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ABSTRACT 

 

 As the Age of Information has evolved over the last several decades, the demand for 

technology which stores, analyzes, and utilizes data has increased substantially. For countless 

industries such as the medical, retail, and aircraft industries, such technology is crucial to their 

operation. This project proposes a hybrid machine learning model consisting of Decision Trees 

and Neural Networks which is able to classify data of varying volume and variety effectively and 

efficiently. The model’s structure consists of a decision tree with each node of the tree containing 

a neural network trained to classify a specific category of the output using binary classification. 

To validate the model’s efficacy, it is tested by applying it to a dataset consisting of the Federal 

Aviation Administration’s (FAA’s) Boeing 737 maintenance data, consisting of 137,236 unique 

records, each comprised of 72 variables, in a predictive maintenance setting. The predictive 

maintenance is performed by classifying the Discrepancy variable, a free-text descriptor of the 

maintenance issue faced by the aircraft, by first determining if the issue occurred during scheduled 

maintenance or not, and subsequently breaking down the nature of the incident into more specific 

categories. Results indicate that this hybrid model is able to classify incidents with high accuracy 

and precision. Additionally, the model is able to identify the most significant inputs involved in 

classification allowing for increased model performance. This both demonstrates the model’s 

applicability to real-world scenarios and showcases the benefits of combining Decision Trees and 

Neural Networks in a hybrid structure rather than using them individually.  
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INTRODUCTION 

 

 When it comes to analyzing vast quantities of complex data it is beneficial to implement 

robust algorithms capable of processing, interpreting, and classifying the information effectively 

and efficiently. For many years, the field of Machine Learning (ML), a subfield of Artificial 

Intelligence (AI), has been invaluable in tackling these difficult tasks. However, with current data 

collection practices, the volume and complexity of data has increased tremendously causing ML 

to face new challenges when designing and implementing algorithms able to handle such data. To 

combat these challenges, interest in researching more robust algorithms has increased. For many 

industries ML is crucial and research into improving techniques is necessary [1] – [3]. 

 One of the most common areas of ML is Supervised Learning (SL), the area of ML where 

data with labeled and known characteristics is used to classify or predict the outcome of similar 

data. This area consists of two primary stages: the training stage and the testing stage. During the 

training stage the data, consisting of a set of input and output variables, is fed to the ML algorithm 

for it to learn relationships between the input and output. During the testing stage the algorithm, 

given another dataset of input and output variables, attempts to predict the value of the output 

given the value(s) of the input by applying the learned relationships from the training stage. Many 

of the algorithms belonging to SL, such as Decision Trees (DT), Neural Networks (NN), and 

Support Vector Machines (SVM), are able to effectively perform these tasks on their own, 

however, they each possess their own strengths and limitations. For example: NN are excellent at 

classifying data of large volume although it is nearly impossible to understand the internal 

processes between providing input and receiving output. To alleviate some of the limitations of 

individual algorithms, hybrid models are devised. 
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 Hybrid models consist of multiple ML models working in unison to solve problems. 

Recently, hybrid models have attracted attention due to their ability to augment the strengths and 

diminish the weaknesses of the individual models involved [4] – [7]. One such individual model 

is the Neural Network (NN) which is widely used in numerous fields as it performs very well when 

predicting for new data after being trained on existing data. Another common model is the Decision 

Tree (DT) which excels in classifying features of data. In this thesis, a hybrid model approach is 

proposed consisting of both DT and NN models. The structure of this model consists of a DT 

model where each node of the tree contains a specialized NN. These specialized NN are each 

catered towards different specific characteristics of the data, allowing for more effective 

classification results than if an individual model were used. Each node of the tree represents a 

categorical classification of the data with each child node representing a subcategory of the parent 

node which may further classify the data. This allows for data to be classified at differing levels of 

granularity with finer grain classification occurring near the tree’s leaves. The hybrid approach 

proposed here utilizes a system of binary classification, classification using one of two possible 

categories, which structures the DT as a binary tree. The result is a binary tree where each node 

contains a NN specialized in performing binary classification on a specific category of the data 

where predictions become more detailed and specific as the tree is descended. Therefore, the height 

of the DT structure represents the quantity of details that the model predicts, with greater height 

values indicating greater detail. 

 The proposed hybrid model is applied to the field of predictive maintenance regarding 

aircraft. In predictive maintenance, a data-driven approach is taken to determine where and when 

a machine will fail. Typically, this is performed with ML where maintenance and operational data 

of the machine is analyzed to determine the conditions most likely to indicate mechanical failure. 
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For an aircraft, this data consists of real-time sensor data from many of the aircraft’s components 

and subcomponents. The data used to train the proposed model is sourced from the Federal 

Aviation Administration’s (FAA’s) public Boeing 737 maintenance data which consists of 

137,236 maintenance records each comprised of 72 unique variables. As this data is public and 

generated from usual operation of Boeing 737 aircraft rather than in a controlled environment it 

allows the proposed model to be applied to a real-world scenario using authentic operational data.  
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RELATED WORK 

 

Aircraft Maintenance 
 

 According to operational regulations set forth by the FAA, aircraft are required to undergo 

periodic maintenance after so many hours of operation [8]. To minimize delays and better utilize 

aircraft such maintenance is performed at night, often requiring the aircraft to be stationed at a 

maintenance facility overnight every few days. Improper performance of maintenance may lead to 

the aircraft experiencing an accident [9, 10].  

 As experiencing an accident could cause catastrophic losses, both financial and of life, it is 

necessary for airline companies to have a plan to deal with crises caused by accidents. In such 

rapid response scenarios, an adaptive method for crisis ontology may be used to represent 

knowledge in these situations [11]. Using this method, the ontology of a crisis is extended to tailor 

it to the current crisis. Extending this method to identify appropriate humanitarian response in a 

crisis requires merging ontologies and logic rules to represent humanitarian needs [12]. Using the 

extended method is advantageous in identifying humanitarian needs and prioritizing responses to 

a crisis, allowing for decision makers to focus on implementing solutions without unnecessary 

attention being given to unrelated information. 

 Aircraft delays can be expensive for airliner companies, so proper scheduling is crucial for 

aircraft operation [13]. When forming the flight schedule for many aircraft, a problem arises in 

determining when aircraft should fly and when each aircraft should undergo the different levels of 

maintenance as set forth by the FAA. Therefore, scheduling is a delicate operation where care 

should be taken to minimize the costs of maintenance and aircraft reassignment.  
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 In aircraft maintenance, an organization’s safety management system is necessary for the 

monitoring and mitigation of safety risks. A self-regulatory model was developed to examine these 

safety management systems, focusing on the human and organizational characteristics, across 

different organizations involved in aircraft maintenance [14]. The model proved to be effective in 

analyzing relevant aspects of each organization’s safety management system, however it was 

unable to adequately account for the significance of planning and change in these systems. 

 A study into the importance of situational awareness among aircraft maintenance teams 

was conducted [15]. Findings indicate that, in many environments, the situational awareness of the 

team members was critical for reducing errors and increasing performance. The findings also 

demonstrated that there existed barriers which inhibited situational awareness both between and 

withing aircraft maintenance teams. 

 To reduce the operational costs related to aircraft maintenance, a predictive line 

maintenance optimization was proposed [16]. In formulating the optimization problem, the 

optimization was subjected to multiple wear conditions. Degradation trends were extracted using 

the Kalman Filtering. The optimization involved minimizing operational costs according to 

numerous factors such as dispatch requirements, aircraft delay costs, flight cancellations, and 

equipment costs. 

 Models of cognitive error and distortion have been used to evaluate unsafe actions that 

resulted in accidents within safety-critical environments [17]. A majority of the models of accident 

causation are based on the idea that human error is among the contributing factors. However, at 

present there exists a lack of published information regarding connections between specific errors 

and their contributing factors. A survey reported that out of 619 safety incidents involving aircraft 

maintenance, 96% involved the actions of maintenance crew members [17]. Results specified 
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which types of errors were associated with specific sets of actions and the outcomes of such 

occurrences. Among the associations discovered are links between memory lapses and fatigue and 

between rule violations and time pressure from deadlines. 

  A short-term planning methodology for line maintenance activities of airline operators 

during an aircraft’s turnaround time was proposed which provided decision making for postponing 

maintenance actions which impacted aircraft deployment with high fleet operability and low 

maintenance costs as the goals of this methodology [18]. The method involved a multi-criteria 

mechanism which evaluated a generated set of maintenance plan alternatives on the grounds of 

information pertaining to operational and financial constraints. Such alternatives were defined as 

the potential allocation of airport resources to all deferred maintenance activities. The criteria 

involved in the decision making were cost, remaining useful life of the plan, operational risks, and 

flight delay. 

 Recent research into the causes of aviation accidents demonstrates that increased air-

transportation safety requires a reduction in the impact of human error on operations [19]. Due to 

stringent schedules for aircraft operation and time constraints, aircraft maintenance workers are 

often under large amounts of stress which contributes to human error. Using computer-based 

support systems errors may be mitigated by assisting aircraft technicians in understanding 

information related to their work. Computer systems can store and recall this information to 

minimize the errors from procedure violations, misinterpretation of facts, or insufficient training. 

At present, many factors such as unwieldly hardware, installing markers on aircraft, and the need 

to quickly create digital content appear to inhibit the ability of maintenance workers to perform 

effective maintenance of aircraft in industry. 
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Machine Learning, Ensemble Learning, & Hybrid Models 
 

 The concept of ML was born of the study of the brain and how certain external events 

caused neurons to fire [20]. Ensemble learning is the concept of applying multiple ML models to 

collectively solve a problem. This differs from hybrid models in that the individual models within 

the greater ensemble model are independent. In ensemble learning each of these individual models 

is independently trained and tested on data before the models vote on the predicted outcome. In 

hybrid models the individual models work dependent on each other as one collective unit with the 

voting system absent. 

 There exist numerous examples of both ensemble learning and hybrid ML models. A 

proposed hybrid model, consisting of the maximum entropy model, SVM, and Naïve-Bayes (NB) 

was created for multi-document text summarization [21]. To improve the model’s classification 

accuracy another hybrid model was proposed for multi-class problems [22]. This model consists 

of the C4.5 DT classifier and the One-vs-All approach, an approach to multi-class classification in 

which N-binary classification models are generated for N-classes of the data. The efficacy of the 

hybrid model was demonstrated when applied to open-source image segmentation, dermatology, 

and lymphography datasets. Another recently developed hybrid model which involved DT, 

Random Forest (RF), and Gradient Boosting was applied to water quality prediction [23]. The 

method, known as Complete Ensemble Empirical Mode Decomposition with Adaptive Noise 

(CEEMDAN), had two variants. The first is based on Gradient Boosting (CEEMDAN – XGBoost) 

while the second is based on RF (CEEMDAN – RF). Each of these variants of the method resulted 

in high performance when predicting different water quality parameters. A hybrid model 

consisting of NN and genetic algorithms was created and applied to a heart disease dataset to detect 

the presence of heart disease [24]. The combination of NN and genetic algorithms supplemented 
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the NN model and allowed for increased performance when detecting heart disease. An ensemble 

method constructed to assess the susceptibility of an area for a landslide consisted of numerous 

ML methods [25]. The method consisted of a type of NN known as a Multilayer Perceptron (MLP) 

which was integrated with AdaBoost, Bagging, Dagging, MultiBoost, Rotation Forest, and 

Random Subspace. A hybrid method designed to diagnose Type 2 Diabetes consists of K-means 

Clustering and the J48 DT [26]. To address condition-based maintenance in manufacturing 

industries, MapReduce and numerous classifier DT models with dynamic weight adjustment were 

used on data collected from maintenance activities [27]. A just-in-time prediction method was 

proposed utilizing ensemble learning [28]. An advantage of this ensemble model is that it 

effectively handles redundancy and imbalance within the data while maintaining a robust 

algorithm. A similar study into just-in-time prediction using ensemble learning methods was 

conducted which proposed a two-layer ensemble learning (TLEL) approach based on DT [29]. 

The model’s outer layer uses multiple different RF models for training while the inner layer is a 

hybrid of DT and bagging methods to construct a RF model. A recent study utilized ensemble 

learning methods to increase predictive performance in determining the remaining useful life 

(RUL) of aircraft engines [30]. The approach involved numerous methods including RF, 

Classification and Regressing Tree (CART), Recurrent Neural Network (RNN), Autoregressive 

(AR) model, Adaptive Network-based Fuzzy Inference System (ANFIS), Relevance Vector 

Machine, and Elastic Net (EN). To achieve the best combination of weights the method used 

Particle Swarm Optimization (PSO) and Sequential Quadratic Programming (SQP). An extension 

of this approach utilized Directed Acyclic Graph (DAG) combined with Long Short-Term 

Memory (LSTM) and Convolutional Neural Network (CNN) in predicting RUL [31]. The method 

was tested on a turbofan engine degradation simulation dataset provided by NASA.  
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Decision Trees, Neural Networks, & Model Optimization  
 

 Previous research has discussed the mapping of DT into a multilayer NN structure as the 

design for a class of layered NN known as Entropy Nets [32]. Research detailed a number of 

important issues including automatic tree generation, the integration of incremental learning, and 

the generalization of knowledge obtained during the tree design phase. The research presented the 

number of neurons required in each layer of the NN and the desired output, therefore promoting a 

faster progressive training procedure which enables each layer to be trained independently. 

 Another research effort compared the efficacy of particle identification in physics through 

Artificial Neural Networks (ANN) and Boosted Decision Trees [33]. On the basis of studies of 

Monte Carlo samples of simulated data, the research found that boosting algorithms performed 

better than ANN for particle identification. In other works, prediction of electricity energy 

consumption and sound pressure level was analyzed using traditional regression analysis, DT, and 

NN [34, 35]. 

 A study was performed on the automatic analysis and classification of attribute data from 

training course web pages by comparing the performance of NB, DT, and NN [36]. The work 

presented an ensemble NB classifier supplemented by a “believed probability” algorithm which 

was compared to DT and NN classifiers when classifying the training course domain. Results 

indicate that the ensemble NB classifier outperformed the DT and NN classifiers in most metrics 

due to the supplemental algorithm. 

 A recent study integrated Principal Component Analysis (PCA) with deep NN to predict 

multiple decay state coefficients in naval propulsion systems [37]. Prediction results were 

compared with different numbers of hidden layers to analyze the impact of hidden layer 



10 

architecture on the performance. Another study predicted aerofoil self-noise at an early stage of 

design using NN and a hybridization of PCA with NN [38]. Results were compared between NN, 

PCA – NN, and different regression techniques, and demonstrated that the PCA – NN 

outperformed all other techniques. Another recent work proposed a method of communication 

between specialized NN [39]. The method consisted of numerous specialized sets of NN each 

trained for specific tasks which would communicate by transferring knowledge between 

themselves. This allows the NN to evolve by chaining the input and output information. The 

method allows different NN to be plugged in to the loop for knowledge transfer to evolve. 

Additional information can be requested if the current task is difficult to resolve based on the 

already present information. This method is known as Outward Inward Neural Network and 

Inward Outward Neural Network Evolution (OINNIONN) and, as the method can transfer the 

learning model, is applicable to aircraft maintenance. 

 Most prior research compared classification methods such as NN, DT, and linear 

discriminant analysis [40 – 43]. Analysis of variance is used to identify any significant differences 

between the results of the methods. The issues of finding the most appropriate network size and 

using an independent validation dataset to determine when training the network should cease are 

also discussed. However, the integration of DT and NN as a unique classification method for 

aircraft maintenance has not been described in the literature.  

 Taking the vast literature of aircraft maintenance, ML, ensemble learning, and hybrid 

modeling into consideration, this work proposes a unique classification technique whereby each 

node of a DT is integrated with a specialized NN and applied to aircraft maintenance data.  
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METHODOLOGY 

 

Uniqueness of Problem 
 

 Compared to many other classification problems, the issue of determining a cause of an 

aircraft accident or incident usually depends on multiple attributes. Furthermore, any solution 

found consisting of a classification method would not identify the cause but identify the main 

feature, or subsystems, which contributed to the accident or incident.  

 The problem of classification assumes that many values of the data are missing. In addition, 

certain records have fields which might have been mislabeled due to erroneous handling or just to 

save time during the recording of an incident.  

 Last but not least, an error which leads to an accident could easily cause a large number of 

casualties. Since the aircraft types are shared by multiple organizations, the chance of a rare 

incident reoccurring is relatively high. Therefore, the classification of an incident at an early stage 

is critical. 

Problem Setting 
 

 Since we aim to use a DT and multiple NN for learning to classify incidents and accidents, 

the first step is quantifying the input in numeric values. Many of the inputs are formatted as textual 

labels or free text affiliated with the value such as: Aircraft Make, Aircraft Model, and Part Name. 

These labels for each input attribute were assigned a numerical value to represent all possible 

labels. The numerical value was designed to have a uniform distribution U (0, 1), with -1 

representing no value. 
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 The next issue was to define the depth of each NN in each node of the DT. Due to the 

success of deep NN in multiple domains, we analyzed how deep the NN should be to optimize the 

results. We analyzed how many hidden layers, n , are required to optimize the neural network 

performance. Although theoretically it could be assumed the deeper the better ὲᴼ Њ, in reality, 

we show in the experiments that the optimum number of hidden layers is reached fairly quickly at 

3-4 layers. Furthermore, after a fixed number of added hidden NN layers, the results suddenly drop 

to be equivalent to guessing. In our experiments, adding any additional hidden layers above 29 

results in a drop to 50% of the performance results measured, which is equivalent to guessing in a 

binary DT.  

 Theoretically, the number of inputs in the neural network should be equal to the number of 

variables which are available. The assumption is that the NN can learn to ignore the attributes 

which do not contribute to the optimization of the solution. In reality, these are two different tasks 

which should be handled by different NN:  

 

- Classifying the important contributing input variables. 

- Optimizing a single decision in a classification. 

  

 For classifying the important contributing input variables, a NN was trained using all 72 

inputs. Once the NN results have converged to a fixed value, we evaluate the weights. The weights 

between the input layer and the first hidden layer represent the importance of each input variable. 

These weights were recorded for each input variable. Then the absolute value of every weight is 

taken, and the average of these absolute values is recorded for each variable. The inputs with the 

highest averages are determined to be the significant inputs. Input variables with low mean weight 
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value have less contributing effect to the optimization of the classification and therefore were 

removed.  

 The experiments show that limiting the number of input variables contributed to the 

performance of the classification. The best number of input variables can be determined by 

organizing the input variables in descending absolute average weight order and either adding or 

removing one variable at a time until there is a change in the output performance. It should be 

noted that a large mean weight difference does not always correlate to a large difference in the 

performance. However, the descending order of the mean weight is an important factor 

contributing to the output performance. 

 

 

Fig.  1 : Integrati on of De cisi on T ree ï Neural  N etw ork Where Ea ch C lass ification N ode is a 

Special ized Neural N etw ork  
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Integrating Decision Trees and Neural Networks 
 

 Next, we aim to optimize a single decision in a classification. We integrate the decision 

tree approach with neural networks. We create a decision tree with a neural network at each node 

of the decision tree, displayed in Fig. 1.  

 The unification of the DT and NN approach allows us to integrate the advantages of both 

methods. The NN works well while classifying into categories where the boundaries of 

classification are less distinct, but performance drops when there is a large number of categories. 

The DT works with a large number of categories which are distinctly classified. 

 The DT is built based on a set of possible results which can occur (accidents or incidents). 

For this, we choose the best possible result attribute with the highest information gain. To define 

information gain, we define a measure commonly used in information theory, called entropy, 

which characterizes the (im)purity of an arbitrary collection of examples [44].  

 Entropy H(S)  is a measure of the amount of uncertainty in the dataset.  

ὌὛ  ὴὧÌÏÇὴὧ

Í

 

 Where, 

 S  – The dataset for which entropy is being calculated in the current iteration. 

 C  – The set of the classes in S , C  = 0, 1. 

 p(c) – The proportion of the total elements in class c  to the total elements in set S .  

 If H(S)  = 0 then the set S  is perfectly classified 
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 Information Gain IG(A)  is the measure of the difference in entropy from before to after 

the set S  is split on a result attribute A . This measures how much of the uncertainty S  was reduced 

after splitting set S  on result attribute A. 

ὍὋὃȟὛ ὌὛ  ὴὸὌὸ

Í 

 

 Where, 

 H(S)  – Entropy of set S . 

 T  – The subsets created from splitting set S  by result attribute A  such that  

Ὓ  ὸ

 Í 

 

 p(t)  – The proportion of the number of elements in t  to the number of elements in S. 

 H(t)  – Entropy of subset t .  

 The information gain can be calculated for each remaining attribute. The attribute with the 

largest information gain can be used to split the set S  on each iteration. 

 After selecting the attribute with the largest information gain, we build a NN based on the 

criteria discussed in the previous section ( Problem Sett ing ). For each maintenance problem, we 

construct a NN which is designed to classify only if the problem occurs. Each NN at each node of 

the DT consists of all the result attributes which could lead to a possible accident or incident. It 

should be noted that the result attributes represent the problem and are different from the input 

attributes filtered in the previous section. 

 Each leaf of the DT includes a NN with a binary classification task which improves its 

performance. Since each NN is tailored to a specific classification, the overall performance of the 

system does not depend on the performance of a single neural network. 
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 The actual implementation does not necessarily require the implementation of NN for all 

possible problem attributes since many categories of problems in the area of maintenance can be 

classified under one classification category. Furthermore, a maintenance investigator can 

sometimes easily identify the correct cause at a higher level of the classifications. 

Model Outline 
 

 The structure of the hybrid binary tree classifier gives us the flexibility to find more detailed 

or less detailed classification problems. The structure is formatted in a way so that the height of 

the tree represents the complexity of the prediction of the problem. The larger the tree, the more 

detailed an issue that the network can predict on. Each level of the tree is trained on different data 

that is pulled from the original dataset. If the first node in the tree was predicting for a crack in the 

airplane, it would assign the original dataset with a crack problem a 1 and all of the other entries 

without a crack problem 0. If we continued the tree to predict for something with a crack and a 

fuselage problem, we would separate the original dataset into two datasets, one with crack data 

and one without crack data, and assign each entry with a fuselage problem a 1 or a 0 and train a 

new model for each of the two subcategories. Since we split the dataset multiple times, this method 

would work best in an environment where there is a lot of data. This method of predicting for crack 

then predicting for fuselage in the binary tree format actually performs better than just predicting 

for entries that contain crack and fuselage or not from the beginning.  

Data Preprocessing 
 

 Before the data is fed into the NN, it is first preprocessed so that it may be interpreted by 

them. The preprocessing work was performed within the Python programming language along 

with the Pandas data analysis package through a multi-step process. First the data is read from a 
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Comma Separated Value (CSV ) file in chunks, approximately 5000 records at a time, to a Pandas 

data frame. The purpose of chunking the data rather than processing it all at once is to conserve 

memory resources, allowing the preprocessing method to be scaled to data of great volume. Next, 

a set of dictionaries is created, with one dictionary corresponding to one column/variable in the 

data, for mapping unique, non-numeric values in each variable to a numeric identifier. Then each 

column is parsed for unique values. If a value is encountered which is not in the dictionary for a 

given variable, then it is added to the dictionary along with a numeric identifier, and the identifier 

is incremented. This starts at an identifier value of 100 and increases by 100 for each unique value 

found in a variable so as to adequately space the numeric values apart when normalizing the data 

later. However, when a null value is encountered, it is assigned a value of -1 instead to separate it 

from non-null data. Once each variable has been parsed in a chunk, the dictionaries are used with 

a mapping function to convert all the non-numeric values in that chunk to their numeric identifiers. 

After this, the chunk is then written to a new CSV file with a similar name to the unprocessed CSV 

file to preserve the original unprocessed data. If more data exists in the CSV file, then another 

chunk is read and the above process repeats. The dictionaries for each variable are preserved across 

chunks to maintain consistency in mapping the data.  The final step in the preprocessing stage, 

once all of the chunks have been converted, is the creation of a text file containing variable name 

headers and all of the numeric identifiers for each variable and which value each identifier 

represents. This allows both the user and the software to determine which identifier maps to which 

unique value for any given variable.  

 Some variables are skipped entirely in the preprocessing stage if they are numeric, and it 

has been decided that their numeric values are significant. We chose these variables to be skipped 

as their numeric values would lose meaning if mapped to an arbitrary integer value. For example: 
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the variable Aircraft  T otal  T ime  represents the total amount of time the aircraft has been in use. 

We determine this to be a potentially significant variable for predicting aircraft incidents. 

However, if we were to map a value of 3,892 hours to an integer of 300 and a value of 1,765 hours 

to an integer of 700 then the magnitude of usage time could lose its value. Additionally, as it is 

unlikely that no two aircraft will share the same amount of flight time mapping these values to 

unique integers could also add unnecessary complexity to the data with the volume of unique 

integer values.   
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EXPERIMENTS & RESULTS 

 

Data 
 

 The Federal Aviation Administration collects all preliminary accident and incident 

information reported to the Office of Accident Investigation and Prevention. The data includes 

accident and incident data categorized by the aircraft manufacturer. The experiments focused on 

the Boeing 737 dataset.  

 The dataset contains 137,236 records with each record consisting of 73 variables. These 

records included data from aircraft that suffered mechanical issues. We chose this data for two 

main reasons. The first reason is because it is a real-world dataset that was hand documented for 

actual maintenance operations. Demonstrating that this algorithm can be successfully applied to a 

hand recorded dataset shows the robustness of the given algorithm. The second reason is because 

of the sheer size of the data that we train our algorithms on. Having a dataset which contains a 

large number of real-world records allows for us to make sure that the algorithm is able to handle 

complex inputs and perform with high accuracy. 

 Of the 73 total variables in the dataset, 72 variables were used as inputs to each of the NN. 

Each NN had a single neuron classifying whether the record belongs to a specified category. The 

data was split into 75% training, 15% testing, and 10% validation. The testing data is used to test 

the accuracy and F1 score, basically a weighted average between precision and recall of the NN. 

The F1 score measure is chosen as a better representation of our model's performance as it 

considers the precision and recall values rather than correct predictions as Accuracy does. The 

validation data ensures that there is no overfitting. 
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T able 1 : Boeing 737 Datas et C omposit ion  

Operator Control Number Difficulty Date 

Submission Date Operator Designator 

Submitter Designator Submitter Type Code 

Receiving Region Code Receiving District Office 

SDR Type JASC Code 

Nature Of Condition A Nature Of Condition B 

Nature Of Condition C Precautionary Procedure A 

Precautionary Procedure B Precautionary Procedure C 

Precautionary Procedure D Stage Of Operation Code 

How Discovered Code Registry N Number 

Aircraft Make Aircraft Model 

Aircraft Serial Number Aircraft Total Time 

Aircraft Total Cycles Engine Make 

Engine Model Engine Serial Number 

Engine Total Time Engine Total Cycles 

Propeller Total Time Propeller Total Cycles 

Part Make Part Name 

Part Number Part Serial Number 

Part Condition Part Location 

Part Total Time Part Total Cycles 

Part Time Since Part Since Code 

Component Make Component Model 

Component Name Component Part Number 

Component Serial Number Component Location 

Component Total Time Component Total Cycles 

Component Time Since Component Since Code 

Fuselage Station From Fuselage Station To 

Stringer From Stringer From Side 

Stringer To Stringer To Side 

Wing Station From Wing Station From Side 

Wing Station To Wing Station To Side 

Butt Line From Butt Line From Side 

Butt Line To Butt Line To Side 

Water Line From Water Line To 

Crack Length Number Of Cracks 

Corrosion Level Structural Other 

Discrepancy  
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 Table 1 details the variable composition of the dataset. In addition to the 72 variables used 

as input, the last variable, Discrepanc y , contains a free text description of the accident or incident. 

The Discrepan cy  field was used as the output variable to be classified by parsing the free text 

description for categorical keywords to classify each accident. 

Methods 
 

   

(a)  Tanh (b)  Rectifier (c)  Maxout 

Fig. 2 : Acti vati on Functi on Used  

  

 The following activation functions were used in the experiments: 

 T anh  – Hyperbolic Tangent Function (Fig. 2a). 

Ὢὼ ÔÁÎÈὼ
Ὡ Ὡ

Ὡ Ὡ
 

 T anh w / Dropout  – Tanh with a dropout ratio of 0.5 for each hidden layer. 

 Recti fi er (defaul t)  – Positive part of its argument (Fig. 2b). 

Ὢὼ ὼ ÍÁØ πȟὼ 

 Recti fi er w / Dropout  – Rectifier with a dropout ratio of 0.5 for each hidden layer. 

 Maxout  – Given an input ὼ Í Ὑ , a maxout hidden layer implements the function (Fig. 2c). 

Ὤὼ άὥὼÍ ȟᾀ  

 where ᾀ ὼὡ ὦ , and ὡÍ Ὑ  and ὦ Í Ὑ  are learned parameters. 
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 Maxout w / Dropout  – Maxout with a dropout ratio of 0.5 for each hidden layer. 

 Multiple NN configurations were analyzed for best performance. For the following 

experiments, a NN with 3 hidden layers each containing 60, 40, and 20 neurons respectively was 

used.  

Neural Network Pseudocode 
 

 The NN models were constructed, trained, and evaluated using Python and the H2O.ai ML 

framework. The following Table 2 contains pseudocode representing this process. 

T able 2 : Neural  N etw ork Pseudocode  

1: C SVData : Data read in from a preprocessed CSV file. 

2: trai nData : Subset of CSVData  used for training NN. 

3: testData : Subset of C SVData  used for testing NN. 

4: vali dData : Subset of CSVData  used for validating NN. 

5: nn : H2ODeepLearningEstimator NN model. 

6: nnMetri cs : H2O data frame containing performance metrics from testing the NN. 

7: hiddenLayers : Matrix containing the hidden layer structure of the NN. 

8: acti vati onFuncti on : String value of the activation function to use. 

9: invars : List of input variables from the data. 

10: outvars : List of output variables from the data. 

11: result sC SV  : CSV file for containing NN performance metrics. 

12: Import H2O, H2ODeepLearningEstimator 

13: C SVData  = open ("csvfile.csv"; "read") 

14: H2O.ini t () 

15: H2O.read (C SVData ) 

16: trai nData  = 75% of C SVData  

17: testData  = 15% of C SVData  

18: vali dData  = 10% of C SVData  

19: nn  = DeepLearningEstimator( hiddenLayers ,  acti vati onFuncti on ) 

20: nn .t rain (invars , outvars ,  trai nData ,  vali dData ) 

21: nnMetri cs  = nn . test (t estDat a ).perfor mance Me tri cs  

22: result sC SV  = open ("results:csv"; "write") 

23: result sC SV . w rit e (nnMetri cs ) 

24: result sC SV.close()  
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Experiments 
 

 The dataset is first preprocessed to conduct the experiments. The Pandas library in Python 

is used for preprocessing and simulation experiments. The strings in each column/variable of the 

dataset are parsed and mapped to an integer value. The starting value is selected as 100 and is 

increased by 100 for every unique subsequent string. This process is repeated for every variable 

individually. However, in the case of an integer input or floating-point variables, magnitude is 

important (such as the total flight time of a 737), and the values are not mapped for that variable 

and are simply skipped. For all variables, a null value is mapped to -1. The data set is labeled in 

the present study. While classifying the inputs, we used the significant inputs from the root of the 

DT where only “maintenance” or “non-maintenance” was classified. Through further 

experimentation we determine whether the significant input is changed at each node of the tree. 

 The dataset is classified into two categories: whether the problem with the aircraft occurred 

during maintenance or not during maintenance. Thereafter, the data is further classified into 

whether or not the problem involved cracks and whether or not the problem involved the fuselage. 

In this way, by classifying fuselage after classifying maintenance, we mean that we first identified 

that the problem occurred during maintenance and then identified that the problem involved the 

fuselage. These two subcategories regarding the fuselage or presence of cracks were chosen as 

they appeared to have high support within the free text descriptions of Dis crepancy . 

 The  first set of experiments analyzed how deep the deep NN should be. We analyzed a 

binary classification of accident or incident identification during Maintenance or Non-

Maintenance. We increased the NN hidden layers from 1 to 100 and checked how the F1 and 

accuracy results change. The Stopping tolerance = 0.0000001 was used for all of our experiments. 
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This precise value of stopping tolerance ensures convergence of the NN with higher performance. 

These experiments analyzed what the correct structure of the NN would be.  

 The second set of experiments analyzed whether a larger dataset, would correlate with 

better results. We organized the input variables in descending order of the mean value of the weight 

connecting the input layer and the first hidden layer. We then increased the number of input 

variables used in descending order of weight value and compared the Area Under the Curve 

(AUC), Accuracy, Precision, Recall, and F1 values. Each of these values was compared with the 

six types of activation functions.  

 

 

Fig. 3 : Decisi on T ree -  N eural  N etw ork w it h Specif ic Cl assi fi cati on C ategories  
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Fig. 4 : F1 Score vs. N um ber of  Hidden L ayers  

 

 

Fig. 5 : Accurac y vs. N um ber of  Hidden L ayers  
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 The third set of experiments analyzed the advantages of integrating the DT and the NN 

methods. An outline of the set of experiments performed is described in Fig. 3. First a neural 

network was used to perform a binary classification into categories Maintenance or Non-

Maintenance. Each of the classified records was then again classified into Crack or No Crack and 

Fuselage or No Fuselage. The classification into each of these subcategories was performed using 

all the data previously classified into the main category. In other words, a record from Maintenance 

and Crack could also belong to either Fuselage or Non-Fuselage but not to both. As can be seen 

from Fig. 3, four different NN were used to classify to the eight different sub-classifications. 

Results 
 

 Fig. 4 and Fig. 5 display results of the analysis of the appropriate depth of the deep NN. 

Results peak at three hidden layers and continue around the same F1 (Fig. 4) and Accuracy (Fig. 

5) levels until 29 hidden layers. From this point onward, the results show that the network would 

be too deep. The network results show that over 29 hidden layers is equivalent to guessing in a 

binary classification. The F1 value becomes slightly above 50% and the Accuracy slightly below 

50%. The sharp peaks in Fig. 4 and Fig. 5 represent numbers of hidden layers where the NN 

becomes unstable in classifying the data, resulting in errors when calculating accuracy and F1 

score. The drops to 0% in Fig. 4 exactly represent these errors as a value of 0 was returned when 

an error in calculating F1 score occurred. It seems that a three hidden layer NN is accurate and fast 

enough to perform the task of classification. For the experiments that we performed the maximum 

amount of time that the networks took to train the neural models spanned from 20 to 30 seconds 

for each network.  
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Fig. 6 : Comparing t he Perfor mance of Acti vati on  Functi ons. Here, the Val ues of  AUC  and 

Accurac y are M easured  When Using All  72 Inputs a nd When Using Only t he Identi fi ed 11 

Signi fi cant Inputs f or Each Acti vati on Functi on.  

 

Fig. 7 : Average Weight s for L eading Fi rst  L ayer Inputs. T hese Bars Repres ent t he Highest 

Absolut e Value Average Weight s Betw een the Inp ut L ayer and Fir st Hid den L ayer. T he Firs t 11 

Bars Represent t he Signi fi cant Inputs.  
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(a) AUC vs. Inputs (b) Accuracy vs. Inputs 

  

(c) Recall vs. Inputs  (d) Precision vs. Inputs 

Fig. 8 : AUC, Accurac y, Recall , and Precisi on vs. N umber of  Inputs.  

  

 Fig. 6 presents the classification results into the Maintenance and Non-Maintenance 

categories as the number of input variables increases. Fig. 6 shows the AUC and Accuracy of all 

six activation functions comparing the results of using only the top 11 mean weight variables 

versus using all possible 72 variables. The results show the accuracy is almost the same, -0.12%, 

and up to 4.77% better when using only the top 11 variables. The AUC is less consistent and varies 

from -1.76% to 4.44% for using the top 11 identified variables versus all 72. The results show the 

advantage of the method of identifying the top variables before using the NN as a classifying tool.  

 Fig. 7 shows the average mean for the leading inputs weight value between the input layer 

and the first layer. These identify the main variables which are relevant for high accuracy results. 
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The top 11 variables appear in the circumference box. The results show that issues such as Part 

Make, Receiving Region Code, and Part Total Time can clearly be identified as the most relevant 

classifiers. The list of the leading main contributors for the accident and incident reports ends with 

Aircraft Total Cycles. The Aircraft Model is already identified as a less unique classifier for the 

type of issue involved. These values included the different models of the Boeing 737.  

 Fig. 8a presents the AUC as the number of inputs increases. Fig. 8b presents the Accuracy 

as the number of inputs increases. The inputs in the x-axis are arranged in descending order of 

mean weights leading from the input layer of the NN to the first hidden layer. In other words, the 

most significant input is added first, and each subsequent input variable added possesses a lower 

average weight between the input layer and the first hidden layer, i.e., each subsequent input is 

less significant than the previous. The AUC continues to increase as the number of inputs increases 

up to 16 inputs. However, the accuracy does not improve over 11 inputs which were identified as 

the important variables.  

 The AUC difference can be viewed as a less accurate value for measuring performance. In 

this case, it can be attributed to the low number of values measured to create the curve. This could 

explain the difference when measuring the area with AUC versus comparing a single Accuracy 

result.  

 Similarly, Fig. 8c presents the Recall and Fig. 8d presents the Precision as the number of 

variables with the descending mean weight increases. These results display that the recall actually 

declines, from 100% to above 85% as more variables are added. However, the precision increases 

and stabilizes after the top 11 weighted variables are included. The results show that the recall has 

a slight drop as more variables are added. However, the precision is determined by the leading or 

“more important” variables.  
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(a) F1 Score vs. Inputs (b) Precision vs. Recall 

Fig. 9 : F1 Score vs. N um ber of  Inputs, Pr ecisi on v s. Recall .  

 

 These results can be viewed more clearly when viewing the F1 value appearing in Fig. 9a. 

As the number of highly weighted variables is added the value peaks up to 11 variables. From 11 

variables the F1 is stable at around 90%. Furthermore, the Precision vs. Recall in Fig. 9b shows 

that most results are clustered in the top right except for the initial values with high recall.  

 The results show the correct identification of the important inputs by the method of 

classifying mean weights in descending order. The additional input variables which do not seem 

to improve the results can be attributed to constant values, variables which are dependent on other 

inputs, or values which are inconsistent with the expected results.  
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(a) Precision vs. Recall for Maintenance and 

Crack 

 

(b) Precision vs. Recall for Maintenance and 

Fuselage 

 

  
(c) Precision vs. Recall for Non-Maintenance 

and Crack 

 

(d) Precision vs. Recall for Non-Maintenance 

and Fuselage 

 

Fig. 10 : Precisi on vs. Re call  for Maint enance, C rack, and Fuselage C lass if ications .  

 

 

Fig. 11 : Precisi on vs. Re call  C omparison Between DT -  N N  Model and N N .  
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 On the other hand, Fig. 10b and Fig. 10d show what happens when the DT and NN are not 

aligned correctly. In this case, classifying Fuselage after classifying Maintenance has slightly 

lower precision versus recall results. However, the classification of Fuselage after the classification 

as Non-Maintenance has been performed is centered around the diagonal, which represents 

guessing in a binary classification. This shows the incorrect DT structure. One less likely possible 

explanation is that all Fuselage classifications are only identified during Maintenance. Another, 

more likely, option is that this part of the DT is not properly constructed. In other words, Fuselage 

under Non-Maintenance cannot be classified. This means that the dataset did not have a sufficient 

number of cases where problems with the fuselage occurred during a time when the aircraft was 

not undergoing maintenance, and therefore the present method could not accurately be classified 

with our current methods. 

 At least one more layer of sub-classification needs to be added in order to correctly identify 

this issue. Another concept should be added to the DT below Non-Maintenance before trying to 

identify whether there is a Fuselage problem.  

 Finally, Fig. 11 shows the advantage of our hybrid method integrating the NN with the DT 

compared to the commonly used method which uses just NN for classification. The figure shows 

the precision and recall as the number of inputs increase. The DT – NN method outperforms the 

method of using only NN for both precision and recall. 

Activation Function & Hidden Layer Tests 
 

 Tests were performed to determine how different activation functions and hidden layer 

architecture contributed to the overall performance of the NN, which was measured through 

Accuracy, AUC, Precision, Recall, Precision – Recall AUC, and F1 scores. The activation 
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functions used were Rectifier, Tanh, Maxout, Rectifier w/ Dropout, Tanh w/ Dropout, and Maxout 

w/ Dropout, where each of the dropout rates was 0.5. The hidden layer architectures all consisted 

of three layers with differing quantities of neurons in each layer. The layers began with [40, 30, 

10] (the default architecture used for most other experiments due to its high performance) and 

subsequent architectures tested followed the pattern: [40, 30, 9], [40, 30, 8], . . . , [40, 30, 5], [40, 

25, 10], . . . , [40, 5, 5], [35, 30, 10], . . . , and ended with [10, 15, 5]. These architecture tests were 

conducted alongside the activation function tests so that each architecture was tested with each of 

the six activation functions. The tests concluded that a NN using the Tanh activation function 

performed better than the other activation functions used, with each of the dropout functions 

performing the worst. The best test resulted in a 92.5% accuracy and a hidden layer of [35, 15, 9]. 

Pearson/Spearman Correlation Tests 
 

 Pearson and Spearman correlation tests were also performed to find statistical correlation 

between the variables when comparing them to the Discrepancy column as well as every other 

input variable. Pearson correlation was used to identify any linear change relationships between 

the input variables while Spearman correlation was used to identify monotonic relationships 

between the input variables. These tests were run on the enumerated data. Aircraft Total Cycles 

was shown to be the most significant variable with both the Pearson and the Spearman test. These 

results could be implemented/applied in the future to find out which significant inputs could be 

used for training the NN.  
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Fig. 12 : Pearson C orrelati on Heatmap for  C rack  

 

 

Fig. 13 : Spearman C orre lat ion Heatmap for  C rack  
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T able 3 : Pearson C orrelati on Betw een 

Discrepancy and Inputs  

 

T able 4 : Spearman Corr elat ion Betw een 

Discrepancy and Inputs  

 
 

Heatmap and Correlation Information 
 

 The heatmaps that are represented in Fig. 12 and Fig. 13 demonstrate the correlation of 

every variable to each other using the Pearson/Spearman statistical correlation algorithm to find 

out how closely associated each variable is with another. The closer the number is to 1, the higher 

the positive linear correlation is with the variable being compared and the lighter the area is in the 

heatmap. The closer the number is to -1, the higher the negative linear correlation is with the 

variable being compared and the darker the area is on the heatmap. When the number is zero, it 

means that there is no linear correlation between the two variables. So, the closer the number is to 

ȿρȿ the more association the variables have with each other.  

 This extends to Table 3 and Table 4 which illustrate the correlation between a sample of 

25 inputs and Discrepancy. The Pearson correlation results between all input variables and 
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Discrepancy in Fig. 14 show a linear correlation coefficient of 0.15 or greater between the input 

variables AircraftTotalCycles, PartSinceCode, AircraftTotalTime, and StringerFromSide. The 

Spearman test shown in Fig. 15 shows a correlation coefficient of 0.15 or greater for the input 

variables AircraftTotalCycles, AircraftTotalTime, PartSinceCode, StringerFromSide, 

StringerFrom, and SubmitterDesignator. Analyzing the results of the combined tests reveals that 

AircraftTotalCycles, PartSinceCode, and AircraftTotalTime are the three variables with the 

highest degree of correlation. AircraftTotalCycles was shown to be the most significant variable 

with both Pearson and the Spearman test. These results could be implemented/applied in the future 

to determine which significant inputs could be used for training the NN. 

Adaptive Learning Rate 
 

 The adaptive learning rate H2O uses for its gradient descent algorithm was tweaked by 

manipulating two of its factors: Rho, the adaptive learning rate time decay factor, and Epsilon, the 

adaptive learning rate time smoothing factor. Rho relates to memorizing past weight updates and 

affects the influence of past gradients. Epsilon assists the model with encountering and overcoming 

local minima to find a global minimum more successfully. In our tests with Rho, we trained and 

tested the same neural model configuration with Rho values ranging from 0.01 to 0.99 and 

incrementing by 0.01 each time. From these tests we recorded the AUC, Accuracy, Precision, 

Recall, Precision-Recall AUC, and F1 score. The tests showed that the model performed 

logarithmically better and peaked at 0.99, which is also the default value used by the H2O Deep 

Learning model. The same tests were conducted with the Epsilon parameter, but this time the 

values ranged from 1E-10 to 1E-5 and the power was incremented by 0.1 each time. Like the Rho 

tests, the model performance improved logarithmically until an approximate Epsilon value of 5E-

7. The default value for Epsilon is 1E-8. These tests were also conducted for the L1 Regularization 
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metric to reduce the possibility of overfitting while still maintaining adequate model performance 

regarding the same recorded variables from the above tests. With a default value of 1E-5, tests 

were conducted from 1E-6 to 1E-4 with L1 being incremented by 0.1 each time. These tests 

showed little to no improvement in the model's performance, and the conclusion is that it did not 

affect model performance in relation to our data. 
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Fig. 14 : Pearson C orrelati on Bar C hart  

Betw een All Inputs and Discrepancy  

 

Fig. 15 : Spearman Corr e lat ion Bar C hart  

Betw een All Inputs and Discrepancy  

 

   



39 

CONCLUSION 

 

 In this thesis we propose a hybrid learning strategy by integrating a neural network with 

decision tree. The hybrid algorithm is tested with the Federal Aviation Administration (FAA) data 

for Boeing 737. Several simulated experiments have been performed to test the efficacy of the 

proposed hybrid method. The method is tested with various network architectures, activation 

functions, and different hidden layers. The hybrid method is also verified by selecting the 

contributing input features, and the similar prediction results confirm that it successfully identified 

the redundant features. 

 To optimize our NN, four primary tests were conducted with regard to classifying 

Discrepancy; 1) the hidden layer architecture to classification performance, 2) the total number 

inputs and of significant inputs to classification accuracy, 3) the performance of a hybrid DT – NN 

model to the typical NN model, and 4) the correlation of variables to all other variables. The first 

test demonstrated that performance peaks when the number of hidden layers is around 3 and 

steadily drops off until the model becomes unstable and is no better than guessing. The second test 

showed that the number of inputs could be reduced from 72 to 11 significant inputs without a 

reduction in accuracy of the NN. The test further validated this by showing that AUC, Accuracy, 

Recall and Precision stabilize with the 11 significant inputs and gradually deteriorate with the 

addition of new inputs. The third test shows that the hybrid DT – NN model outperforms a 

standalone NN model by comparing Precision vs. Recall. Finally, the fourth test further showed 

via heatmaps that only a small number of inputs have a high correlation with Discrepancy. Using 

these four tests, we show that the significant input features can be identified and that the total 

number of features can be reduced without affecting the accuracy of the NN. The hybrid learning 

method can be tested in more case studies in the future.  
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