
University of South Alabama University of South Alabama

JagWorks@USA JagWorks@USA

Undergraduate Theses Honors College

2021

Developing a Deterministic Polymorphic Circuit Generator Using Developing a Deterministic Polymorphic Circuit Generator Using

Random Boolean Logic Expansion Random Boolean Logic Expansion

Trinity Stroud
University of South Alabama

Follow this and additional works at: https://jagworks.southalabama.edu/honors_college_theses

 Part of the Computer Sciences Commons

Recommended Citation Recommended Citation
Stroud, Trinity, "Developing a Deterministic Polymorphic Circuit Generator Using Random Boolean Logic
Expansion" (2021). Undergraduate Theses. 15.
https://jagworks.southalabama.edu/honors_college_theses/15

This Undergraduate Thesis is brought to you for free and open access by the Honors College at JagWorks@USA. It
has been accepted for inclusion in Undergraduate Theses by an authorized administrator of JagWorks@USA. For
more information, please contact jherrmann@southalabama.edu.

https://jagworks.southalabama.edu/
https://jagworks.southalabama.edu/honors_college_theses
https://jagworks.southalabama.edu/honors_college
https://jagworks.southalabama.edu/honors_college_theses?utm_source=jagworks.southalabama.edu%2Fhonors_college_theses%2F15&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/142?utm_source=jagworks.southalabama.edu%2Fhonors_college_theses%2F15&utm_medium=PDF&utm_campaign=PDFCoverPages
https://jagworks.southalabama.edu/honors_college_theses/15?utm_source=jagworks.southalabama.edu%2Fhonors_college_theses%2F15&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:jherrmann@southalabama.edu

Q

University of South Alabama

JagWorks@USA

Developing a Deterministic Polymorphic Circuit Generator Using

Random Boolean Logic Expansion

Recommended Citation

University of South Alabama

JagWorks@USA

Undergraduate Theses Honors College

2021

Developing a Deterministic Polymorphic Circuit Generator Using

Random Boolean Logic Expansion

Trinity Stroud
University of South Alabama

Follow this and additional works at: https://jagworks.southalabama.edu/honors_college_theses

Part of the Computer Sciences Commons

Recommended Citation
Stroud, Trinity, "Developing a Deterministic Polymorphic Circuit Generator Using Random Boolean Logic
Expansion" (2021). Undergraduate Theses . 15.
https://jagworks.southalabama.edu/honors_college_theses/15

This Undergraduate Thesis is brought to you for free and open access by the Honors College at JagWorks@USA. It
has been accepted for inclusion in Undergraduate Theses by an authorized administrator of JagWorks@USA. For
more information, please contact jherrmann@southalabama.edu.

https://jagworks.southalabama.edu/
https://jagworks.southalabama.edu/honors_college_theses
https://jagworks.southalabama.edu/honors_college
https://jagworks.southalabama.edu/honors_college_theses?utm_source=jagworks.southalabama.edu%2Fhonors_college_theses%2F15&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/142?utm_source=jagworks.southalabama.edu%2Fhonors_college_theses%2F15&utm_medium=PDF&utm_campaign=PDFCoverPages
https://jagworks.southalabama.edu/honors_college_theses/15?utm_source=jagworks.southalabama.edu%2Fhonors_college_theses%2F15&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:jherrmann@southalabama.edu

____________________________________ _____________________________________

____________________________________ _____________________________________

Developing a Deterministic Polymorphic Circuit Generator

Using Random Boolean Logic Expansion

By

Trinity Stroud

A thesis submitted in partial fulfillment of the requirements of the Honors College at University

of South Alabama and the Bachelor of Sciences in the Computer Science Department

University of South Alabama

Mobile

May 2021

Approved by:

Mentor: J. Todd McDonald Committee Member: Todd R. Andel

Committee Member: Dimitrios Damopoulos Kathy J. Cooke

 Dean, Honors College

jtmcd
JTM

© 2021

Trinity Stroud

ALL RIGHTS RESERVED

ii

ACKNOWLEDGEMENTS

This research was supported in part by the National Science Foundation under the Secure and

Trusted Computing (SaTC) grant CNS-1811560 and 1811578. The project was a collaborative

effort between the University of Nebraska at Omaha (UNO) and the University of South Alabama

(USA).

iii

ABSTRACT

Securing applications on untrusted platforms can involve protection against legitimate end-

users who act in the role of malicious reverse engineers and hackers. Such adversaries have access

to the full execution environment of programs, whether the program comes in the form of software

or hardware. In this thesis, we consider the nature of obfuscating algorithms that perform iterative,

stepwise transformation of programs into more complex forms that are intended to increase the

complexity (time, resources) for malicious reverse engineers.

We consider simple Boolean logic programs as the domain of interest and examine a

specific transformation technique known as Iterative Selection and Replacement (ISR), which

represents a practical, syntactic approach for obfuscation. Specifically, we focus on improving the

security of ISR by maximizing the flexibility and potential security of the replacement step of the

algorithm which can be formulated in the following question: Given a selection of Boolean logic

gates (i.e., a subcircuit), how can we produce a semantically equivalent (polymorphic) version of

the subcircuit such that the distribution of potential replacements represents a random, uniform

distribution from the set of all possible replacements?

This practical question is related to the theoretic study of indistinguishability obfuscation,

where a transformer for a class of circuits guarantees that given any two semantically equivalent

circuits from the class, the distribution of variants from their obfuscation are computationally

indistinguishable. Ideally, polymorphic circuits that follow a random, uniform distribution provide

stronger protection against malicious analyzers that target identification of distinct patterns as a

basis for deobfuscation and simplification.

iv

We introduce a novel approach for polymorphic circuit replacement called Random

Boolean Logic Expansion (RBLE), which applies Boolean logic laws (of reduction) in reverse.

We compare this approach against another proposed method of polymorphic replacement that

relies on static circuit libraries. As a contribution, we show the strengths and weaknesses of each

approach, examine initial results from empirical studies to estimate the uniformity of polymorphic

distributions, and provide the argument for how such algorithms can be readily applied in software

contexts. RBLE provides a unique method to generate polymorphic variants of arbitrary input,

output, and gate size. We report initial findings for studying variants produced by this method and,

from empirical evaluation, show that RBLE has promise for generating distributions of unique,

uniform circuits when size is unconstrained, but for targeted size distributions, the approach

requires adjustment for reaching potential circuit variant.

v

TABLE OF CONTENTS

ACKNOWLEDGEMENTS iii

ABSTRACT iv

LIST OF ABBREVIATIONS viii

LIST OF FIGURES ix

LIST OF TABLES x

INTRODUCTION 1

Motivating Context 3

Boolean Logic 6

Boolean Logic Functions & Laws 6

Boolean Logic Expressions 8

Digital Logic Circuits 11

Random Selection & Replacement 14

Boolean Reduction & Expansion 16

EXPERIMENTAL METHODS 22

Experiment 1: Strict Size Replacement 23

Experiment 2: Fixed Expansion/Targeted Replacement 24

Analysis 25

RESULTS & DISCUSSION 26

Experiment 1 Summary 31

vi

Experiment 2 Summary 33

CONCLUSION 36

REFERENCES 37

vii

LIST OF ABBREVIATIONS

IP Intellectual Property

ISR Iterative Selection and Replacement

LHS Left-Hand Side

MPC Multi-Party Computation

PET Program Encryption Toolkit

RBLE Random Boolean Logic Expansion

RHS Right-Hand Side

RPM Random Program Model

RSR Random Selection and Replacement

viii

LIST OF FIGURES

Figure 1: Equivalent Circuit Representations 12

Figure 2: δ2−1−1 Circuit Family 14

Figure 3: Example Expansion Circuit Realization 22

Figure 4: Empirical Evaluation Framework 23

Figure 5: Number Circuits for δ2−1−2 Strict Replacement-1K 25

Figure 6: Number Circuits for δ2−1−3 Strict Replacement-1K 26

Figure 7: Number Circuits for δ2−1−4 Strict Replacement-1K 27

Figure 8: Number Circuits for δ2−1−5 Strict Replacement-1K 28

Figure 9: Number Circuits for δ2−1−3 Strict Replacement-10K 29

Figure 10: Cumulative Circuits δ2−1−4 Strict Replacement-10K 30

Figure 11: Number Circuits δ2−1−4 Strict Replacement - 10K 31

Figure 12: Distributions for δ2−1−5 Chosen Replacement 32

Figure 13: Distributions for δ2−1−5 Expanded Replacement 33

Figure 14: δ2−1−5 Expanded Replacement Summary 34

Figure 15: Unique Expanded Replacements (200,000 per type) 35

ix

LIST OF TABLES

Table 1: Logic Gate Types and Truth Tables 8

Table 2: Boolean Expression Reductions 10

Table 3: Boolean Expression Expansions 17

Table 4: Example Boolean Expansion Sequence 21

x

INTRODUCTION

Intellectual property (IP) is currently embedded in both software and hardware that are

used in almost every area of society today. Companies can typically have billions of dollars

invested in such IP. Theft of IP has therefore become a major concern for tech companies across

the globe and, in particular, the United States. This research project concerns polymorphism and

circuit protection for the purpose of approaching an efficient obfuscation algorithm which could

serve as a defense against adversarial reverse engineering and, ultimately, IP theft.

This approach would involve transforming programs such that the amount of time and

resources necessary for a malicious reverse engineer to recover IP in a circuit program becomes

undesirable or, in the best case, complete infeasible [1]. A solution to this problem of reverse

engineering could be applied in the areas of circuit and software protection to the effect that IP of

any manner could be safeguarded to a degree against attacks meant to discern the function and

form of said programs [2].

One particular type of obfuscating transformation, known as a selection/replacement

algorithm [3], involves taking small parts of a circuit and replacing that small part with a

functionally equivalent version, or variant, with some different structure. This process is repeated

over and over again (iteratively) until some desired level of overhead or security is reached, and

the program is deemed to be obfuscated.

In order to reach this solution, the specific question we look to answer is: Can we create a

deterministic circuit generation algorithm that approaches a uniform random selection from the set

of all circuits that implement a specific function? Such an algorithm could greatly improve the

efficiency and capacity of selection/replacement algorithms over, for example, other approaches

1

that involve the enumeration and selection of circuits from static libraries that must be stored on

disk or randomly generated [4].

In order to answer this question, we plan to implement a Random Boolean Logic Expansion

(RBLE) algorithm as a part of the existing Program Encryption Toolkit (PET) software. As

combinational circuits are, in essence, no different from Boolean expressions [5], we will be using

this algorithm while introducing random choices so that we can create polymorphic circuit variants

from their manipulated Boolean expressions as part of a selection/replacement algorithm [6],

thereby reducing the quantity of resources required to perform operations and introducing

interesting potential avenues for program protection.

After a component of a circuit’s Boolean expression is selected in the process of

obfuscation, this RBLE algorithm would be employed in order to randomly determine from a list

of Boolean logic laws one to apply to the subexpression that would alter its form while preserving

its function. The resulting subexpression would take the place of the original selected from the

circuit’s expression so that a portion of the circuit has been obfuscated with no change made to its

overall function. Each output function of the circuit would be represented with separate Boolean

expressions, though the functions themselves may be closely connected [7] and this method

applied to each. This process would be repeated, with different portions of the expression being

transformed randomly, until such a time as the circuit’s expression is considered to be

appropriately obfuscated.

With a similar intent as McDonald, Kim, and Koranek’s research to compare the

efficiencies of obfuscation algorithms [3], to ensure that this RBLE algorithm truly approaches a

uniform random selection from the set of all circuits that implement a specific function, we will

2

create distributions of the functions of the circuit families produced by each of the following

methods: the random and iterative application of Boolean logic laws to a circuit’s expression to

produce a variant, the enumeration and random selection of a circuit from a circuit family, and the

generation of a circuit until a functionally equivalent variant is produced. Comparing these

distributions will allow us to verify that our RBLE algorithm is truly as random as these other

methods of random selection/replacement and random generation.

MOTIVATING CONTEXT

We provide two motivating scenarios that give context to this work: one primarily

hardware-based and one primarily software-based. Nohl et al. [8] were some of the first researchers

to illustrate the relative ease of physically reverse engineering hardware implementations of

integrated circuit boards to recover gate-level programs (also known as netlists). In their work,

they analyzed the Mifare Classic RFID cipher that was used as part of a public transit system card.

Once these gate level constructs were recovered, design-level components could be reverse

engineered to reveal the implementation of the cipher itself which led to the discovery of numerous

flaws in the cryptographic design. Obfuscation of gate-level netlists programs through algorithms

such as ISR would offer one potential countermeasure to design-level recovery of components:

this specifically involves preventing recovery of the number, type, and inter-connectivity of

building block components used to create more complex circuits. ISR has been utilized in prior

work to evaluate the security of component recovery algorithms [9, 10, 11] and thus RBLE would

provide new directions for such research.

Although our focus is primarily on circuit-to-circuit transformation, ISR with RBLE-based

replacement has implications for software-to-software transformation. First, we note two different

3

domains where software is converted into hardware representation. In the area of secure multi-

party computation (MPC) [12], the predominant question of interest is how to securely compute a

joint function on private inputs from distrusting participants while revealing nothing more than the

result of the function. MPC schemes beginning with the seminal work of Yao on garbled circuits

[13] have traditionally taken the joint function of interest and represented it in a standard circuit

form consisting of AND, OR, and NOT gates. The cryptographic aspect of MPC protocols involves

garbling the circuit in such a way that its evaluation by two or more parties results in the privacy

of inputs as well as intermediate computations. MPC research has seen a rebirth of interest in

recent years as well as a multitude of practical implementations that support translation of

functions into circuits in Boolean, arithmetic, or formula form. Fairplay [14] was one of the first

implementations of a two-party protocol: it comprised a high-level procedural language to support

the expression of secure functions and the translation to one-pass Boolean circuits. Since then,

multiple implementations of software-to-circuit compilers for MPC construction based on C and

C++ have appeared such as OblivC [15, 16], ABY [17], EMP [18], and PICCO [19].

In the domain of systems design and synthesis, the distinction between hardware and

software has become less clear for some time. The advent of field programmable gate arrays

(FPGAs) has moved the defining aspect of hardware programs into a more fluid form, where

reprogrammable hardware is becoming the norm. Almost 20 years ago, Wirth [20] pointed out the

ease by which traditional software constructs (sequence and choice) are easily translatable to

combinational logic while looping constructs can be handled with sequential logic forms. He was

one of the first researchers to argue for a common language to express both software and hardware

constructs. Since then, several realizations of this concept have made their way into commercial

synthesis tools and systems design thought. SystemC [21] is probably the more well-known and

4

earliest examples of this hardware/software marriage and is now an IEEE standard. Such

programming environments support hardware description languages such as Verilog or VHDL and

their translation to C++ [22].

The growing use of software-to-hardware programming environments for both MPC and

systems design provides context for how circuit transformation algorithms might eventually be

used for software protection against MATE attacks. In particular, software-based hardware

abstractions pose an ideal method to frustrate traditional software analysis and reverse engineering

techniques [23]. RBLE thus also has possibility to translate directly into software protection

schemes based on hardware abstraction in the future, though this is not the focus of this paper.

The primary motivation for our research was whether an efficient (deterministic) circuit

generation algorithm could be used to create polymorphic circuit variants. Ideally, this algorithm

should produce distributions that approach a random, uniform selection from the set of all possible

choices of semantically equivalent circuits. We compare our approach against a known static

enumeration approach that, despite its ability to generalize to arbitrary circuit selections, does

generate random, uniform distributions. To understand the generational approaches, we provide a

review of basic definitions and concepts related to RBLE in the following sections.

5

BOOLEAN LOGIC

The definition used by Svensson to describe a Boolean algebra [24] is as follows:

“By a Boolean algebra we mean a lattice that is both distributive and complementary. We

note a couple of immediate consequences of the definition.

• Any Boolean algebra is a bounded lattice. This is because a Boolean algebra is

complementary, and by definition a complementary lattice has to be bounded,

• The cancellation law holds in a Boolean algebra, since a Boolean algebra is a

distributive lattice,

• Each element in a Boolean algebra has exactly one complement.”

The corresponding notation for a general Boolean algebra is then (𝐵, ∧, ∨, ′, 0𝐵, 1𝐵),

where 𝐵 is a set; ∧ and ∨ are binary operators for intersection and union, respectively; ′ is the unary

operator for complementation; and 0𝐵 and 1𝐵 are the two possible values for any element of 𝐵.

This is a more simplified form of the way in which we choose to represent Boolean expressions,

or functions. As a combinational circuit is, in essence, equivalently representable as a Boolean

expression by its function [5], we have chosen certain symbols and rules for describing this

notation.

BOOLEAN LOGIC FUNCTIONS & LAWS

A Boolean function is a function with a domain of values {0, 1} and of a finite number of

variables of value {0, 1}. Theorem 1 [25] lists some of the properties by which a Boolean function

is defined on the set 𝐵 = {0, 1} with binary operations of conjunction (∨, OR, +) and disjunction

6

(∧, AND, ∗), and a unary operation of negation (𝑥, NOT, 𝑥′). These are the basis for the application

of Boolean algebra laws.

Theorem 1. For all 𝑥, 𝑦, 𝑧 𝜖 𝐵, the following identities hold:

(1) Annulment: 𝑥 ∨ 1 = 1 and 𝑥 ∧ 0 = 0;

(2) Identity: 𝑥 ∨ 0 = 𝑥 and 𝑥 ∧ 1 = 𝑥;

(3) Commutativity: 𝑥 ∨ 𝑦 = 𝑦 ∨ 𝑥 and 𝑥 ∧ 𝑦 = 𝑦 ∧ 𝑥;

(4) Associativity: (𝑥 ∨ 𝑦) ∨ 𝑧 = 𝑥 ∨ (𝑦 ∨ 𝑧) and 𝑥 ∧ (𝑦 ∧ 𝑧) = (𝑥 ∧ 𝑦) ∧ 𝑧;

(5) Idempotence: 𝑥 ∨ 𝑥 = 𝑥 and 𝑥 ∧ 𝑥 = 𝑥;

(6) Absorption: 𝑥 ∨ (𝑥 ∧ 𝑦) = 𝑥 and 𝑥 ∧ (𝑥 ∨ 𝑦) = 𝑥;

(7) Distributivity: 𝑥 ∨ (𝑦 ∧ 𝑧) = (𝑥 ∨ 𝑦) ∧ (𝑥 ∨ 𝑧) and 𝑥 ∧ (𝑦 ∨ 𝑧) = (𝑥 ∧ 𝑦) ∨ (𝑥 ∧ 𝑧);

(8) Complementation: 𝑥 ∨ 𝑥 = 1 and 𝑥 ∧ 𝑥 = 0;

(9) Involution: 𝑥 = 𝑥;

(10) De Morgan’s Laws: (𝑥 ∨ 𝑦) = 𝑥 ∧ 𝑦 and (𝑥 ∧ 𝑦) = 𝑥 ∨ 𝑦;

The following table (Table 1) lists the combinational circuit gate types representable in

Boolean expressions along with their symbols and truth tables, which describe for every

combination of possible values the resulting value of a circuit gate:

