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ABSTRACT 

 

 

 

Satellite communication is essential for the exploration and study of space. 

Satellites allow communications with many devices and systems residing in space and on 

the surface of celestial bodies from ground stations on Earth. However, with the rise of 

Ground Station as a Service (GsaaS), the ability to efficiently send action commands to 

distant satellites must ensure non-repudiation such that an attacker is unable to send 

malicious commands to distant satellites. Distant satellites are also constrained devices 

and rely on limited power, meaning security on these devices is minimal. Therefore, this 

study attempted to propose a novel algorithm to allow authenticating communications 

from ground stations to long-distance satellite communications while also ensuring the 

time delay on constrained devices remains low.  
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CHAPTER I 

INTRODUCTION 

 

 

 

Satellite communication is essential for the exploration and study of distant 

worlds. With countries and organizations across the globe set on venturing across space, 

there must be an effective way to ensure communication is protected. Distant worlds 

require long-distance satellite signals to enable communication from Earth across vast 

distances. Long-distance is defined as distances greater than lunar orbit. These distances 

range from 56 million km to 378 million km for the purposes of this study. Satellite 

communications introduce various problems such as high bit-error rates (BER) and 

increased time delays that slow down or prevent various security techniques used on the 

ground by devices with less BER and time delay (Shah et al., 2014). Because of these 

factors, securing satellite communications is a difficult task that must not increase the 

time delay. 

 In recent years there has been an interest in Ground Station as a Service (GSaaS) 

capabilities (Poole et al., 2021). These stations can be rented by organizations or entities 

for whatever they may need. They, however, introduce security challenges to satellite 

protection as anyone could attempt to contact a satellite (Poole et al. 2021). This security 

risk can be seen in Figure 1. Whether the adversary can communicate or send commands 
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to a satellite requires onboard cybersecurity assurances to prevent unauthorized access. In 

Figure 1, the instance of GSaaS is represented by the Unauthenticated Ground Station 

(UGS) and is for the adversarial testing and validation of the novel method proposed.  

 

 

 

 

 

 

One way to secure messages is the use of encryption. