circuits of size 3. The RBLE difference is due in 
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part to the fact that only a small subset out of the 28 possible expansions may result in size 3 

circuits. 

Figure 7: Number Circuits for δ2−1−4 Strict Replacement-1K 

Figure 7 shows the results from Experiment 1 where 1,000 variants of size 4 were created 

for the original AND, OR, XOR, NAND, NOR, NXOR gates in δ2−1−1. The chart shows a 

combination of the number of circuits for both methods, where circuits with the same structure are 

aligned. CIRCLIB variants follow a fairly uniform distribution for all 6 gate types with 1-2 circuits 

being chosen from 70-80 possible variants. RBLE creates circuits that overlap between 5-10 of the 

same circuits that CIRCLIB produces (roughly 8% of the CIRCLIB sets). RBLE replacements of 

size 4 have a roughly uniform distribution ranging from 3-10 circuits from 50-60 possible variants. 

This size distribution reveals how RBLE construction can reach circuits that are not part of the 

CIRCLIB family because of creation rules: in particular, RBLE allows degenerate circuit 

conditions such as 2-input gates that have the same source. Most of the RBLE circuits are thus 

disjoint from the CIRCLIB variants. 
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Figure 8: Number Circuits for δ2−1−5 Strict Replacement-1K 

Figure 8 shows the results from Experiment 1 where 1,000 variants of size 5 were created 

for the original AND, OR, XOR, NAND, NOR, NXOR gates in δ2−1−1. The chart shows a 

combination of number of circuits for both methods, where circuits with the same structure are 

aligned. CIRCLIB variants again follow a fairly uniform distribution for all 6 gate types, whereas 

RBLE replacements have a similar distribution as with size 4 replacements. Given that only 1,000 

variants were created for RBLE, the amount of variability is clearly less than what is possible with 

CIRCLIB variants, and certain circuit variants are created under RBLE with above average 

frequency. For size 5 replacements, the distributions show no overlap at all between the variants 

chosen by CIRCLIB and those expanded by RBLE. 
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Figure 9: Number Circuits for δ2−1−3 Strict Replacement-10K 

Figure 9 shows the results from Experiment 1 where 10,000 variants of size 3 were created 

for the original AND, OR, XOR, NAND, NOR, NXOR gates in δ2−1−1. The chart summarizes 

the number of circuits (each bar representing an identical matching circuit between the RBLE and 

CIRCLIB methods) for all gate types, ordered by the highest frequency that the variant is chosen 

by CIRCLIB. In a larger set of circuit replacements (10,000 attempts vs 1,000 attempts), it can be 

seen that CIRCLIB circuits do not follow a purely equal distribution. This is due to that fact that 

there are overlaps of structurally equivalent circuits in CIRCLIB, so that certain circuits have a 

higher probability of being chosen. We also observe that for size 3 replacements, allowing larger 

distributions (in this case 10,000 variants) shows that there are more overlaps with CIRCLIB 

variants that are chosen, depending on the gate type. 
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Figure 10: Cumulative Circuits δ2−1−4 Strict Replacement-10K 

Figure 10 shows the results from Experiment 1 where 10,000 variants of size 4 were created 

for the original AND, OR, XOR, NAND, NOR, NXOR gates in δ2−1−1. The chart summarizes 

the number of circuits (each bar representing an identical matching circuit between the RBLE and 

CIRCLIB methods) for all gate types, ordered by the highest frequency that the variant is chosen 

by CIRCLIB. RBLE replacements do not follow the same distribution as CIRCLIB, but overall, 

both approaches select circuits from the same range of unique circuits for each gate type. 
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Figure 11: Number Circuits δ2−1−4 Strict Replacement - 10K 

Figure 11 provides a more precise view of size 4 replacements created by the two methods 

for the 10K distribution set following strict expansion policy. In this view, the spiky nature of the 

RBLE replacements that are generated are compared against the same identical circuit that is 

chosen by the CIRCLIB algorithm. The chart is ordered based on highest frequency of CIRCLIB 

variants that were generated. As a strength, around 60% of unique CIRCLIB circuits are also 

created by expansion, but with RBLE producing a higher frequency of those variants in 

comparison. Strict size expansion policy, being non-deterministic, may result in failure to produce 

a variant: for these experiments, there were no maximum attempt failures. 

EXPERIMENT 1 SUMMARY 

To summarize analysis for Experiment 1, we observed that RBLE distributions are not 

completely uniform in comparison to CIRCLIB variants. Given replacements in the δ2−1−2 

family, they are near identical. Beyond that, distributions vary considerably based on the number 

of variants generated (1K vs 10K). This is partially because the set of potential semantically 
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equivalent replacements is above 1,000 for each of the original δ2−1−1 circuits for sizes 4 and 5. 

RBLE does generate a reasonable subset of potential CIRCLIB variants under strict expansion 

policy for all gate types, for target gate sizes 2 through 5. The spiky nature of the distributions and 

lack of ability to produce near matching distributions do point to weaknesses in the RBLE 

algorithm in regard to uniformity. We believe this is because only expansions were included in the 

RBLE algorithm (see Table 2). In order to reach a larger potential set of circuits, we believe that 

both reductions (see Table 1) and expansions should be used, as some circuits are not possible to 

create without both set of Boolean laws. 