7

Table 1: Logic Gate Types and Truth Tables

Name Notation Truth Table

NOT 𝐴′
𝐴 𝐴′
0 1
1 0

AND 𝐴 ∗ 𝐵

𝐴 𝐵 𝐴 ∗ 𝐵
0 0 0
0 1 0
1 0 0
1 1 1

NAND (𝐴 ∗ 𝐵)′

𝐴 𝐵 (𝐴 ∗ 𝐵)′
0 0 1
0 1 1
1 0 1
1 1 0

OR 𝐴 + 𝐵

𝐴 𝐵 𝐴 + 𝐵
0 0 0
0 1 1
1 0 1
1 1 1

NOR (𝐴 + 𝐵)′

𝐴 𝐵 (𝐴 + 𝐵)′
0 0 1
0 1 0
1 0 0
1 1 0

XOR 𝐴 ^ 𝐵

𝐴 𝐵 𝐴 ^ 𝐵
0 0 0
0 1 1
1 0 1
1 1 0

NXOR (𝐴 ^ 𝐵)′

𝐴 𝐵 (𝐴 ^ 𝐵)′
0 0 1
0 1 0
1 0 0
1 1 1

BOOLEAN LOGIC EXPRESSIONS

A typical way to represent Boolean functions are with Boolean expressions, which are

logical statements that, upon evaluation, have a value of either 0 or 1, false or true. For notation

purposes, we express the three primary operators within Boolean expression as follows:

8

disjunction (∨, OR) with +; conjunction (∧, AND) with ∗; and negation, (𝑥, NOT) with 𝑥′. There

is an additional operator, XOR, represented in our notation as the traditional programmatic binary

XOR (^), which is a derived operation based on disjunction, conjunction, and negation rules as

follows:

𝑥 XOR 𝑦 = (𝑥 ∧ 𝑦) ∨ (𝑥 ∧ 𝑦)

with our notation for the above expression being:

𝑥^𝑦 = (𝑥 ∗ 𝑦′) + (𝑥′ ∗ 𝑦).

Table 2 illustrates Boolean expressions derived from Boolean algebra laws where the left-

hand side (LHS) is equivalent functionally to the right-hand side (RHS). These algebraic laws are

normally applied repeatedly to reduce Boolean expressions to their simplest forms [26].

The following is an example of Boolean expression from the C2-1-2 circuit family, which

consists of those circuits with two inputs (C2-1-2), one output (C2-1-2), and two gates (C2-1-2):

𝑔1 = ((𝑖1 ^ 𝑖0) + 𝑖0)′. (1)

Here, 𝑔1 represents the value of the single output belonging to the circuit, and 𝑖0 and 𝑖1

represent the values of the two inputs to the circuit. Using the notations detailed in Table 1, we see

that this expression describes a circuit consisting of a NOR gate of input 𝑖0 and the XOR of inputs

𝑖0 and 𝑖1. We can perform on this expression an operation known as reduction, which simplifies

the form of a Boolean expression while preserving its overall function. This can be done by

applying to it the Boolean logic laws included in Table 2.

9

Original Reduction Law
1 A*A A ldempotence
2 A + A A ldempotence
3 A*B B*A Commutat ivity
4 A + B B+ A Commutat ivity
5 A* (B * C) {A* B) * C Associat ivity
6 A + (B + C) {A + B) + C Associat ivity
7 A* {A + B) A Absorpt ion
8 A + {A* B) A Absorpt ion
9 A* (B + C) {A * B) + {A * C) Distribut ivity
10 A + (B * C) {A + B) * {A + C) Distribut ivity
11 A*0 0 Annihilat ion
12 A + 0 A Ident ity
13 A" 0 A Ident ity
14 A* 1 A Ident ity
15 A + l 1 Annihilat ion
16 A" 1 A' Negat ion
17 A* A' 0 Complementat ion
18 A + A' 1 Complementat ion
19 {A')' A Involut ion
20 {A + B)' A' * B' De Morgan's
21 {A* B)' A' + B' De Morgan's
22 {A + B) * {A' + B') A" B Derivat ion
23 {A' * B) + {A * B') A" B Derivat ion
24 {A + B)' + {A * B) {A " B)' Negat ion
25 A"A 0 Annihilat ion
26 {A" A)' 1 Annihilat ion
27 {A * B') + {A * B) A Annihilat ion
28 {A' * B') + {A' * B) A' Negat ion
29 {A + B) * {A + B') A Annihilat ion
30 {A' + B) * {A' + B') A' Negat ion

Table 2: Boolean Expression Reductions

For each Boolean logic law detailed above, the LHS of the expression is functionally

equivalent to the RHS of the expression. This fact allows us to substitute a portion of an expression

that matches the LHS or RHS of a logic law with its corresponding RHS or LHS, respectively. To

demonstrate this concept, the following steps detail the reduction of the Boolean expression (1)

belonging to the circuit family C2-1-2 to the expression representing the C2-1-1 circuit of the same

function:

10

𝑔1 = ((𝑖1 ^ 𝑖0) + 𝑖0)′

Step 1: (((𝑖1′ ∗ 𝑖0) + (𝑖1 ∗ 𝑖0′)) + 𝑖0)′ (applied law #23)

Step 2: ((𝑖0 + (𝑖1′ ∗ 𝑖0)) + (𝑖1 ∗ 𝑖0′))′ (applied law #6)

Step 3: (𝑖0 + (𝑖1 ∗ 𝑖0′))′ (applied law #8)

Step 4: ((𝑖0 + 𝑖1) ∗ (𝑖0 + 𝑖0′))′ (applied law #10)

Step 5: ((𝑖0 + 𝑖1) ∗ 1)′ (applied law #18)

Step 6: (𝑖0 + 𝑖1)′ (applied law #14)

𝑔1 = (𝑖0 + 𝑖1)′

DIGITAL LOGIC CIRCUITS

Combinational circuits directly implement Boolean logic via a set of logic gates (called the

basis set Ω) such as AND, OR, XOR, NOT, NAND, NOR, and NXOR. Structurally, they can be

expressed in a number of ways including textually in netlist languages such as BENCH format

[27] and visually in schematic form. Figure 1 illustrates a combinational circuit belonging to the

family C5-2-6 in schematic form with corresponding BENCH netlist. Behaviorally, an 𝑛-input,

𝑚-output circuit combinational circuit can be seen as an array of Boolean functions 𝑓𝑖 ∶ 𝐵𝑛 →

{0, 1}, where 𝑖 = 1. . 𝑚 [26].

A Boolean expression can directly represent combinational logic netlists by assigning each

circuit output a function, assigning circuit inputs as Boolean variables in the expression, and

directly translating each circuit gate to its corresponding logic expression. Thus, combinational

circuits are equivalently represented structurally as a Boolean expression [26, 28]. Figure 1

illustrates the corresponding Boolean expression for the circuit structure.

11

Netlist
INPUT (1)
INPUT (2)

INPUT (3)
INPUT (6)
INPUT (?)

OUTPUT (22)
OUTPUT (23)

10 = NAND(l , 3)
11 = AND (3, 6)
16 = OR (2 , 11)
19 = NOR (11 , 7)
22 = XOR(l0 , 16)
23 = NXOR(16 , 19)

Boolean Expression

,
I

Circuit Schematic

024 ((il*i3)'A(i2+ (i3*i6)))
025 ((i2 + (i3 * i6)) A ((i3 * i6) + i7) ') '

Figure 1: Equivalent Circuit Representations

Logic circuits are typically grouped in families based on their input, output, and gate sizes.

We use the notation δX-Y to define the set of all circuits the same input size X and output size Y.

We use the notation δX-Y-S to represent families of circuits with gate size S. We assume circuits

that are within a family are derived from a common basis set Ω, where typical basis sets may

include Ω = {AND, OR, NOT}, Ω = {NAND}, Ω = {NOR}, or Ω = {AND, OR, XOR, NAND,

NOR, NXOR}. The fan-in of a gate is the number of unique inputs fed to the gate. Legal circuits

within a family are also governed by rules related to their structure:

(1) Symmetry: Should we consider a gate with inputs (X1, X2) as equivalent to a gate with

inputs (X2, X1)?

12

(2) Redundant Gates: Should we allow gates that are identical to other gates (same fan-in and

same gate type)?

(3) Constant Signals: Should we allow the circuit immediate access to the constants 0 or 1?

(4) Degeneracy: Should we allow both inputs to a gate to originate from the same source gate?

(5) Fan-in: Should we allow gates with multiple fan-in versus simple binary (2 fan-in) gates?

(6) Basis: What set of gates Ω can constitute the circuit structure?

(7) Size: Does the set contain all circuits up to a certain gate size bound or only circuits with

an exact gate size?

(8) Outputs: For multiple output circuits, which gates should be allowed as outputs?

Given answers to these constraints, different circuit families can be produced, with more

relaxed constraints producing larger numbers of circuits in the same identical family. As an

example, families of legal circuits that minimize redundancy, disallow degenerate conditions and

constant signals, use exact size, and allow only binary gates are typical for standard building blocks

in larger combinational circuits. Figure 1 illustrates the legal family of δ2−1−1 circuits given basis

Ω = {AND, OR, XOR, NAND, NOR, NXOR}, which consists of only the six basic logic gates

themselves.

13

2-1-1

•

' ' ' ' '
:t:,.........,,:: ' ' : 3 :
' ' ' ' ' ' ' '
l____ -~~~!

4

' ' ' ' '

l 1,7 i ' '
--------4~: : ' ' ' ' '- --- ~~~~!

4

' ' ' ' '

,ij: i ' ' ' ' ' ' ' ' ' ' ' ' ____ ~~~!
4

Figure 2: δ2−1−1 Circuit Family

RANDOM SELECTION & REPLACEMENT

An algorithm that could be applied to a Boolean expression such that polymorphic circuit

variants can be produced could be a useful application of the theory towards hindering the efforts

of adversarial attacks against IP. McDonald and Kim [1] perform such research to examine the

effects of random and deterministic techniques of obfuscation on logic-level definitions.

