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ABSTRACT 

To date, there are no known cures or effective preventative measures for cancer. 

Research has been conducted on small noncoding RNAs (ncRNAs) and noncoding RNA-

derived RNAs (ndRNAs) as potential contributors to cancer suppression and/or 

proliferation. Tumorigenesis may be slowed by identifying and targeting some ndRNAs 

that are frequently presented in different cases of cancer, which may improve patient 

prognoses. To identify these ndRNAs, we utilized next-generation sequencing (NGS), a 

DNA/RNA sequencing technology, to sequence nucleotides in the human transcriptome. 

Then, we analyzed NGS data in accordance with information from The Cancer Genome 

Atlas (TCGA) and Sequence Read Archive (SRA) to identify ndRNAs of interest. 

Our goal for this project is to identify ndRNAs that are highly expressed in five 

cancers (breast, lung, kidney, corpus uteri, brain) and ndRNAs that are highly expressed 

in controls. From here, we can determine which ndRNAs are differentially expressed. 

These ndRNAs may be significant biomarkers in earlier identification of cancer or the 

development of more curated therapies. For this project, we used Short Uncharacterized 

RNA Finder (SURFr) to process raw RNA sequencing (RNAseq) files obtained from 

TCGA. We then conducted a correlation analysis of TCGA data, followed by an analysis 

of SRA patient control data. Overwhelmingly, specific miRNA expressions were most 

elevated across all five cancers, notably miR-21. Whereas miRNAs that are differentially 

expressed across many cancers (miR-21 in this study) may be significant biomarkers in 

cancer research, differentially expressed miRNAs in certain demographics or cancers 

(miR-29a, miR-205, and miR-9 in this study) may be biomarkers for specific cancers. 
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INTRODUCTION 

Cancer has been a rampant global problem affecting numerous patients for 

thousands of years. Scientists have long been searching for potential cures for cancer, 

though no known cures currently exist. Given the increasing number of poor diagnoses 

and prognoses for cancer patients, there has, as a result, been a shift towards a rapidly 

growing demand for improved treatment options. Within the last couple of decades, 

researchers have turned their focus towards studying potential oncogenic diagnostic and 

prognostic biomarkers, particularly in conjunction with the TNM staging system, where 

T denotes the primary tumor, N denotes the number of afflicted lymph nodes, and M 

denotes the metastatic quality (degree of spread) of cancer [1,2]. The TNM system was 

established in 1958 by the American Joint Committee of Cancer (AJCC) to provide a 

standard means by which cancer is diagnosed. This classification of malignant tumors 

estimates survival rates, provides treatments, and communicates information accurately 

among medical professionals. These three factors are determined independently of each 

other before being integrated into one of four stages of cancer, stages I–IV [1]. 

Emerging evidence strongly suggests that specific RNAs are strong biomarkers 

for the presence of cancer, with noncoding RNAs (ncRNAs) being one of the largest 

indicators of cancer proliferation [3,4]. Next-generation sequencing (NGS) is a new 

DNA/RNA sequencing technology in the field of bioinformatics that can be used to 

analyze several subclasses of ncRNAs for their prevalence in various types of cancer 

[2,5]. While there is still much that remains unknown or uncertain about the pathogenesis 

of cancer, continually improving research in this field provides an optimistic outlook for 

the future of cancer patients. Our research focuses on the pertinent regulating roles of 
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ncRNA-derived RNAs (ndRNAs) in cancer proliferation. We believe that, through these 

studies, we can work towards generating improved prognoses for cancer patients. 

Only 1% of the human genome is responsible for protein coding [6]. Despite this 

fact, researchers have uncovered that over 80% of the human genome is active. In the 

past, the portion of the human genome containing ncRNA was regarded as “junk DNA,” 

but new information regarding oncogenesis and drug resistance, detailed below, has 

surfaced within the last 10 years [3,4,6]. Interestingly, ncRNAs constitute roughly 99% of 

the mammalian RNA, though the exact amount of functional ncRNA transcripts remains 

unknown as their numbers are increasing with each passing year [6]. Three discrete 

classes of ndRNAs are microRNAs (miRNAs), transfer RNA (tRNA)-derived fragments 

(tRFs), and small nucleolar RNA (snoRNA)-derived RNAs (sdRNAs) [6,7,8]. Though 

once believed to be “junk DNA” excisions of ncRNAs, these three subclasses are fully 

functioning fragments of ncRNAs [6]. Dysregulations in ncRNA composition, as a result, 

can contribute to tumorigenesis [6,8]. Our proposed research, again, is to analyze the 

prevalence of ndRNAs in cancer, with all literature being focused on various RNA 

molecules, including ncRNAs [3,4,6,7,8], ndRNAs [7], miRNAs [2,6,9], tRFs [6], 

snoRNAs [3,4,6,7,8,10], and sdRNAs [7,8]. 

Beginning with the first class, miRNAs are 22 nucleotide (nt)-long sequences of 

ncRNAs that are suspected contributors to messenger RNA (mRNA) degradation. Due to 

the “seed sequence” located on nucleotides 2–7, miRNAs can interfere with cell 

expression and cell signaling pathways [2,6]. Through this mechanism, miRNAs directly 

contribute to the four main stages (development, progression, metastasis, and drug 

resistance) of cancer proliferation. Also, samples of plasma and serum from early stages 
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of cancer have been found to contain miRNA fragments. Furthermore, miRNAs are 

highly specific and can be artificially engineered to target certain distinct genes in a 

variety of bodily sites, with a special focus on gastric, prostate, and breast cancers [2,6]. 

The second class of ncRNAs is categorized as tRFs, which are under 40 nt in length and 

have the potential to inhibit gene expression and regulate apoptosis. These tRFs are 

overexpressed in sex hormone-linked cell lines and serve as biomarkers for hormone-

dependent cancers, such as breast and prostate cancers [6]. Finally, snoRNAs are 60–300 

nt small ncRNAs responsible for post-transcriptional modification of ribosomal RNA 

(rRNA) [3,6]. In the context of cancer progression, snoRNAs are believed to participate 

in gene silencing similarly to miRNA gene silencing, especially with regards to breast, 

prostate, and lung cancers [6]. 

Several snoRNAs have been identified as potential biomarkers in cancer research, 

including C/D box and H/ACA box snoRNAs—snoRDs and snoRAs, respectively— 

snoRNA-42, and snoRNA-93 [3,4,6,8]. Given the emerging evidence surrounding 

tumorigenesis, information regarding cancerous genetic information and biomarkers was 

cataloged into The Cancer Genome Atlas (TCGA), a public-funded project developed in 

2005 to index the expansive human genomic profiles of more than 30 different cancers 

[9]. Because several ndRNAs in oncogenes have yet to be discovered, the ndRNAs must 

be analyzed in an efficient manner [7]. Traditional sequencing techniques are too slow to 

process a large amount of data simultaneously. Thus, NGS was developed in response to 

this problem [2,5]. While NGS is still not being fully utilized within a clinical setting, its 

application provides invaluable information about genetic mutations in the pathogenesis 

of cancers [5]. In particular, breast cancer, prostate cancer, myeloid neoplasms, 
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gallbladder cancer (GBC), and lung cancer are five subclasses of cancer that are of 

interest to researchers [2,3,4,5,6,8,10]. The poor outlook associated with cancer patients 

can be attributed to rapid proliferation, absence of targeted treatments, and late-stage 

diagnoses, often resulting in relapse after chemotherapy or surgery [2,10]. The key to 

preventing or slowing cancer development lies in targeting specific biomarkers of 

tumorigenesis, and early detection of the disease is crucial for improving the chances of 

long-term survival of patients [2]. As more progress is being made in ndRNA research, 

researchers are gradually growing closer to finding cancer-causing ndRNAs that may be 

biomarkers for treatment and developing potential cures for cancer. 

Currently, one of the most heavily researched biomarkers for cancer is snoRNAs, 

a class of intronic ncRNAs [3,4]. Three of the most important factors performing 

regulation of snoRNA expression are host genes, copy number variation, and DNA 

methylation [3]. Furthermore, snoRNAs have the potential to alter the composition of 

rRNAs and small nuclear RNAs (snRNAs) [8]. As mentioned previously, snoRDs 

participate in 2’-O-methylation of targets and are overexpressed in prostate cancer and 

non-small cell lung cancer, while snoRAs aid in target pseudouridylation—a form of 

RNA epigenetic modification—and show overexpression in prostate cancer. 

Ribonucleoproteins were also shown to have a strong positive correlation with snoRNAs 

in the “co-activation and synergy” of cancer [3]. 

Non-small cell lung cancer (NSCLC) is a subtype of lung cancer that is believed 

to be caused by cancer stem cells known as tumor-initiating cells (TICs) [9]. TICs are 

suspected agents in lung cancer regeneration, although current treatment options target 

the tumor cells as a whole rather than the residual TICs themselves. Subsequently, 
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relapse after cancer treatments is a common occurrence [10]. NSCLC is the primary 

cause of cancer-related deaths worldwide, with an average survival rate of 9.5 months 

post-diagnosis [4]. Part of the reason for the poor outlook surrounding lung cancer is that 

the disease frequently goes unnoticed until it is in its late stages, minimizing the chances 

of successful treatment. Mannoor et al. studied whether snoRNAs affect TICs by 

analyzing snoRNA expression in lung ALDH1+ and ALDH1– cells across 28 NSCLC 

tissues [10]. For this study, they used a quantitative polymerase chain reaction (PCR) to 

characterize snoRNA expression in 82 varying NSCLC tissues and implemented both in 

vitro and in vivo assays to determine whether snoRNAs contribute to the stem cell-like 

quality of TICs. Of the 28 NSCLC tissues, 22 were shown to have a presence of 

ALDH1+ cells (a type of TIC), and of the 22 snoRNAs, 21 were overexpressed for 

ALDH1+ relative to ALDH1– cells. Additionally, overexpression of snoRNA-3 and 

snoRNA-42 was found to be correlated with poor NSCLC patient prognoses. Moreover, 

snoRNA-42 was more highly expressed in CD133+ cells compared with CD133– cells. 

Thus, ALDH1+ and CD133+ are important biomarkers for lung cancer and lung TICs. 

The knockdown of snoRNA-42 corresponds with a decrease in cell proliferation of in 

vitro TICs [10]. Quantitative PCR further revealed that snoRNA-3 and snoRNA-42 

directly impact patient survival rates, with snoRNA-42 being overexpressed in lung 

cancer tissues and seldom expressed in healthy tissues [4,10]. This snoRNA is located in 

lq22, a common genomic amplicon in NSCLC. Researchers Mei et al. used quantitative 

PCR methods to test both snoRNA-42 and KIAA0907, its host gene, for amplification in 

10 NSCLC cell lines and one BEAS-2B cell line as a control, finding that snoRNA-42 

was much more highly expressed in NSCLC cell lines than in its host gene [4]. The 

5 



results of this study strongly suggest that lq22 targets snoRNA-42, which becomes 

overexpressed with lq22 amplification. A transfection test was conducted to determine 

cell viability with snoRNA-42 knockdown, or a reduction in the amount of snoRNA-42 

present, and showed that a decrease in snoRNA-42 is correlated with decreased NSCLC 

cell proliferation and decreased in vivo and in vitro tumorigenicity. One method by which 

snoRNA-42 knockdown regulates tumorigenicity is in the activation of p53, a common 

target of “genetic inactivation in human cancer,” which triggers NSCLC cell apoptosis 

[4]. Similarly, an increase in snoRNA-42 corresponds to increased cancer cell 

proliferation and growth, demonstrating its high potential as an oncogene of lung cancer 

[4]. Genetic mutations in snoRNAs are a contributor to tumorigenesis, and the above 

results strongly suggest that snoRNA-42 expression in TICs is heavily linked to the 

invasive nature of lung cancers [10]. 

Another form of malignancy that has been researched heavily is breast cancer. In 

a study conducted by Gong et al., researchers performed snoRNA analysis of multiple 

samples within 31 different cancers categorized in TCGA, with tests showing that 

snoRD-46 displayed clinical significance as a potential oncogene in breast cancer [3]. 

Furthermore, the presence of sdRNA-93 was studied by Patterson et al. in two distinct 

breast cancer cell lines—metastatic MDA-MB-231 and primary MCF-7—as well as in a 

control and three cancer subtypes—triple-negative breast cancer (TNBC) tumors, 

Luminal A tumors, and Luminal B Her2+ tumors. The MDA-MB-231 cell line was 

experimentally determined to display more invasive characteristics than the MCF-7 cell 

line. All three tumor subtypes exhibited varying degrees of sdRNA-93 expression, while 

the normal control tissue exhibited no traces of sdRNA-93 expression. Additionally, 
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sdRNA-93 is an important regulator of a sarcosine protein known as Pipox, the presence 

of which is indicative of specific breast cancer malignancies [8]. Results from these 

experiments indicate that snoRNA-93 and sdRNA-93, its small nucleolar RNA 

derivative, promote breast cancer tumorigenesis [8]. 

Continuing forth, cancers of the biliary tract are particularly life-threatening 

diseases, a trait that is attributed to their rapid proliferation, absence of treatments, and 

late-stage diagnoses. GBC is a form of biliary tract cancer whose origins can be linked to 

diseases such as cholecystitis, typhoid infection, and wall calcification; older age; 

obesity; smoking; and so on. Additionally, females are more at risk for GBC in 

comparison with men. One precursor linked to GBC expression is loss of heterozygosity, 

the inability of a gene to express itself due to deletion. Variations in the KRAS oncogene, 

which has been shown to activate cell-cell signaling, were also shown to be prevalent in 

cases of GBC [2]. Furthermore, changes in the p53 gene were correlated with GBC, 

similarly to its active role in NSCLC [2,4]. The p53 gene has been shown to increase the 

likelihood of a benign tumor becoming malignant. Aggregates of the p53 protein were 

detected in several gallbladder tumors, while it was not expressed in healthy gallbladder 

tissue. According to Montalvo-Jave et al., cycloxygenase-2 expression is suspected to be 

a component of an “inciting inflammatory process” as yet another indicator of GBC 

pathogenesis [2]. Though cancer antigens can provide useful information for GBC 

development, their presence can provide potentially contradicting information, and thus 

they cannot be utilized as definitive diagnostic biomarkers. On the other hand, a more 

reliable diagnostic biomarker uses circulating tumor cells (CTCs), components of tumors 

that enter the bloodstream. A higher concentration of CTCs was found in GBC patients, 
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and tests indicated that CTCs may be used to differentiate between benign and malignant 

biliary tract cancers. Besides diagnostic biomarkers, one of the most widely implemented 

prognostic biomarkers is the expression of various miRNAs, which have the potential to 

either progress or suppress cancer growth. Other less reliable but useful prognostic 

biomarkers are serum tumor markers and tyrosine kinase receptors, both of which are 

correlated with worse GBC prognosis [2]. 

Moreover, myeloid neoplasms (MNs) are another form of malignancy that is 

caused by proliferating cancerous myeloid cells. Common MN diseases include acute 

myeloid leukemia, myelodysplastic syndromes, myelodysplastic syndromes, and 

myeloproliferative neoplasms. For the clinical trial application used in this study, a 

custom onco-hematology score was developed and assigned to categorize genetic variants 

based on their relative levels of pathogenicity. Both germline gene variants and structural 

changes were useful in classifying the genetic information of MNs. Using this systematic 

categorization, 39 genes in 121 occurrences of MN displayed a total of 278 pathogenic 

variants, and 84% of patients displayed at least one variant [5]. Due to the grim outlook 

associated with both MNs and GBC, NGS techniques can be employed to target potential 

biomarkers to gain a more thorough understanding of the pathogenesis associated with 

myeloid and biliary tract cancers [2,5]. Because NGS can recognize more genetic 

mutations than traditional sequencing techniques, the utilization of NGS allows for the 

development of more targeted treatments for MN patients and, as a direct result, increases 

the likelihood of improved, more specific diagnoses and prognoses [5]. For instance, 

Gong et al. created “snoRNA in cancer (SNORic),” a data portal summarizing the results 

and analyses of these extensive studies, in hopes of promoting widespread, public access 
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to these data [3]. With the SNORic portal, users can obtain information regarding which 

of the 1,524 snoRNAs studied across more than 10,000 samples are of clinical 

significance. With more progress being made in snoRNA studies, researchers are 

growing closer to finding targets of cancer-causing snoRNAs, thereby developing 

potential cures for relevant cancers [3]. Furthermore, Kasukurthi et al. developed a 

computational approach known as “Short Uncharacterized RNA Finder” (SURFr) for 

processing ndRNA data as it relates to oncogenesis. The tool was designed to process raw 

NGS files to output a set of ndRNAs potentially present in instances of patient cancer. 

Similarity Vectors (SVs) and Differential Expression Vectors (DEVs) facilitate instances 

of sequence alignment and pattern recognition and, respectively, were used to help 

classify novel ndRNAs [7]. MoVaK, the new alignment methodology that is part of the 

SURFr software, was able to process RNA sequencing (RNAseq) files in a mere fraction 

of the time (~1/100) of Basic Local Alignment Search Tool (BLAST), a traditional 

sequencing algorithm widely adopted in the bioinformatics research field. In a 

comparison, MoVaK averaged four minutes and 35 seconds to process each file, while 

BLAST averaged seven hours and 26 minutes to perform the same task. These results 

indicated that the methodology presented in this study has achieved significant 

improvement over conventional NGS data analysis tools, presenting a much faster, more 

efficient way of categorizing and analyzing ncRNAs and their derivatives in several cases 

of cancer [7]. 

More broadly speaking, NGS data can also be analyzed in accordance with the 

data in TCGA, a catalog of over 30 different cancers, to detect recurring patterns in 

multiple cases of patient cancer. When TCGA was first developed, the project was split 
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into two phases: Phase I, a 3-year pilot run, focused on the testing and development of 

brain, lung, and ovarian cancers, while studies in phase II focused on the remainder of the 

30 cancer subtypes. Some of the means by which TCGA processes datasets include 

RNAseq, microRNA sequencing (miRNAseq), and DNA sequencing (DNAseq). 

RNAseq analyzes information within RNA strands with high precision, and miRNAseq is 

a subcategory of RNAseq that analyzes the role that miRNAs play in cancer gene 

expression and regulation. Similarly, DNAseq examines insertions, deletions, mutations, 

and other changes within nucleotide sequences. NGS provides additional genomic data 

with regards to these malignancies [9]. Given the marked developments in cancer 

research, scientists are aiming to determine the potential oncogenes that contribute to 

cancer cell proliferation and growth by utilizing NGS and TCGA alongside other 

complementary resources. 

The full scope of the significance of ndRNA regulation and expression in cancer 

cell lines has yet to be understood completely, generating a need for further research 

[3,4]. Despite recent advancements, more studies on diagnostic and prognostic 

biomarkers must be conducted to gain a deeper understanding of their implications. 

Continued research of GBC biomarkers, for instance, is essential to identifying more 

specific biomarkers for cancers and improving patient prognoses [2]. Currently, the main 

problem that exists with biomarkers is that they require further research before being 

integrated into the clinical setting. The incorporation of markers could conversely throw 

off the universal viability of the TNM system by introducing too many factors into the 

staging process. Many clinical studies have failed to produce very consistent data due to 

having small patient sample sizes [1]. Nevertheless, biomarkers have the potential to be 
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extremely useful in characterizing cancers and can be utilized to create more targeted 

treatments, especially in conjunction with NGS [1,2,5,6,7]. While NGS is a powerful 

sequencing tool, it cannot be independently utilized yet. However, its application 

undoubtedly provides a deeper understanding of genetic mutations leading to the growth 

and proliferation of cancer cells [5]. 

TCGA provides an extensive database of cancer genomic data, and as more 

information is discovered, more preventative measures can be taken towards cancer as a 

whole [9]. Its functionality is significantly more efficient than that of traditional 

sequencing methods [7]. Two main issues that currently exist in this research, however, 

lie in biological barriers and targets of drug delivery. Nevertheless, these emerging 

studies present great potential for specific targeting of cancerous genes, and the 

therapeutic use of ncRNAs and their derivatives is consistently being improved upon by 

scientists [6]. Ultimately, as methods for ncRNA and ndRNA processing continually 

grow to become more efficient, researchers hope to be able to isolate specific cures for 

different cancer subtypes in the near future [9]. 
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EXPERIMENTAL METHODSResearch goals and methodology overview 

The presence of ncRNAs and ndRNAs—especially miRNAs, sdRNAs, and 

tRFs—have been previously shown to indicate cancer proliferation [2,3,4,6,8]. Thus, our 

three research goals are as follows: (1) to identify highly expressed ndRNAs present in 

five different cancers: breast, lung, kidney, corpus uteri, and brain; (2) to identify highly 

expressed ndRNAs present in control data; and (3) to compare highly expressed ndRNAs 

from cancer and control datasets to determine which ndRNAs are differentially 

expressed. We categorize RNAs as being differentially expressed if they appear only in 

either cancer or control data sets but not in both. 

We used SURFr to process raw RNAseq files obtained from TCGA. Note that 

SURFr is a software developed at the University of South Alabama that is much more 

efficient than BLAST, a traditional sequencing data processing software. From the 

SURFr processing results, we then conducted an in-depth correlation analysis, followed 

by an analysis of relevant, publicly available SRA control patient data. Finally, we 

identified a set of ndRNAs of our interest and used them to aid in our research goals. 

Details of methodology 

1. Data Sources 

The primary source of data used for this study was taken from human miRNA-seq 

Binary Alignment Map (BAM)-format datasets from 53 different cancer subtypes (breast, 

lung, liver, brain, colon, prostate, stomach, tongue, heart, skin, etc.), including those with 
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relatively few case numbers (<100 cases), in TCGA. Additional data for control patients 

(those without cancer) were obtained from the Sequence Read Archive (SRA). The data 

algorithmic input was obtained from the National Center for Biotechnology Information 

(NCBI). 

2. Software and Hardware 

Our project requires one High-Performance Computing (HPC) system (AKA 

supercomputer), one lab workstation, one computational algorithm known as SURFr, and 

one database known as MongoDB. Note that supercomputers are unique compared to 

traditional personal computers (PCs) and are specially designed to handle memory-

intensive and computation-intensive tasks that cannot be efficiently handled by a 

traditional PC. All of the resources listed below, other than the HPC system, are provided 

to us by the computer science department at the University of South Alabama. 

• Alabama Supercomputer (ASC): The ASC is a physical supercomputer located in 

Huntsville, AL, that allows users to access the required computational resources 

remotely upon request. It is provided to us by the state of Alabama. 

• Lab workstation: The workstation (32 GB RAM) on which we performed data 

analysis is located in the University of South Alabama School of Computing Data 

Science Lab, room 3319. Data analysis was performed with the help of the SURFr 

algorithm, with SRA data being analyzed directly using SURFr. 

• SURFr: Briefly, SURFr (http://salts.soc.southalabama.edu/surfr) is an extremely 

efficient computational algorithm with linear time and space complexities 

13 

http://salts.soc.southalabama.edu/surfr


designed to process raw RNAseq NGS files (in FASTA, FASTQ, or text format) 

directly into a list of ndRNAs, which serve as potential biomarkers for cancer. 

• MongoDB: As opposed to a traditional Structured Query Language (SQL) 

database, MongoDB is a non-SQL (NoSQL) document database, meaning that it 

is more flexible, more user-friendly, and faster than an SQL database, especially 

when dealing with semi-structured data. This database was used to store, 

organize, retrieve, and compare all the results produced by our data analysis job 

using SURFr. 

3. Research Design 

1) Download all accessible miRNA-seq datasets from TCGA, where a total of 

11,082 files are readily available in BAM format (https://portal.gdc.cancer.gov/). 

All miRNA-seq files were downloaded onto an external hard drive. 

2) Transfer the downloaded files to ASC in multiple batches (~2,000 files per batch). 

The files were transferred to the ASC because converting BAM to FASTA format 

is time-consuming and computationally intensive, so this task was better suited 

for a supercomputer rather than a traditional PC. 

3) Write a Bash script to convert BAM files to FASTA files using a C++ 

Application Programming Interface (API), BamTools 

(https://github.com/pezmaster31/bamtools). 

4) Using SURFr, generate lists of ndRNAs from all the FASTA files (from step 3). 

5) Using MongoDB, combine all ndRNA outputs (metadata and clinical data) into 

one master index file, a comparison of all ndRNAs across all files. 
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6) Perform a correlation analysis of ndRNAs (from Step 4) with the master index file 

(from Step 5). The master index file contains information such as cancer type, 

average DNA sequence, RNA type, number of RNAs, percent standard deviation, 

and average expression. The primary information we used from this file comes 

from the RNA type and average expression, which was utilized to determine the 

most highly expressed RNAs in each cancer. 

7) Compare information from correlation analysis of TCGA cancer patient data 

(from step 6) to further analyze SRA control patient data. 
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RESULTS & DISCUSSION 

A relatively new, unexplored category is that of ndRNAs in their role as 

regulators of tumorigenesis. The three primary goals of this thesis project are as follows: 

to identify ndRNAs that are highly expressed in patients with breast, lung, kidney, corpus 

uteri, and brain cancer; to identify ndRNAs that are highly expressed in patients without 

cancer; and to determine which ndRNAs are differentially expressed. 

One unanswered question that we seek to resolve is whether the expression of 

these ndRNAs potentially contributes either to cancer proliferation or suppression in 

different patients. A follow-up question is what the implications of certain ndRNAs 

within the same cancer and across various cancers are. We also seek to explore how these 

ndRNAs affect patients belonging to different demographics, including age, gender, 

ethnicity, race, and vital status. As such, another question we pose is whether different 

ndRNAs are more highly expressed or dysregulated in those of a certain demographic 

than those of a different one. If so, our next goal is to explore how this differential 

expression or dysregulation presents itself in the context of cancer development, that is, 

which ndRNAs influence cancer progression. By answering these questions, we seek to 

bring attention to a list of ndRNAs that can serve as potential biomarkers for further 

research in developing treatments for different cancers, especially within certain 

populations of people who may be more vulnerable to cancer, such as older adults. 

Several studies have already correlated dysregulations in certain ndRNAs to the 

development of certain cancers [2,3,4,6,8,10]. In those studies, generally, the same 

ndRNAs either contribute to or fight against the proliferation of the same cancer subtype, 

while different ndRNAs analogously affect different cancer subtypes. Based on these 

16 



studies, following up with our initial questions, we wanted to explore whether some of 

the same ndRNAs are highly expressed in many different patients, regardless of 

differences in age, gender, ethnicity, or race. Additionally, we wanted to discover 

whether, for different subcategories of cancer, some ndRNAs are differentially expressed 

for patients expressing different cancer subtypes. 

While one ndRNA may enhance or inhibit oncogenesis in those belonging to one 

race, that same RNA may have no or opposite effects in those of another race or ethnicity 

[11,12,13,14,15,16,17]. There may also be higher instances of ndRNA dysregulations in 

many non-Caucasian races compared with Caucasians [11,12,13,14]. With relation to 

gender, some miRNAs and miRNA precursors have been shown to be more highly 

expressed in female cancer patients than male cancer patients, so it is believed that these 

ndRNAs may contribute to the increased incidence of certain cancers in some populations 

but not others [18,19,20]. Regarding age, as people become older, they are also more 

susceptible to increased somatic mutations that may begin as soon as middle age [21]. 

Such mutations can lead to senescence, or permanent cell arrest, which may potentially 

increase older populations’ risk of developing cancer [21,22]. Thus, we aim to investigate 

if the same ndRNAs may have similar effects in people of the same demographic yet may 

have different effects in people of different demographics. 

In many cases, the degree of polymorphisms in various ndRNAs or the expression 

of some ndRNAs seems to influence the pathogenicity of cancer and thus to the 

subsequent deadliness of cancer [14,22,23]. As such, these ndRNAs may affect the vital 

status of patients, that is, whether the cancer patient survives the disease. 
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To begin investigating these goals, the first question we needed to answer is how 

many ncRNAs are present in our dataset of TCGA patients. From there, we could verify 

which ndRNAs are also present. Next, we researched which ndRNAs are differentially 

expressed in healthy patients and differentially expressed in cancer patients. This way, we 

could begin to isolate which ndRNAs may or may not be contributing to cancer 

proliferation. For instance, if an ndRNA was found to be highly expressed in both the 

healthy patient and cancer patient datasets, then we deduced that that ndRNA may not 

contribute to cancer cell development or suppression. However, if it was highly expressed 

in cancer patients but not healthy patients, then we may deduce that that ndRNA has the 

potential to influence cancer cell growth. As demonstrated below, some of our findings 

have already been validated from existing experimental studies. 

We first focused on the five cancer types with the highest prevalence of cases in 

TCGA: breast, 1208 files; bronchus and lung, 1091 files; kidney, 1035 files; corpus uteri, 

572 files; and brain, 537 files. The total number of ncRNAs (and, thus, the total number 

of ndRNAs) in all five cancer types is as follows: breast, 6,667; bronchus and lung, 

7,872; kidney, 8,330; corpus uteri, 8,481; brain, 6,206. From there, breast and lung 

cancers were subdivided further into ethnicity, race, age (divided according to decade), 

gender, and vital status. Kidney, corpus uteri, and brain cancer datasets were analyzed as 

a whole, without the subdivisions mentioned above. We filtered all the results by three 

types of RNAs: miRNAs, snoRNAs, and tRNAs. To determine the prevalence of each 

particular RNA, the data were sorted in the ascending order of percentage standard 

deviation values, where the lowest standard deviation represents that particular RNA 

being the most common across many patient files, and the highest standard deviation 
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represents that particular RNA being the least common across many patient files. 

Percentage standard deviation alone is insufficient to determine the significance or 

prevalence of an ndRNA for multiple reasons, one of which is that standard deviation 

values can be low for one file simply due to consistently low expression. Another reason 

that percent standard deviation alone is an inadequate measure for ndRNA data analysis 

is that standard deviation values can be relatively higher, despite low expression in most 

or all patient files. For this reason, furthermore, the average expressions of each RNA 

across different files were also calculated to determine how highly expressed each RNA 

is. Within each cancer type, the top ten most highly expressed RNAs belonging only to 

the categories of miRNAs, snoRNAs, or tRNAs were analyzed. These RNAs were 

subsequently compared with existing literature to determine if they have been previously 

researched as contributing to the development or treatment of cancer. 

Across all five cancer sites and their data subdivisions, tRNAs were by far the 

most commonly found derived RNA type, with only some exceptions. That more tRNAs 

are so common compared to other ndRNAs is unsurprising since tRNAs are directly 

involved in protein synthesis and would be expected to present in higher amounts [6]. 

Consistently, miRNAs were often the most highly expressed derived RNA type. Overall, 

miRNAs have been found to contribute greatly to cancer progression due to their ability 

to interfere with cell expression and cell signaling pathways [6]. Thus, given their roles as 

major diagnostic and prognostic biomarkers, that they are highly expressed in cancer 

patients is also unsurprising. 

Breast cancer 
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Because breast cancer is more prevalent in females than in males, we began with 

the TCGA dataset of females diagnosed with breast cancer. Considering the top ten most 

highly expressed RNAs, are all miRNAs (Figure 1). Starting with miR-21, which shows 

the highest average expression in female breast cancer patients, its upregulation has been 

correlated with the progression of breast cancer, including advanced stages and low rates 

of patient survival [24]. Other miRNAs that were highly expressed in our dataset that are 

suspected to play roles in breast cancer upregulation and/or metastatic growth are miR-

182, miR-10b, and miR-99b [25,26,27]. miR-143, miR-22, miR-30a, miRNAs of the let-

7a family (miR-let-7a1, miR-let-7a2, and miR-let-7a3), miR10a, and miR-148a have 

been found either to be downregulated in breast cancer cells or to regulate the continued 

growth of breast cancer cells in cancer patients [28,29,30,31,32,33,34]. High expression 

of these miRNAs indicates that they may play roles in either upregulating or 

downregulating breast cancer in breast cancer patients. 

Using the same parameters and comparing these top ten most highly expressed 

RNAs from the female breast cancer dataset with the male breast cancer dataset, 

fascinatingly, the same ten ndRNAs are also highly expressed in male patients, albeit in a 

somewhat different order (Figure 2). The standard deviation values in both the male and 

female breast cancer datasets are also relatively similar to one another and are fairly low, 

indicating that not only are these RNAs highly expressed, but they are also consistently 

expressed across multiple different patients (Table 1). Combined, these data reveal that, 

regardless of gender differences, the same few ndRNAs may be presented as potential 

biomarkers for improved breast cancer treatments. Nevertheless, the slight differences in 

the ranking of ndRNA expression between females and males indicate that some 
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miRNAs may be more effective targets for developing treatments in females than in 

males or vice versa. 

Now, filtering the breast cancer dataset by ethnicity alone, the same ten ndRNAs 

in the female breast cancer dataset were found among both the Hispanic/Latino and non-

Hispanic/non-Latino populations. Similar results were obtained from the ethnicity not 

reported category, except miR-375 instead of the let-7 family of miRNAs was found 

among the top ten most highly expressed ndRNAs. 

When filtering the breast cancer dataset by race alone, the top ten most highly 

expressed ndRNAs in the female breast cancer dataset were, for the most part, the same 

ten found in black/African American, white, American Indian/Alaska Native, and Asian 

breast cancer patients. In the black/African American breast cancer dataset, miR-10a was 

not among the top ten. In the American Indian/Alaska native breast cancer dataset, miR-

30a, miR-10a, and the let-7 family were omitted from the top ten. In the Asian breast 

cancer dataset, miR-30a and miR-10a were not found in the top ten, indicating that 

perhaps these RNAs are not the most ideal targets for cancer treatment in Asian breast 

cancer patients. However, even though these miRNAs were absent from the top ten, they 

were still overexpressed and quite close to the top ten. Again, similar results to the 

ethnicity not reported category were obtained from the race not reported category, with 

miR-375 being among the top ten most highly expressed ndRNAs rather than the let-7 

family of miRNAs. 

Filtering the breast cancer dataset by age alone, the top ten ndRNAs from the 

female breast cancer dataset were found across all age groups (ages 20 and up), with the 
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exception of the 90–99 cohort in which the let-7 family of miRNAs was still highly 

expressed but not among the top ten. 

Filtering the breast cancer dataset by vital status alone, both alive and dead 

patients overexpressed the same ten ndRNAs as the female breast cancer dataset, 

indicating that the presence of these ndRNAs is unlikely to act as a measure of whether 

one will survive the disease. The consistent expression of the same ndRNAs in breast 

cancer patients of varying populations indicates a strong possibility that these RNAs play 

potentially significant roles in the progression of breast cancer in general. 

In addition to patients with cancer, normal human breast tissue controls (five 

files) taken from the SRA database were compared to TCGA data. Like TCGA patient 

files, the control data were sorted by descending value of expression. After filtering the 

results to show only miRNAs, snoRNAs, and tRNAs, the top ten most highly expressed 

RNAs were shown to be markedly different from those in the breast cancer patients 

(Table 2). In fact, interestingly, almost none of the top ten miRNAs found in the normal 

breast tissue files, with the exception of miR-148a, were found in the top ten miRNAs of 

breast cancer patients, suggesting that highly expressed miRNAs like miR-21 do play 

important regulating roles in cancer development. 

Across all TCGA breast cancer datasets, regardless of ethnicity, race, age, gender, 

or vital status, the same group of ndRNAs is, for the most part, overexpressed in breast 

cancer patients and not expressed in normal healthy patients. From these findings, we 

may deduce that these ndRNAs are the ones that are most likely to contribute to breast 

cancer proliferation. 
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Lung cancer 

The next cancer subtype of focus to this study is lung cancer. Lung cancer 

presents in many patients who smoke, and many people begin smoking during, or even 

before, early adulthood. As such, the dataset that we felt was most logical to begin data 

analysis is the lung cancer cohort of patients ages 30 through 39, the youngest available 

set of patients in TCGA who received a lung cancer diagnosis. Again, we sorted and 

filtered the data such that we would see results for the top ten most highly expressed 

RNAs for lung cancer patients in the 30–39 age range. However, since this cohort only 

has three files, some of the standard deviation values for the top ten values tended to be 

higher. Interestingly, seven of the ndRNAs that are highly expressed in the ages 30–39 

lung cancer dataset are the same ones that are expressed in the female and male breast 

cancer datasets, namely miR-21, miR-22, miR-143, miR-148a, miR-182, miRNAs of the 

let-7 family, and miR-99b; new ndRNAs include miR-203a, miR-29a, and miR-205 

(Figure 3). Of these miRNAs, the ones that have been shown to be overexpressed in lung 

cancer patients are miR-21 and miR-205 [35,36,37]. The miRNAs that have been 

reported either to be under-expressed or to play regulatory roles in lung cancer 

development are miR-22, miR-143, miR-148a, miR-182, miRNAs of the let-7 family, 

miR-99b, miR-203a, and miR-29a [38,39,40,41,42,43,44,45]. Overexpression of these 

eight miRNAs implies that they may be contributing to the regulation of lung cancer. 

Comparing the age 40–49 lung cancer cohort to the 30–39 lung cancer cohort, 

they share seven ndRNAs in common, with miR-203, miR-29a, and miR-205 being 

omitted from the top ten values. Comparing the age 50–59 lung cancer cohort to the age 

30–39 lung cancer cohort, they share eight ndRNAs in common, with miR-29a being 
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omitted from the top ten values and miR-205 being entirely absent from the dataset. 

Comparing the age 60–69, 70–79, and 80–89 lung cancer cohorts to the age 30–39 lung 

cancer cohort, they share eight ndRNAs in common, this time with both miR-29a and 

miR-205 being entirely absent from these three datasets. The 90–99 lung cancer cohort 

was not considered as it only contained one patient file. With the gradual disappearance 

of miR-29a and miR-205 as one ages, these two miRNAs may be implicated in age-based 

lung cancer development. As miR-29a expression has been demonstrated to inhibit lung 

cancer development, its absence may contribute to the higher cases of lung cancer seen in 

older lung cancer patients [45]. Li et al. found in a sample of 32 NSCLC patients under 

age 60 and 40 NSCLC patients over age 60 that miR-29a demonstrated high expression 

in 14 patients of each group. In the NSCLC group of patients above age 60, miR-29a 

demonstrated low expression in 26 patients, whereas, in the NSCLC group of patients 

under age 60, miR-29a demonstrated low expression in 18 patients [46]. These results are 

consistent with our data indicating that miR-29a is not as highly expressed as one ages. 

On the other hand, high expression of miR-205 has been implied to enhance lung cancer 

proliferation, so its absence as one ages may lead to improved prognoses for older lung 

cancer patients [37]. Additionally, in an article by Zeng et al., miR-205 was expressed 

over twice as much in NSCLC patients 65 and under when compared with NSCLC 

patients over age 65 [47]. 

Filtering the lung cancer dataset by ethnicity alone, miR-29a and miR-205 were 

entirely missing from all datasets. Additionally, in the Hispanic/Latino lung cancer 

cohort, miR-203a was also missing, and miR-182 was not among the top ten most highly 

expressed ndRNAs as with the age 30–39 lung cancer group. In the non-Hispanic/non-

24 



Latino lung cancer population, miR-203a was not within the top ten most highly 

expressed ndRNAs. 

Filtering the lung cancer data by race alone, compared to the age 30–39 lung 

cancer group, once again, miR-29a and miR-205 were entirely missing from all datasets 

except for the Asian and race not reported categories. In the black/African American 

group, miR-203a was not among the top ten ndRNAs but was very highly expressed. All 

other top ten ndRNAs from the age 30–39 lung cancer group were among the top ten 

most highly expressed ndRNAs in all datasets categorized by race. This consistency 

suggests that these ndRNAs may be relevant biomarkers in the continued research of 

developing lung cancer treatments for patients across multiple demographics. 

Filtering the lung cancer data by gender alone, miR-29a and miR-205 were 

entirely missing from both female and male datasets. Otherwise, compared to the age 30– 

39 lung cancer cohort, only miR-203a was missing from the female lung cancer file, 

indicating that miR-203a may not be a significant target for female lung cancer treatment. 

Filtering the lung cancer data by vital status alone, miR-29a and miR-205 were 

entirely missing from both alive and dead patients’ files. Otherwise, the other top ten 

highly expressed ndRNAs in the age 30–39 lung cancer patients were shared with both 

the alive and dead lung cancer patients. As such, while miR-29a and miR-205 may be 

biomarkers for indicating the presence of lung cancer, it does not seem that either 

miRNA alone contributes significantly to determining the vital statuses of lung cancer 

patients. 

Additionally, normal human lung tissue controls (six files) taken from SRA were 

compared to TCGA data. Comparing the top ten most highly expressed ndRNAs from 
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both SRA and TCGA datasets, just like the breast cancer and normal breast tissue 

comparison, only miR-148a is shared between control and cancer patient files (Table 3). 

However, miR-205, although not one of the most highly expressed ndRNAs among all 

lung cancer patients, was highly expressed in younger lung cancer patients. miR-205 is 

also among the most highly expressed ndRNAs in the control dataset. Regardless, based 

on existing literature, the data indicate the potential significance of miR-205 in 

contributing to lung cancer proliferation. 

Looking at the raw TCGA data, miR-29a and miR-205 are entirely absent from 

almost all datasets but are highly prevalent in younger lung cancer patients. Based on 

TCGA and SRA information and existing literature, miR-29a and miR-205 may be 

implicated in playing significant roles in age-based lung cancer inhibition or 

proliferation, respectively. However, it is important to note that miR-205 was also highly 

expressed in normal lung tissue controls. Other ndRNAs that were highly expressed 

across almost all lung cancer cohorts are also thought to contribute to the development of 

lung cancer. 

Kidney, corpus uteri, and brain cancer 

As opposed to breast and lung cancer, the remaining analyses on kidney, corpus 

uteri, and brain cancer will be less detailed than those of breast and lung cancer and will 

mostly be analyzed as datasets in their entirety rather than being grouped by different 

demographics. Of note, in kidney cancer patients, several of the top ten highly expressed 

ndRNAs were the same ones present in breast and lung cancer, including miR-21, miR-
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22, miRNAs of the let-7 family, and miR-143 (Figure 4). Similar trends were seen in 

corpus uteri cancer patients (Figure 5). 

SRA control data for human normal kidney tissue (six files) were compared with 

TCGA kidney cancer data, and miR-148a and miR-101-1 were highly expressed in both 

healthy and cancer patients (Table 4). Similarly, when comparing SRA control data for 

human normal endometrial tissue (ten files) with TCGA corpus uteri cancer data, miR-

148a was also found to be highly expressed in both healthy and cancer patients (Table 5). 

In brain cancer patients, we see the largest deviation from this typical pattern of 

ndRNA expression seen in the other four cancer types discussed so far. Interestingly, 

miR-21 expression, while still one of the most highly expressed brain cancer ndRNAs, is 

significantly under-expressed compared to breast, lung, kidney, and corpus uteri patients 

(Figure 6). Instead, miRNAs of the miR-9 family are the most highly expressed, and 

overexpression of miR-9 has been suggested to contribute specifically to brain 

tumorigenesis [48,49]. This would account for the unusually high expression of the miR-

9 family in brain cancer patients as a whole. 

SRA control data for human normal brain tissue (six files) were compared with 

TCGA kidney cancer data. No miRNAs were shared between the two datasets, indicating 

that the miRNAs identified in brain cancer tissue may be relevant biomarkers for cancer 

detection (Table 6). 

Final thoughts 

By far, the most highly expressed ndRNAs in TCGA datasets were consistently 

miRNAs, and the most highly expressed ndRNA in nearly every dataset is miR-21, with 
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the exception of brain cancer. Given the data in combination with existing literature, it 

would seem that upregulation of miR-21 is strongly implicated in a wide variety of 

cancers, including but not limited to the ones listed in this thesis [24,35,36,50,51]. Of all 

the RNAs in our datasets, except for brain cancer, miR-148a was found to be highly 

expressed in all control datasets in addition to the cancerous datasets. However, this does 

not indicate that its expression is not significant to cancer progression as overexpression 

of miR-148a has been linked to regulation of breast and lung cancer progression [34,40]. 

Furthermore, of note, across all cancer subtypes, miRNAs were by far the most highly 

expressed RNA type, which further highlights the roles that miRNAs specifically play as 

either oncogenes or tumor suppressors [52]. 

Looking at control data, miR-29a was found in all five healthy patient datasets but 

absent from all five cancer patient datasets, with the exception of the younger lung cancer 

cohorts. Additionally, miR-24 and miR-378a were found in all healthy patient datasets 

except brain cancer and were absent from all five cancer patient datasets (Table 7). 
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CONCLUSION 

Cancer is one of the world’s deadliest diseases as it currently lacks effective cures 

and preventative measures. Recent research has demonstrated that ncRNAs and ndRNAs 

are potential contributors to cancer suppression and/or proliferation. Particularly, 

tumorigenesis may be slowed or stopped by identifying and targeting some ndRNAs. In 

addition, early detection of specific small ndRNAs may significantly improve cancer 

patients’ chances of long-term survival. Therefore, our research goals in this project are 

to identify ndRNAs that are highly expressed in breast, lung, kidney, corpus uteri, and 

brain cancers; to identify ndRNAs that are highly expressed in controls; and to identify 

ndRNAs that are differentially expressed in cancer or healthy patients. We used the 

SURFr algorithm to process raw RNAseq files from TCGA and then conducted a 

correlation analysis, after which we analyzed relevant SRA control patient data. 

We found that miRNA expression was most elevated across all five cancers, and 

miR-21 was the most highly expressed miRNA in all cases except for brain cancer. 

Notably, the implication of miR-21 overexpression has been studied in various cancers 

and is thought to contribute to its increased progression in patients [24,35,36,50,51]. 

Another important observation from this research is that, for the most part, the same 

miRNAs were found in relatively similar amounts, save for miR-29a and miR-205 in 

lung cancer patients of different age groups and miR-9 in brain cancer patients. Existing 

literature demonstrates the potential role that miR-29a and miR-205 can play in age-

related lung cancer proliferation or suppression [21,22,37,45,46,47]. Furthermore, miR-9 

was notably most highly expressed in the brain cancer dataset, and its overexpression has 

been correlated with brain tumorigenesis [48,49]. 
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Out of the TCGA cancer data and SRA control data, miR-148a was the primary 

ndRNA of note found to be shared between the two sets, hence its expression is non-

differential. Its role in cancer progression is still being researched, but its overexpression 

may contribute to the suppression of breast and lung cancer cell growth [34,40]. 

As such, we concluded that, while most miRNAs from our data were presented in 

roughly the same amounts across patients of different demographics and different 

cancers, some miRNAs are specific to some demographic or cancer type. miRNAs that 

are highly expressed across many different cancers (miR-21 in this study) have the 

potential to be biomarkers for recognizing cancers and developing more generalized 

cancer therapies. miRNAs specific to demographic or cancer types (miR-29a, miR-205, 

and miR-9 in this study have the potential to be biomarkers for recognizing specific 

cancers and developing specific therapies. 

Currently, the exact role that ndRNAs play in the progression of diseases such as 

cancer is still undetermined. As more studies relevant to the role of ndRNAs in cancer 

proliferation and suppression are conducted, more curated forms of cancer treatments and 

therapies may be developed. This area of cancer research is a relatively new, unexplored 

frontier that presents great potential for future work using similar or other novel data 

analysis methods. Additionally, as ndRNAs are believed to interfere with the function of 

coding RNAs, the role of ndRNAs in other non-cancerous diseases presents another area 

of future study. Overall, many mechanisms of ndRNAs remain yet unknown, and further 

study of ndRNAs presents significant potential to develop better targeted, more efficient 

treatments for both cancerous and non-cancerous diseases. 
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Figure 1. Top ten most highly expressed ndRNAs in female breast cancer patients. 

After filtering by miRNAs, snoRNAs, and tRNAs, the above results were obtained. miR-

let7a1, miR-let7a2, and miR-let7a3 are taken to be the same RNA due to having identical 

average DNA sequences. 
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Figure 2. Top ten most highly expressed ndRNAs in male breast cancer patients. 

The same parameters applied to the female breast cancer patient dataset were applied to 

the male breast cancer patient dataset. 
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Figure 3. Top ten most highly expressed ndRNAs in lung cancer patients, ages 30– 
39. The same parameters applied to both breast cancer patient datasets were applied to 

the lung cancer patient datasets. 
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Figure 4. Top ten most highly expressed ndRNAs in kidney cancer patients, all. The 

same parameters applied to breast and lung cancer patient datasets were applied to kidney 

cancer patient datasets. 
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Figure 5. Top ten most highly expressed ndRNAs in corpus uteri cancer patients, all. 

The same parameters applied to breast, lung, and kidney cancer patient datasets were 

applied to corpus uteri cancer patient datasets. 
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Figure 6. Top ten most highly expressed ndRNAs in brain cancer patients, all. The 

same parameters applied to breast, lung, kidney, and corpus uteri cancer patient datasets 

were applied to brain cancer patient datasets. 
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The same parameters applied to breast, lung, and kidney cancer patient datasets were 

applied to corpus uteri cancer patient datasets. 
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Figure 6. Top ten most highly expressed ndRNAs in brain cancer patients, all. The 

same parameters applied to breast, lung, kidney, and corpus uteri cancer patient datasets 

were applied to brain cancer patient datasets. 
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The same parameters applied to breast, lung, and kidney cancer patient datasets were 

applied to corpus uteri cancer patient datasets. 
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Figure 6. Top ten most highly expressed ndRNAs in brain cancer patients, all. The 

same parameters applied to breast, lung, kidney, and corpus uteri cancer patient datasets 

were applied to brain cancer patient datasets. 
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Table 1. Comparison of standard deviation values of top ten most highly expressed 

ndRNAs between female and male breast cancer patients. Of these most highly 

expressed ndRNAs in breast cancer patients, which are ranked in descending order of 

average expression, the percent standard deviations are listed below. Standard deviation 

values in both female and male breast cancer patients are relatively low. This indicates 

that these ndRNAs are not only highly expressed but are also consistently highly 

expressed across all TCGA breast cancer patient files. 

TCGA Breast Cancer Data 

RNA Standard deviation, female Standard deviation, male 

MIR21 49.48 39.36 

MIR10B 85.5 61.2 

MIR143 84.36 61.1 

MIR22 43.1 54.18 

MIR148A 87.04 83 

MIR30A 94.64 101.03 

MIR182 77.13 59.69 

MIR99B 69.43 57.44 

MIR10A 134.87 126.48 

MIRLET7A3 54.21 47.33 

MIRLET7A1 54.27 47.43 

MIRLET7A2 54.27 47.43 

Table 2. Comparison of top ten most highly expressed ndRNAs between breast 

cancer patients and breast tissue of normal patients. 

Top Ten Highly Expressed RNAs 

Normal breast tissue Breast cancer tissue 

MIR148A MIR21 

MIR101-1 MIR10B 

MIR29A MIR143 

MIR378A MIR22 

SNORD66 MIR148A 

MIR24-2 MIR30A 

SNORD62 MIR182 

SNORD3 MIR99B 

MIR222 MIR10A 

SNORD17 MIRLET7A 
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Table 3. Comparison of top ten most highly expressed ndRNAs between lung cancer 

patients and lung tissue of normal patients. 

Top Ten Highly Expressed RNAs 

Normal lung tissue Lung cancer tissue 

MIR200C MIR21 

MIR27A MIR143 

MIR205 MIR22 

MIR24-1 MIR148A 

MIR148A MIRLET7A 

MIR423 MIR10A 

MIR378A MIR182 

MIR128-1 MIR99B 

MIR29A MIR375 

MIR193A MIR203A 

Table 4. Comparison of top ten most highly expressed ndRNAs between kidney 

cancer patients and kidney tissue of normal patients. 

Top Ten Highly Expressed RNAs 

Normal kidney tissue Kidney cancer tissue 

MIR148A MIR21 

MIR101-1 MIR10B 

MIR378A MIR30A 

MIR199A1 MIR143 

MIR29A MIR22 

MIR24-1,2 MIR10A 

MIR107 MIR99B 

SNORD48 MIR148A 

SNORD84 MIRLET7A 

MIR363 MIR-101-1,2 
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Table 5. Comparison of top ten most highly expressed ndRNAs between corpus 

uteri cancer patients and corpus uteri tissue of normal patients. 

Top Ten Highly Expressed RNAs 

Normal corpus uteri tissue Corpus uteri cancer tissue 

MIR199A1 MIR21 

MIR148A MIR10B 

tRNA-Gly-CCC-6-1 MIR10A 

MIR101-1 MIR143 

tRNA-His-GTG-1 MIR148A 

MIR378A MIR99B 

SNORD52 MIR22 

MIR29A MIR182 

MIR24-1,2 MIR30A 

MIR107 MIRLET7A 

Table 6. Comparison of top ten most highly expressed ndRNAs between brain 

cancer patients and brain tissue of normal patients. 

Top Ten Highly Expressed RNAs 

Normal brain tissue Brain cancer tissue 

MIR101-1 MIR9 

MIR29A MIR22 

SNORD115 MIRLET7A 

MIR29B2 MIR21 

tRNA-Asp-GTC-2 MIR99B 

MIR107 MIR30A 

tRNA-Gln-CTG-5 MIR103A 

SNORD115-32 MIR100 

SNORD2 MIR143 

SNORD104 MIR10B 

Table 7. Prevalence of RNAs in all cancer and control data. All miRNAs appearing in 

the top ten highly expressed RNAs of each cancer and control dataset were considered. 
Cancer Control 

Breast Lung Kidney Corpus uteri Brain Breast Lung Kidney Corpus uteri Brain 

miRNA miR-9 x 

miR-10a x x x x 

miR-10b x x x x 

miR-21 x x x x x 

miR-22 x x x x x 

miR-24-1,2 x** x* x x 
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miR-27a x 

miR-29a x x x x x 

miR-29b2 x 

miR-30a x x x x 

miR-99b x x x x x 

miR-100 x 

miR-101-1,2 x x x x*** x*** 

miR-103a x 

miR-107 x x x 

miR-128-1 x 

miR-143 x x x x x 

miR-148a x x x x x x x x 

miR-182 x x x 

miR-193a x 

miR-199-a1 x x 

miR-200c x 

miR-203a x 

miR-205 x 

miR-222 x 

miR-363 x 

miR-375 x 

miR-378a x x x x 

miR-423 x 

miR-let7a x x x x x 

snoRNA snoRD-2 x 

snoRD-3 x 

snoRD-17 x 

snoRD-48 x 

snoRD-52 x 

snoRD-62 x 

snoRD-66 x 

snoRD-84 x 

snoRD-104 x 

snoRD-115 x 

snoRD-115-32 x 

tRNA tRNA-Asp-GTC-2 x 

tRNA-Gln-CTG-5 x 

tRNA-Gly-CCC-6-1 x 

tRNA-His-GTG-1 x 

*only miR-24-1 present, **only miR-24-2 present, ***only miR-101-1 present 
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