Figure 12: Distributions for δ2−1−5 Chosen Replacement 
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EXPERIMENT 2 SUMMARY 

We report next the results of Experiment 2 distributions. We look first at the comparable 

set of circuits for all expansion possibilities that are created by RBLE and chosen with CIRCLIB 

that matched our target gate size of 5. Figure 12 and Figure 13 show the distribution results, per 

gate type, for replacements in the δ2−1−5 family. We can observe in Figure 12 the distribution of 

CIRCLIB replacements, where the number of actual CIRCLIB circuits of a given structure are 

compared against the number that are generated by the chooser algorithm. This shows that certain 

CIRCLIB circuits are over-represented, and thus the distribution among 200,000 variants of each 

gate type is not completely uniform. 

Figure 13: Distributions for δ2−1−5 Expanded Replacement 

Figure 13 shows a summary of expanded circuits. We do not show expansions of 7 through 

10 because they resulted in only a few or 0 circuits being produced that have gate size 5. This 

shows the closest comparison to CIRCLIB selection where the size is exact. The two figures also 

33 



 

      

  

    

    

    

    

     

 

 

 

   

 

   

  

    

 

2-1-5 Total Circuits 

50000 

40000 

30000 

20000 

10000 

0 

Nl N2 N3 N4 NS N6 N7 
Number of Expansions 

■ AND-COUNT 

■ NAND-COUNT 

■ OR-COUNT 

■ NOR-COUNT 

■ XOR-COUNT 

■ NXOR-COUNT 

# 2-1-5 Unique Circuits 

120 

100 

80 

60 

40 

20 

0 

Nl N2 N3 N4 NS N6 N7 
Number of Expansions 

■ AND-UNIQUE 

■ NAND-UNIQUE 

■ OR-UNIQUE 

■ NOR-UNIQUE 

■ XOR-UNIQUE 

■ NXOR-UNIQUE 

show the stark difference between potential unique circuits which can be reached by either 

approach. For each of the 200,000 variants chosen through CIRCLIB, all of the potential 

semantically equivalent versions for each gate type were reached: this includes 5069 AND 

variants, 4140 NAND variants, 5069 OR variants, 4139 NOR variants, 3901 XOR variants, and 

3901 NXOR variants. Figure 14 provides a summary of the unique variants reached through 

expansion, where the gate size was 5. For example, with 3 expansions, RBLE produced 78 AND 

variants, 82 NAND variants, 64 OR variants, 71 NOR variants, 95 XOR variants, and 84 NXOR 

variants. The smallest number of unique variants was produced with 1 and 7 expansions. 

Figure 14: δ2−1−5 Expanded Replacement Summary 

One of the primary benefits of RBLE is its ability to create variants of much larger size 

than what is feasible with the static CIRCLIB approach. Figure 15 illustrates the total distribution 

of circuits produced by RBLE for all gate types as part of Experiment 2, regardless of size. With 

1 expansion, circuits between size 3 and 8 can be reached, whereas with 10 expansions, circuits 

between size 6 and 37 can be reached. The chart summarizes the distribution of the 1,200,000 

circuits produced for 6 pairs of δ2−1−3 circuits with each pair being semantically equivalent to the 

original six basic gate types. This figure only shows unique circuits that are produced, ranging up 
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to 153,303 for 5 expansions. Of the 12,000,000 circuits generated by RBLE, 8,253,348 circuits 

were unique, which speaks more to the uniform possibilities of RBLE when replacement size is 

not a limiting factor. The ability to reach larger circuit replacement possibilities opens up new 

potential for iterative sub-circuit selection and replacement as a result. A static approach, for 

example, would be limited by conventional disk file storage system constraints to libraries for 

δ2−1−X no greater than size 7 [11]. 

Figure 15: Unique Expanded Replacements (200,000 per type) 
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CONCLUSION 

We introduced a novel method for generating polymorphic circuit variants based on inverse 

application of Boolean logic laws: Random Boolean Logic Expansion (RBLE). We generated and 

studied 13,360,000 circuit variants as semantically equivalent replacements for simple δ2−1−1 and 

δ2−1−3 circuits. Our initial empirical study shows that RBLE exhibited instances of uniformity 

when a specific sized circuit is required (strict size expansion policy) but can only reach a small 

percentage of comparable circuits from a static library selection when fixed expansions are used. 

However, when size is not a factor, RBLE can generate many unique variants uniformly when 

various expansion sizes are used. 

Based on these initial results, future work should focus on addressing the inability of RBLE 

to reach certain circuits in a possible population of alternatives: we expect that the addition of 

reduction laws alongside expansion laws will address this problem. If we considered the presence 

of constant 0 and 1 signals as valid, this would also provide greater flexibility to reach circuits of 

certain sizes, as the signals are typically considered to be provided outside the circuit. 
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