The Random Selection and Replacement (RSR) algorithm they describe operates by

selecting subcircuits of an original circuit and replacing those subcircuits with functionally

equivalent variants chosen either from static libraries or produced through the repeated application

of Boolean logic laws to the Boolean expression of a subcircuit. They found that there are tradeoffs

to using either an obfuscation algorithm that implements random choice or one that targets specific

hiding properties of a circuit.

14

If we can consider incorporating an algorithm to manipulate Boolean expressions as part

of an existing RSR algorithm, potentially our implementation would lessen the number of

resources required to perform operations while also demonstrating uniform random selection for

a distribution of circuits. This algorithm would also hopefully circumvent the issue McDonald,

Kim, and Koranek [4] noticed with typical RSR algorithms that required the enumeration of all

possible variants for a selection: as the size of the selection increased, performing this task became

intractable.

In addition to creating an algorithm that approaches a uniform random selection of circuits,

it would be preferable that the variants produced by the algorithm also approach the effectiveness

of the random selection of variants in terms of the information revealed by the intermediate gate

transformations. The Random Program Model (RPM) used by McDonald, Kim, and Grimaila [29]

to study this exact problem used white-box and black-box transformations for protecting the intent

of a circuit such that there would be no correlation between the behavioral information leaked by

the obfuscated circuit and the behavior of the original circuit and that there would be no more

correlation between the structural topology of the obfuscated circuit and the original circuit than

for any randomly selected circuit. Such an arrangement would be preferable, as an obfuscated

variant that can be analyzed to derive the original circuit from leaked behavioral or structural

information would make for poor protection against malicious reverse engineering.

15

BOOLEAN REDUCTION & EXPANSION

Decades of research have been devoted to finding efficient algorithms for reducing circuit

logic functions to their smallest size, thereby minimizing power and layout space in realized

physical circuits. All reductions can ultimately be related to the application of one or more laws as

seen in Table 2. Random Boolean Logic Expansion (RBLE) works by applying these laws in

reverse.

The list of Boolean logic laws used by the RBLE algorithm to perform expansion versus

reduction can be reduced to include only those logic laws which change the structure of the circuit.

For example, associativity or distributivity are laws which change the number of variables or

values represented in part of the overall Boolean expression and result in polymorphic variation.

Laws such as commutativity would not, and therefore we can remove laws #3 and #4 from Table

2, leaving us with an optimized and reordered list of Boolean logic laws seen in Table 3.

The laws have been rearranged such that their original expressions are ordered by lowest-

to-highest form. This ordering allows us to easily recognize that, for example, the Boolean value

0 has three possible expansions, the Boolean value 1 has three possible expansions, and any

Boolean variable 𝐴 has ten possible expansions.

16

Original Expansion Law Relative Gates

1 0 = A* 0 Annihilation CONST0
2 0 = A* A' Complementation CONST0
3 0 = AAA Annihilation CONST0
4 1 = A+ l Annihilat ion CONSTl
5 1 = A+A' Complementation CONSTl
6 1 = {A A A)' Annihilat ion CONSTl

7 A = A*A ldempotence ANO
8 A = A+A ldempotence OR
9 A = A* {A+ B) Absorption ANO,OR

10 A = A+ {A* B) Absorption OR,ANO

11 A = A+0 Identity OR, CONST0
12 A = A A 0 Identity XOR, CONST0
13 A = A* 1 Identity ANO, CONSTl
14 A = {A')' Involution NOT
15 A = {A * B') +{A* B) Annihilation ANO,OR,NOT
16 A = {A+ B) * {A+ B') Annihilation ANO,OR,NOT
17 A' = A A 1 Negation XOR, CONSTl

18 A' = {A' * B') + {A' * B) Negation ANO,OR,NOT
19 A' = {A' + B) * {A' + B') Negation ANO,OR,NOT
20 {A+ B)' = A' * B' De Morgan's NOR
21 {A * B)' = A' +B' De Morgan's NANO
22 AAB = {A+ B) * {A' + B') Derivation XOR
23 AAB = {A' * B) +{A* B') Derivation XOR
24 {A AB)' = {A+ B)' +{A* B) Negation NXOR
25 A* {B + C) = {A * B) + {A * C) Distributivity ANO,OR
26 A+ {B * C) = {A + B) * {A + C) Distributivity OR,ANO
27 {A* B) * C = A* {B * C) Associativity ANO
28 {A +B) + C = A+ {B+ C) Associativity OR

Table 3: Boolean Expression Expansions

To perform RBLE, we take a candidate circuit 𝐶 and represent its circuit structure as a

Boolean expression 𝐵𝐸. The Boolean expression is then profiled to provide a potential set of logic

expansions that may be applied, based on the presence of original expressions in 𝐵𝐸 seen in Table

2: 0, 1, 𝐴, 𝐴′, (𝐴 + 𝐵)′, (𝐴 ∗ 𝐵)′, (𝐴 ^ 𝐵), (𝐴 ^ 𝐵)′, 𝐴 ∗ (𝐵 + 𝐶), 𝐴 + (𝐵 ∗ 𝐶), (𝐴 ∗ 𝐵) ∗ 𝐶, and

(𝐴 + 𝐵) + 𝐶. In Table 3, the (𝐴 + 𝐵)′ expression in rule #20 represents a 2-input NOR gate,

whereas (𝐴 ∗ 𝐵)′ in rule #21 represents a 2-input NAND gate. In rules #22 and #23, (𝐴 ^ 𝐵)

represents a 2-input XOR gate and (𝐴 ^ 𝐵)′ represents a 2-input NXOR gate. In rules #17-19, 𝐴′

represents the presence of a NOT gate that receives a signal from some part of the circuit netlist.

17

lgorithm 1: Random Boolean Logic Expansion (RBLE)

input : C,P,n
output :C', where Vx: C(x) = C'(x)

1 BE E-- convert(C); done E-- f a/se;
2 fixed E-- O; attempts E-- O; numexp E-- O;

3 wh ile not done do
4 expansions E-- profile(BE);

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

expansion E-- select(expansions);
BE < apply(BE, expansion);

C E- realize(BE);
if P == FIXED then

fixed E-- fixed + 1;

if fixed = n then
I C' E- C; done E-- true ;

end
else

if (P == STRICTSIZE and size(C) = n) then
I C' E- C; done E-- true ;

else if (P == TARGETSIZE and size(C) >= n) then
I C' E- C; done E-- true ;

el se
numexp E-- numexp + l ;

if numexp > MAXEXPANSIONS then
BE E-- convert(C); z E-- O;

attempts E-- attempts + 1;

if attempts > MAXATTEMPTS then
I C' E- null; done E-- true;

end
end

end
end

29 end
30 return C';

Thus, each original expression corresponds to a basic digital logic gate or input to a logic gate

(some variable 𝐴) in the circuit netlist. For purposes of expansion, 0 and 1 represent constant 0 or

1 signals, which are kept in Boolean expression form until the circuit structure is realized in its

final form. At that point, any 0 and 1 in the Boolean expression are replaced with a circuit netlist

structure that generates the constant signal. So, for example, any 0 signal can be replaced with

(𝐴 ^ 𝐴) or (𝐴 ∗ 𝐴′), where 𝐴 is any arbitrary variable that is already present in the expression. For

multiple output circuits, each output is represented as its own Boolean logic expression.

18

Algorithm 1 provides a summary of the RBLE approach. Given the profile of a Boolean

expression 𝐵𝐸 and the set of its potential expansions, one is chosen pseudo-randomly and then

applied to the expression. The new expression then becomes the input to the next round of

expansions. Application of Boolean logic laws guarantees semantic equivalence of all intermediate

Boolean expression forms. Each expansion thus produces a new Boolean expression, semantically

equivalent to 𝐵𝐸, based on the number of expansions that are applied, until some constraint is

reached. We express constraints in the form of an input to the RBLE algorithm that we term

expansion policy (𝑃) with three possible values: 𝑆𝑇𝑅𝐼𝐶𝑇𝑆𝐼𝑍𝐸, 𝑇𝐴𝑅𝐺𝐸𝑇𝑆𝐼𝑍𝐸, and 𝐹𝐼𝑋𝐸𝐷. The

expansion policy value (𝑛) is provided as input to the RBLE algorithm alongside the policy choice

𝑃. The condition for completion can be based on either the number of expansions performed or

the size of the resulting polymorphic circuit.

Given a candidate circuit (𝐶) with Boolean expression represented as (𝐵𝐸), policy choice

(𝑃), policy value (𝑛), a number of maximum expansions (𝑀𝐴𝑋𝐸𝑋𝑃𝐴𝑁𝑆𝐼𝑂𝑁𝑆), a number of

maximum attempts (𝑀𝐴𝑋𝐴𝑇𝑇𝐸𝑀𝑃𝑇𝑆), RBLE will produce as output a polymorphic circuit

variant 𝐶′. Expansion policies (𝑃) and policy value (𝑛) are defined as:

(1) 𝐹𝐼𝑋𝐸𝐷: Apply a fixed number of expansions (𝑛) to 𝐵𝐸, which results in an ordered list of

intermediate Boolean expression forms: 𝐵𝐸 → 𝐵𝐸 , 𝐵𝐸1 2, 𝐵𝐸 , . . ., 𝐵𝐸3 𝑛. The final

circuit 𝐶′ is directly realized by gate level realization of the expression 𝐵𝐸𝑛.

(2) 𝑆𝑇𝑅𝐼𝐶𝑇𝑆𝐼𝑍𝐸: Apply expansions to 𝐵𝐸 until the corresponding gate size of 𝐶′ is exactly

equal to strict size 𝑛. This results in a potential sequence of intermediate Boolean

expression forms: 𝐵𝐸 → 𝐵𝐸 , 𝐵𝐸1 2, 𝐵𝐸 , . . ., 𝐵𝐸3 MAXEXPANSIONS, where

𝑀𝐴𝑋𝐸𝑋𝑃𝐴𝑁𝑆𝐼𝑂𝑁𝑆 is some limit of expansions. Each intermediate Boolean expression

19

form 𝐵𝐸𝑥 is converted to its circuit netlist form 𝐶′ and size of the circuit is computed. If

the size(𝐶′) = 𝑛, the algorithm terminates and returns 𝐶′. If the limit 𝑀𝐴𝑋𝐸𝑋𝑃𝐴𝑁𝑆𝐼𝑂𝑁𝑆

is reached, the process is repeated with a fresh set of Boolean expansions starting with 𝐵𝐸.

The algorithm will terminate when a maximum number of attempts (𝑀𝐴𝑋𝐴𝑇𝑇𝐸𝑀𝑃𝑇𝑆)

have been reached, which may result in failure to produce a polymorphic circuit 𝐶′ with

gatesize(𝐶′) = 𝑛.

(3) 𝑇𝐴𝑅𝐺𝐸𝑇𝑆𝐼𝑍𝐸: Apply expansions to 𝐵𝐸 until the corresponding gate size of 𝐶′ is greater

than or equal to target size 𝑛. This results in a potential sequence of intermediate Boolean

expression forms: 𝐵𝐸 → 𝐵𝐸 , 𝐵𝐸1 2, 𝐵𝐸3 MAXEXPANSIONS, . . ., 𝐵𝐸 , where

𝑀𝐴𝑋𝐸𝑋𝑃𝐴𝑁𝑆𝐼𝑂𝑁𝑆 is some limit of expansions. Each intermediate Boolean expression

form 𝐵𝐸𝑥 is converted to its circuit netlist form 𝐶′ and size of the circuit is computed. If

the size(𝐶′) ≥ 𝑛, the algorithm terminates and returns 𝐶′. If the limit 𝑀𝐴𝑋𝐸𝑋𝑃𝐴𝑁𝑆𝐼𝑂𝑁𝑆

is reached, the process is repeated with a fresh set of Boolean expansions starting with 𝐵𝐸.

The algorithm will terminate when a maximum number of attempts (𝑀𝐴𝑋𝐴𝑇𝑇𝐸𝑀𝑃𝑇𝑆)

have been reached, which may result in failure to produce a polymorphic circuit 𝐶′ with

size(𝐶′) ≥ 𝑛.

Of the three policies, 𝑆𝑇𝑅𝐼𝐶𝑇𝑆𝐼𝑍𝐸 and 𝑇𝐴𝑅𝐺𝐸𝑇𝑆𝐼𝑍𝐸 are nondeterministic in the sense

that they could fail to generate a polymorphic circuit variant with an exact or target gate size within

pre-determined bounds, and thus they also have non-deterministic runtimes. However, the 𝐹𝐼𝑋𝐸𝐷

expansion policy is deterministic and will always produce a variant in some predictable, linear

amount of time.

20

l = (i0 * il)
1: ((i0 + i0) * i l)
2: (((i0 + i0) + 0) * i l)
3: (((i0 + i0) + (il * 0)) * il)
4: (((i0 + i0) + (il * (i0 • i0))) * il)
5: (((i0 + i0) + (il * (i0 • i0))) * (il * il))
ol = (((i0 + i0) + (i l * (i0 • i0))) * (i l * i l))

size(C)=l
rule 8, size(C')=2
rule 11, size(C')=6
rule 1, size(C')=7
rule 3, size(C')=5
rule 7, size(C')=6
size(C')=6

In discussing Algorithm 1, an overview of the functions involved in computation is

necessary to understand the execution of the program. The 𝑝𝑟𝑜𝑓𝑖𝑙𝑒 function returns the set of all

potential subexpressions within a Boolean expression which can have a Boolean expansion applied

to it. The function 𝑐𝑜𝑛𝑣𝑒𝑟𝑡 takes a circuit netlist and returns a Boolean expression consistent with

the structure of the circuit. The function 𝑟𝑒𝑎𝑙𝑖𝑧𝑒 takes a Boolean expression and returns a circuit

netlist, where all constant 0 and 1 signals are converted into logic gate constructions. The function

𝑎𝑝𝑝𝑙𝑦 takes as input a Boolean expression and a selected part of the expression that corresponds

to a legal Boolean expansion rule then applies the expansion and returns a new Boolean expression.

The function 𝑠𝑒𝑙𝑒𝑐𝑡 takes as input a set of legal Boolean expansions and returns a pseudo-random

choice from the set.

Table 4 provides an example of applying a 𝐹𝐼𝑋𝐸𝐷 policy on a Boolean expression where

five expansions are applied to the expression 𝑜1 = (𝑖0 ∗ 𝑖1). Figure 3 illustrates circuit realization

of the corresponding Boolean expressions created through expansion in Table 4.

Table 4: Example Boolean Expansion Sequence

21

1 2

Expansion: 1

6

2

' ' ' l ____ _

7

3

' ' ' ' ' ' ' ' ' ' ' ' ' ' '
' ' ' ' ' ' ' '' '' ' '

C'

: '-------w -·

5 6

4 5

Figure 3: Example Expansion Circuit Realization

EXPERIMENTAL METHODS

To provide an initial evaluation of the efficacy of RBLE in comparison to pre-generated

static libraries, we ran two types of experiments that generated distributions of replacement circuits

using both approaches. The goal of the experiments was to understand the limits of RBLE in

approaching a uniform distribution similar to what is possible with fully enumerating all possible

circuit structures and storing them statically, thus being able to choose a replacement randomly

from the set of all possible functionally equivalent polymorphic variants (referred to as CIRCLIB

[11]).

We also wanted to evaluate the new possibility of creating polymorphic variants with sizes

well beyond the current size limits of the static chosen-circuit approach. We exercised the

algorithm on simple circuits to initially assess the characteristics of RBLE distributions. For this

study, we only considered replacements for the six basic logic gates in the δ2−1−1 circuit family,

which are seen in Figure 2.

22

2
2-1-3 Replacement
Up to 10 Expansions

Target Size 5

62-1-s

62-1-4

62-1-1

Experiment 1
2-1-1 Replacement

,
, ,' ,, ,, ,, ,,

,'/ STRICT SIZE
,' : Expansion

Experiment

Figure 4 provides a visual reference to our experimental framework, which we expand

next. To generate circuit variants, we implemented RBLE in a Java-based code suite and utilized

the open-source version of CIRCLIB created by McDonald et al. to generate static circuit libraries

[10, 11]. All experiments were performed on an HP ZBook 17 G2 laptop with an Intel i7-4710MQ

2.50 GhZ CPU and 32GB installed RAM.

Figure 4: Empirical Evaluation Framework

EXPERIMENT 1: STRICT SIZE REPLACEMENT

We first evaluate RBLE under a 𝑆𝑇𝑅𝐼𝐶𝑇𝑆𝐼𝑍𝐸 expansion policy, as this is the closest

comparison to a chosen-circuit approach with CIRCLIB. For each of the six basic gate types in the

δ2−1−1 family, we performed two sets of generations that created a total of 188,000 circuits:

(1) 1,000 variants from CIRCLIB and 1,000 variants from RBLE, totaling 6,000 circuits for

each gate type and method, of target size 2, 3, 4, and 5. The only exception was that the

δ2−1−2 family has no valid semantically equivalent XOR or NXOR circuits that have gate

size 2, so only 4,000 circuits were created for this target size family. In total, 22,0000

23

circuits were generated for analysis. In results notation, we refer to this as the 1K

distribution set.

(2) 10,000 variants from CIRCLIB and 10,000 variants from RBLE, totaling 60,000 circuits

for each gate type and method, of target size 2, 3, and 4. The only exception was that the

δ2−1−2 family has no valid semantically equivalent XOR or NXOR circuits that have gate

size 2, so only 40,000 circuits were created for this target size family. In total, 160,0000

circuits were generated for analysis. In results notation, we refer to this as the 10K

distribution set.

EXPERIMENT 2: FIXED EXPANSION/TARGETED REPLACEMENT

We evaluate RBLE under a 𝐹𝐼𝑋𝐸𝐷 expansion policy, using six pairs of circuits chosen

from the δ2−1−3 family, where each pair of δ2−1−3 circuits (C1, C2) are semantically equivalent

to one of the basic gate circuits in the δ2−1−1 family (AND, OR, XOR, NAND, NOR, NXOR).

For each circuit in each circuit pair (C1, C2), we create 100,000 variants chosen from CIRCLIB

libraries with a target gate size of 5. For RBLE, we create 100,000 variants of each circuit with

number of expansions n ranging from 𝑛 = 1 . . 10.

For CIRCLIB, each circuit in the pair (C1, C2) resulted in 100,000 variants of size 5, for a

total of 200,000 per basic gate type, and 1,200,000 total circuits. For RBLE, each circuit in the

pair (C1, C2) resulted in 1,000,000 variants given 10 possible expansion values, for a total of

2,000,000 per basic gate type, and 12,000,000 circuits total. As a result, a total of 13,200,000

circuits were generated for this experiment.

24

Polymorphic Circuits
300

250

"' 200 ...
·s
u ...
u 150 -0
:ii:

100

50

0 '---,r-' '---,r-'
2-1-1 AND 2-1-1 NAND

'---,r-' ~
2-1-1 OR 2-1-1 NOR

■ Chosen ■ Expanded

ANALYSIS

For analysis purposes, we refer to CIRCLIB variants as chosen replacement and RBLE

variants as expanded replacements. We stored the results of the circuit distributions for each

experiment type in BENCH netlist circuit files. Analysis was then performed on the BENCH files

corresponding to each experiment type. We created a form of structural hash to uniquely identify

the structure of each circuit netlist so that circuits with the same structure could be easily identified

and grouped together. As part of the study, we learned that static CIRCLIB libraries contain

structurally identical circuits that are semantically equivalent, even though CIRCLIB creates

different netlist circuits for them in the static libraries. We explain the ramifications of this more

in the Results section.

For Experiment 2, we also recorded sizes of the various circuits that were created based on

different numbers of expansions being applied to the original circuit. We made special note of

circuits that matched the target gate size (5) which the CIRCLIB algorithm used. As a result of

using variable number of expansions with RBLE, an original circuit with 100,000 variants will

only have some percentage that match target size 5, which we explore further in the Results section.

Figure 5: Number Circuits for δ2−1−2 Strict Replacement-1K

25

Circuits # Circuits # Circuits
40

80 AND 40 OR XOR
30

30 60

20 20

l~= L a~•J

40

....... 1
10 JL J.J)JJJ.ll ll.l)J.J).w J1

10 20

0 0 0

Circuits # Circuits # Circuits
80 50 60

60 40

NANO 30 NOR 40 NXOR
40

20
20

20

llll1Jl 11111111 , I 10 I J 11]JJ JIJ I 11 IJJ)J I) 1111) 111 .,. , .• o llhlJll111111u. 0 0

■ Chosen ■ Expanded

RESULTS & DISCUSSION

We report first the results of Experiment 1 distributions. Figure 5 shows the results of 1K

distributions of the four circuit types which are possible for (gate size = 2) replacements of AND,

OR, XOR, and NAND gates that are part of the (gate size = 1) δ2−1−1 family. Given standard

circuit creation options for CIRCLIB, each original gate only has 4 possible variants in the

δ2−1−2 family. The replacement circuits as seen in Figure 5 show that both RBLE and CIRCLIB

create roughly equal distributions for all 4 circuits, for all 4 gate types.

Figure 6: Number Circuits for δ2−1−3 Strict Replacement-1K

Figure 6 shows the results from Experiment 1 where 1,000 variants of size 3 were created

for the original AND, OR, XOR, NAND, NOR, NXOR gates in δ2−1−1. The chart shows a

combination of number of circuits for both methods, where circuits with the same structure are

aligned. CIRCLIB variants follow a fairly uniform distribution for all 6 gate types, whereas RBLE

replacements only represent a small number of the same circuits from the CIRCLIB potential set,

with non-uniform distribution ranging from 3-10 circuits of size 3. The RBLE difference is due in

26

Circuits
5

4

3

2

1

0

AND

Circuits

8

6

4

2

0

NANO

Circuits
6

4

2

n

Circuits
6

4

2

I o

NOR

Circuits
10

8

6

4

2

Circuits
8

6

4 hilt-,~

■ Chosen ■ Expanded

XOR

NXOR

part to the fact that only a small subset out of the 28 possible expansions may result in size 3

circuits.

Figure 7: Number Circuits for δ2−1−4 Strict Replacement-1K

Figure 7 shows the results from Experiment 1 where 1,000 variants of size 4 were created

for the original AND, OR, XOR, NAND, NOR, NXOR gates in δ2−1−1. The chart shows a

combination of the number of circuits for both methods, where circuits with the same structure are

aligned. CIRCLIB variants follow a fairly uniform distribution for all 6 gate types with 1-2 circuits

being chosen from 70-80 possible variants. RBLE creates circuits that overlap between 5-10 of the

same circuits that CIRCLIB produces (roughly 8% of the CIRCLIB sets). RBLE replacements of

size 4 have a roughly uniform distribution ranging from 3-10 circuits from 50-60 possible variants.

This size distribution reveals how RBLE construction can reach circuits that are not part of the

CIRCLIB family because of creation rules: in particular, RBLE allows degenerate circuit

conditions such as 2-input gates that have the same source. Most of the RBLE circuits are thus

disjoint from the CIRCLIB variants.

27

Circuits
8

6

4

AND

Circuits
5

4

3

2

1

0

NAND

Circuits

20

15

10

Circuits
8

OR

NOR

Circuits

15

Circuits
8

XOR

NXOR

~ ICIIHDmllWillllD~lll

■ Chosen ■ Expanded

Figure 8: Number Circuits for δ2−1−5 Strict Replacement-1K

Figure 8 shows the results from Experiment 1 where 1,000 variants of size 5 were created

for the original AND, OR, XOR, NAND, NOR, NXOR gates in δ2−1−1. The chart shows a

combination of number of circuits for both methods, where circuits with the same structure are

aligned. CIRCLIB variants again follow a fairly uniform distribution for all 6 gate types, whereas

RBLE replacements have a similar distribution as with size 4 replacements. Given that only 1,000

variants were created for RBLE, the amount of variability is clearly less than what is possible with

CIRCLIB variants, and certain circuit variants are created under RBLE with above average

frequency. For size 5 replacements, the distributions show no overlap at all between the variants

chosen by CIRCLIB and those expanded by RBLE.

28

■ Ex-NXOR
7000 ■ Ex-NOR

6000 ■ Ex-NANO

■ Ex-XOR
5000 ■ Ex-OR

4000 ■ Ex-AND

Ch-NXOR

3000 ■ Ch-NOR

2000
■ Ch-NANO

■ Ch-XOR

1000 ■ Ch-OR

0
■ Ch-AND

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45

Figure 9: Number Circuits for δ2−1−3 Strict Replacement-10K

Figure 9 shows the results from Experiment 1 where 10,000 variants of size 3 were created

for the original AND, OR, XOR, NAND, NOR, NXOR gates in δ2−1−1. The chart summarizes

the number of circuits (each bar representing an identical matching circuit between the RBLE and

CIRCLIB methods) for all gate types, ordered by the highest frequency that the variant is chosen

by CIRCLIB. In a larger set of circuit replacements (10,000 attempts vs 1,000 attempts), it can be

seen that CIRCLIB circuits do not follow a purely equal distribution. This is due to that fact that

there are overlaps of structurally equivalent circuits in CIRCLIB, so that certain circuits have a

higher probability of being chosen. We also observe that for size 3 replacements, allowing larger

distributions (in this case 10,000 variants) shows that there are more overlaps with CIRCLIB

variants that are chosen, depending on the gate type.

29

1800

1600

1400

1200

1000

800

600

400

200

0
,... N,., .., .n\Or--000'\0..-t Nffl'st U,\O,-..COC"IO ..-tN M..,W"I\Or-,.QOa,O ... Nrt,..,,n\O,-..CO O'l

............................... NNNNNNNNNNM ,., ..,lf"l,.,ffl,.,..,lf'l ffl

■ Ex-NXOR

■ Ex-NOR

■ Ex-NANO

■ Ex-XOR

■ Ex-OR

■ Ex-AND

Ch-NXOR

Ch-NOR

■ Ch-NANO

■ Ch-XOR

■ Ch-OR

■ Ch-AND

Figure 10: Cumulative Circuits δ2−1−4 Strict Replacement-10K

Figure 10 shows the results from Experiment 1 where 10,000 variants of size 4 were created

for the original AND, OR, XOR, NAND, NOR, NXOR gates in δ2−1−1. The chart summarizes

the number of circuits (each bar representing an identical matching circuit between the RBLE and

CIRCLIB methods) for all gate types, ordered by the highest frequency that the variant is chosen

by CIRCLIB. RBLE replacements do not follow the same distribution as CIRCLIB, but overall,

both approaches select circuits from the same range of unique circuits for each gate type.

30

200 500

120 AND OR
400

XOR
100 150

80 300

60
100

200
40 so
20 100

0 0 0

250 200 500

200 NANO
400

NXOR
150

150 300
100

100 200

so so
100

0 0 0

■ Chosen ■ Expanded

Figure 11: Number Circuits δ2−1−4 Strict Replacement - 10K

Figure 11 provides a more precise view of size 4 replacements created by the two methods

for the 10K distribution set following strict expansion policy. In this view, the spiky nature of the

RBLE replacements that are generated are compared against the same identical circuit that is

chosen by the CIRCLIB algorithm. The chart is ordered based on highest frequency of CIRCLIB

variants that were generated. As a strength, around 60% of unique CIRCLIB circuits are also

created by expansion, but with RBLE producing a higher frequency of those variants in

comparison. Strict size expansion policy, being non-deterministic, may result in failure to produce

a variant: for these experiments, there were no maximum attempt failures.

EXPERIMENT 1 SUMMARY

To summarize analysis for Experiment 1, we observed that RBLE distributions are not

completely uniform in comparison to CIRCLIB variants. Given replacements in the δ2−1−2

family, they are near identical. Beyond that, distributions vary considerably based on the number

of variants generated (1K vs 10K). This is partially because the set of potential semantically

31

.300% 0.300% ~ 0.300% ~

2-1-5 AND
0.250% I

2-1-5 OR 2-1-5 XOR
0.250% 0 .250%

0.200% 0.200% 0 .200% -
- CIRCLIB - CIRCLIB - CIRCLIB

Chosen Chosen Chosen
0.150% 0.150% 0 .150%

0.100% 0.100% 0.100%

0.050% 0.050% 0.050%

0.000% 0.000% 0 .000%

5069 Unique Circuits 5069 Unique Circuits 3901 Unique Circuits

0.300% I
0.300% 0.300%

1 2-1-5 NAND 2-1-5 NOR 2-1-5 NXOR
0.250% 0.250% 0.250%

0.200% 0.200% 0.200%
- CIRCLIB - CIRCLIB - CIRCLIB

Chosen Chosen Chosen
0.150% 0.150% 0.150%

0.100% 0.100% 0.100%

0.050% 0.050% 0.050%

0.000% 0.000% 0.000%

4140 Unique Circuits 4139 Unique Circuits 3901 Unique Circuits

equivalent replacements is above 1,000 for each of the original δ2−1−1 circuits for sizes 4 and 5.

RBLE does generate a reasonable subset of potential CIRCLIB variants under strict expansion

policy for all gate types, for target gate sizes 2 through 5. The spiky nature of the distributions and

lack of ability to produce near matching distributions do point to weaknesses in the RBLE

algorithm in regard to uniformity. We believe this is because only expansions were included in the

RBLE algorithm (see Table 2). In order to reach a larger potential set of circuits, we believe that

both reductions (see Table 1) and expansions should be used, as some circuits are not possible to

create without both set of Boolean laws.

Figure 12: Distributions for δ2−1−5 Chosen Replacement

32

5%

30%

25%

20%

15%

10%

5%

0%

40%

35%

30%

25%

20%

15%

10%

5%

0%

2-1-5 AND
60%

50%

40%

83 Unique Circuits

2-1-5 NANO
50%

40%

30%

20%

ll1llil1l,1111l1l,llll,11,.,,,,i!,l,,1., .. , .. , .. :
86 Unique Circuits

2-1-5 OR

68 Unique Circuits

2-1-5 NOR

72 Unique Circuits

50%

40%

30%

20%

10%

0%

35%

30%

25%

20%

15%

Expansions ■ Nl ■ N2 ■ N3 ■ N4 ■ NS

2-1-5 XOR

107 Unique Circuits

2-1-5 NXOR

93 Unique Circuits

EXPERIMENT 2 SUMMARY

We report next the results of Experiment 2 distributions. We look first at the comparable

set of circuits for all expansion possibilities that are created by RBLE and chosen with CIRCLIB

that matched our target gate size of 5. Figure 12 and Figure 13 show the distribution results, per

gate type, for replacements in the δ2−1−5 family. We can observe in Figure 12 the distribution of

CIRCLIB replacements, where the number of actual CIRCLIB circuits of a given structure are

compared against the number that are generated by the chooser algorithm. This shows that certain

CIRCLIB circuits are over-represented, and thus the distribution among 200,000 variants of each

gate type is not completely uniform.

Figure 13: Distributions for δ2−1−5 Expanded Replacement

Figure 13 shows a summary of expanded circuits. We do not show expansions of 7 through

10 because they resulted in only a few or 0 circuits being produced that have gate size 5. This

shows the closest comparison to CIRCLIB selection where the size is exact. The two figures also

33

2-1-5 Total Circuits

50000

40000

30000

20000

10000

0

Nl N2 N3 N4 NS N6 N7
Number of Expansions

■ AND-COUNT

■ NAND-COUNT

■ OR-COUNT

■ NOR-COUNT

■ XOR-COUNT

■ NXOR-COUNT

2-1-5 Unique Circuits

120

100

80

60

40

20

0

Nl N2 N3 N4 NS N6 N7
Number of Expansions

■ AND-UNIQUE

■ NAND-UNIQUE

■ OR-UNIQUE

■ NOR-UNIQUE

■ XOR-UNIQUE

■ NXOR-UNIQUE

show the stark difference between potential unique circuits which can be reached by either

approach. For each of the 200,000 variants chosen through CIRCLIB, all of the potential

semantically equivalent versions for each gate type were reached: this includes 5069 AND

variants, 4140 NAND variants, 5069 OR variants, 4139 NOR variants, 3901 XOR variants, and

3901 NXOR variants. Figure 14 provides a summary of the unique variants reached through

expansion, where the gate size was 5. For example, with 3 expansions, RBLE produced 78 AND

variants, 82 NAND variants, 64 OR variants, 71 NOR variants, 95 XOR variants, and 84 NXOR

variants. The smallest number of unique variants was produced with 1 and 7 expansions.

Figure 14: δ2−1−5 Expanded Replacement Summary

One of the primary benefits of RBLE is its ability to create variants of much larger size

than what is feasible with the static CIRCLIB approach. Figure 15 illustrates the total distribution

of circuits produced by RBLE for all gate types as part of Experiment 2, regardless of size. With

1 expansion, circuits between size 3 and 8 can be reached, whereas with 10 expansions, circuits

between size 6 and 37 can be reached. The chart summarizes the distribution of the 1,200,000

circuits produced for 6 pairs of δ2−1−3 circuits with each pair being semantically equivalent to the

original six basic gate types. This figure only shows unique circuits that are produced, ranging up

34

Unique 2-1-X Expanded Circuits for 2-1-3 Replacement
180000

160000

140000

120000

100000

80000

60000

40000

20000

0

1111

Chosen -
Limit

I '\ ,-1 \
) /) I \

I I

,1 ~ \I

I I A
I

II n\ I ~ j
h r) I I \

1 1 I I)
X
~ I

I

~ I I
~ i · ~ \ ~

l...,d ~ ~ .

......

x V'
V \ t>
\ / \ t \

y ' I \
\

'I \ \
I\ \
\ 1\i \
, I 1\

~ J. ~ - -

..... ,
\

' \
\

\ \ \
' \ \

\
\

\

\ \
\~\ ~ -

\
\

\

\
\

[\
......

\
~

\
~ "'-

1,200,000 Circuits
200,000AND

200,000 NANO
200,000 OR

200,000 NOR
200,000 XOR

200,000 NXOR

3 4 5 6 7 8 9 10111213141515111819202122232425262728293031323334353637 Circuit Size

-+-1 ---2 3,....4 - 5 --6 - 7 - 8 9 -+-10 # Expansions

to 153,303 for 5 expansions. Of the 12,000,000 circuits generated by RBLE, 8,253,348 circuits

were unique, which speaks more to the uniform possibilities of RBLE when replacement size is

not a limiting factor. The ability to reach larger circuit replacement possibilities opens up new

potential for iterative sub-circuit selection and replacement as a result. A static approach, for

example, would be limited by conventional disk file storage system constraints to libraries for

δ2−1−X no greater than size 7 [11].

Figure 15: Unique Expanded Replacements (200,000 per type)

35

CONCLUSION

We introduced a novel method for generating polymorphic circuit variants based on inverse

application of Boolean logic laws: Random Boolean Logic Expansion (RBLE). We generated and

studied 13,360,000 circuit variants as semantically equivalent replacements for simple δ2−1−1 and

δ2−1−3 circuits. Our initial empirical study shows that RBLE exhibited instances of uniformity

when a specific sized circuit is required (strict size expansion policy) but can only reach a small

percentage of comparable circuits from a static library selection when fixed expansions are used.

However, when size is not a factor, RBLE can generate many unique variants uniformly when

various expansion sizes are used.

Based on these initial results, future work should focus on addressing the inability of RBLE

to reach certain circuits in a possible population of alternatives: we expect that the addition of

reduction laws alongside expansion laws will address this problem. If we considered the presence

of constant 0 and 1 signals as valid, this would also provide greater flexibility to reach circuits of

certain sizes, as the signals are typically considered to be provided outside the circuit.

36

REFERENCES

[1] J. T. McDonald, Y. C. Kim, and D. Koranek, “Deterministic Circuit Variation for Anti-

Tamper Applications,” Proceedings of the Cyber Security and Information Intelligence

Research Workshop (CSIIRW-2011), Oak Ridge, TN, Oct. 12-14, 2011.

[2] M. C. Hansen, H. Yalcin, and J. P. Hayes, "Unveiling the ISCAS-85 Benchmarks: A Case

Study in Reverse Engineering," IEEE Design & Test of Computers, vol. 16, no. 3, pp. 72-80,

July-Sept. 1999, doi: 10.1109/54.785838.

[3] J. T. McDonald, Y. C. Kim, D. Koranek, and J. D. Parham, “Evaluating Component Hiding
Techniques in Circuit Topologies,” International Conference on Communications,

Communication and Information Systems Security Symposium (ICC-CISS-2012), Ottawa,

Canada, June 10-15, 2012.

[4] J. T. McDonald, Y. C. Kim, and M. R. Grimaila, “Protecting Reprogrammable Hardware with

Polymorphic Circuit Variation,” Proceedings of the 2nd Cyberspace Research Workshop,

Shreveport, LA, USA, June 2009.

[5] H. R. Anderson, “An Introduction to Binary Decision Diagrams,” Efficient Algorithms and

Programs, Lecture, The IT University of Copenhagen, Copenhagen, Denmark, 1999.

[6] J. T. McDonald and Y. C. Kim, “Examining Tradeoffs for Hardware-Based Intellectual

Property Protection,” Proceedings of the 7th International Conference on Information

Warfare (ICIW-2012), University of Washington, Seattle, USA, March 22-23, 2012.

[7] R. E. Bryant, "Graph-Based Algorithms for Boolean Function Manipulation," IEEE

Transactions on Computers, vol. C-35, no. 8, pp. 677-691, Aug. 1986, doi:

10.1109/TC.1986.1676819.

[8] K. Nohl, D. Evans, S. Starbug, and H. Plötz. 2008. “Reverse-Engineering a Cryptographic

RFID Tag.” Proceedings of the 17th Conference on Security Symposium (SS’08). USENIX

Association, Berkeley, CA, USA, 185–193.

http://dl.acm.org/citation.cfm?id=1496711.1496724

[9] M. R. Grimaila, Y. C. Kim, J. D. Parham, and J. T. McDonald. 2010. “A Java based

Component Identification Tool for Measuring the Strength of Circuit Protections.”

Proceedings of the 6th Cyber Security and Information Intelligence Research Workshop,

CSIIRW 2010, Oak Ridge, TN, USA, April 21-23, 2010. 1.

https://doi.org/10.1145/1852666.1852668

[10] J. McDonald, Y. Kim, D. Koranek, and J. Parham. 2012. "Evaluating component hiding

techniques in circuit topologies," IEEE International Conference on Communications, pp.

1138–1143. https://doi.org/10.1109/ICC.2012.6364542

37

https://doi.org/10.1109/ICC.2012.6364542
https://doi.org/10.1145/1852666.1852668
http://dl.acm.org/citation.cfm?id=1496711.1496724

[11] J. McDonald, E. Trias, Y. Kim, and M. Grimaila. 2010. “Using logic-based reduction for

adversarial component recovery.” Proceedings of the ACM Symposium on Applied

Computing, 1993–2000. https://doi.org/10.1145/1774088.1774508

[12] D. Evans, V. Kolesnikov, and M. Rosulek. 2018. “A Pragmatic Introduction to Secure Multi-

Party Computation.” Foundations and TrendsÂő in Privacy and Security 2, 2-3 (2018), 70–
246. https://doi.org/10.1561/3300000019

[13] A. C. Yao. 1986. “How to Generate and Exchange Secrets.” Proceedings of the 27th Annual

Symposium on Foundations of Computer Science (SFCS ’86). IEEE Computer Society,

Washington, DC, USA, 162–167. https://doi.org/10.1109/SFCS.1986.25

[14] D. Malkhi, N. Nisan, B. Pinkas, and Y. Sella. 2004. “Fairplay—a Secure Two-party

Computation System.” Proceedings of the 13th Conference on USENIX Security Symposium

- Volume 13 (SSYM’04). USENIX Association, Berkeley, CA, USA, 20–20.

http://dl.acm.org/citation.cfm?id=1251375.1251395

[15] S. Zahur and D. Evans. 2015. “Obliv-C: A Language for Extensible Data- Oblivious

Computation.” Cryptology ePrint Archive, Report 2015/1153.

https://eprint.iacr.org/2015/1153.

[16] S. Zahur, M. Rosulek, and D. Evans. 2015. “Two Halves Make a Whole.” Advances in

Cryptology - EUROCRYPT 2015, Elisabeth Oswald and Marc Fischlin (Eds.). Springer Berlin

Heidelberg, Berlin, Heidelberg, 220–250.

[17] D. Demmler, T. Schneider, and M. Zohner. 2015. ABY - A Framework for Efficient Mixed-

Protocol Secure Two-Party Computation. In NDSS.

[18] X. Wang, S. Ranellucci, and J. Katz. 2017. “Authenticated Garbling and Efficient Maliciously

Secure Two-Party Computation.” Proceedings of the 2017 ACM SIGSAC Conference on

Computer and Communications Security (CCS ’17). ACM, New York, NY, USA, 21–37.

https://doi.org/10.1145/3133956.3134053

[19] Y. Zhang, A. Steele, and M. Blanton. 2013. “PICCO: A General-purpose Compiler for Private

Distributed Computation.” Proceedings of the 2013 ACM SIGSAC Conference on Computer

& Communications Security (CCS ’13). ACM, New York, NY, USA, 813–826.

https://doi.org/10.1145/2508859.2516752

[20] N. Wirth. 1998. “Hardware compilation: translating programs into circuits.” Computer 31, 6

(June 1998), 25–31. https://doi.org/10.1109/2.683004

[21] D. C. Black, J. Donovan, B. Bunton, and A. Keist. 2009. SystemC: From the Ground Up,

Second Edition (2nd ed.). Springer Publishing Company, Incorporated.

38

https://doi.org/10.1109/2.683004
https://doi.org/10.1145/2508859.2516752
https://doi.org/10.1145/3133956.3134053
https://eprint.iacr.org/2015/1153
http://dl.acm.org/citation.cfm?id=1251375.1251395
https://doi.org/10.1109/SFCS.1986.25
https://doi.org/10.1561/3300000019
https://doi.org/10.1145/1774088.1774508

[22] S. S. Abrar, M. Jenihhin, and J. Raik, "Extensible open-source framework for translating RTL

VHDL IP cores to SystemC," 2013 IEEE 16th International Symposium on Design and

Diagnostics of Electronic Circuits Systems (DDECS) (2013), pp. 112–115.

[23] R. Manikyam, J. T. McDonald, W. R. Mahoney, T. R. Andel, and S. H. Russ. 2016.

“Comparing the Effectiveness of Commercial Obfuscators Against MATE Attacks.”

Proceedings of the 6th Workshop on Software Security, Protection, and Reverse Engineering

(SSPREW ’16). ACM, New York, NY, USA, Article 8, 11 pages.

https://doi.org/10.1145/3015135.3015143

[24] P. Svensson, “Chapter 4: Boolean Algebras,” Boolean Algebras, Växjö, Sweden, Dec. 2009,

pp. 21–31.

[25] Y. Crama and P. Hammer. 2011. Boolean Functions: Theory, Algorithms, and Applications.

https://doi.org/10.1017/CBO9780511852008

[26] G. D. Micheli. 1994. Synthesis and Optimization of Digital Circuits (1st ed.). McGraw-Hill

Higher Education.

[27] M. C. Hansen, H. Yalcin, and J. P. Hayes. 1999. “Unveiling the ISCAS-85 Benchmarks: A

Case Study in Reverse Engineering.” IEEE Des. Test 16, 3 (July 1999), 72–80.

https://doi.org/10.1109/54.785838

[28] C. Collberg. 2018. “Code Obfuscation: Why is This Still a Thing?” In Proceedings of the

Eighth ACM Conference on Data and Application Security and Privacy (CODASPY’18).

ACM, New York, NY, USA, 173–174. https://doi.org/10.1145/3176258.3176342

[29] Yasinsac and J. T. McDonald, “Of Unicorns and Random Programs,” Proceedings of the 3rd

IASTED International Conference on Communications and Computer Networks

(IASTED/CCN-2005), Marina del Rey, CA, USA, Oct. 24-26, 2005.

[30] H. R. Andersen and H. Hulgaard, "Boolean Expression Diagrams," Proceedings of Twelfth

Annual IEEE Symposium on Logic in Computer Science (LICS-1997), Warsaw, Poland, 1997,

pp. 88-98. doi: 10.1109/LICS.1997.614938.

[31] R. E. Bryant, "Binary Decision Diagrams and Beyond: Enabling Technologies for Formal

Verification," Proceedings of IEEE International Conference on Computer Aided Design

(ICCAD-1995), San Jose, CA, USA, 1995, pp. 236-243. doi: 10.1109/ICCAD.1995.480018.

[32] J. T. McDonald, E. D. Trias, Y. C. Kim, and M. R. Grimaila, “Using Logic-Based Reduction

for Adversarial Component Recovery,” Proceedings of the 25th ACM Symposium on Applied

Computing, Sierre, Switzerland, March 2010.

[33] H. Kim, “Optimizing Redundant Logic Pathways in Polymorphic Circuits,” Thesis,

Department of Electrical and Computer Engineering, Air Force Institute of Technology, 2009.

39

https://doi.org/10.1145/3176258.3176342
https://doi.org/10.1109/54.785838
https://doi.org/10.1017/CBO9780511852008
https://doi.org/10.1145/3015135.3015143

[34] P. Svensson, “Chapter 5: Boolean Algebras and Electronic Circuits,” Boolean Algebras,

Växjö, Sweden, Dec. 2009, pp. 32–40.

[35] M. Genesereth and E. Kao, “Chapter 2: Propositional Logic,” Introduction to Logic, Morgan

& Claypool Publishers, 2012, pp. 13–22, ISSN.

[36] 2016. BSA Global Software Survey: Seizing Opportunity Through License Compliance.

https://globalstudy.bsa.org/2016/.

[37] Bryant. 1986. “Graph-Based Algorithms for Boolean Function Manipulation.” IEEE Trans.

Comput. C-35, 8 (Aug 1986), 677–691. https://doi.org/10.1109/TC.1986.1676819

[38] C. Collberg, J. Davidson, R. Giacobazzi, Y. X. Gu, A. Herzberg, and F. Wang. 2011. “Toward

Digital Asset Protection.” IEEE Intelligent Systems 26, 6 (Nov. 2011), 8–13.

https://doi.org/10.1109/MIS.2011.106

[39] C. Collberg and J. Nagra. 2009. Surreptitious Software: Obfuscation, Watermarking, and

Tamperproofing for Software Protection (1st ed.). Addison- Wesley Professional.

[40] J. McDonald, Y. Kim, and M. Grimaila. 2009. Protecting Reprogrammable Hardware with

Polymorphic Circuit Variation.

[41] J. McDonald, Y. Kim, and D. Koranek. 2011. "Deterministic circuit variation for anti-tamper

applications," ACM International Conference Proceeding Series (10 2011).

https://doi.org/10.1145/2179298.2179376

[42] J. McDonald and Y. Kim. 2011. "Examining Tradeoffs for Hardware-Based Intellectual

Property Protection."

[43] T. Miracco. 2016. “The Hidden Cost of Software Piracy In The Manufacturing Industry.”
https://www.manufacturing.net/article/2016/02/ hidden-cost-software-piracy-manufacturing-

industry/.

40

https://www.manufacturing.net/article/2016/02
https://doi.org/10.1145/2179298.2179376
https://doi.org/10.1109/MIS.2011.106
https://doi.org/10.1109/TC.1986.1676819
https://globalstudy.bsa.org/2016

	Developing a Deterministic Polymorphic Circuit Generator Using Random Boolean Logic Expansion
	Recommended Citation

	Developing a Deterministic Polymorphic Circuit Generator Using Random Boolean Logic Expansion
	Recommended Citation

	tmp.1644611031.pdf.phxvs

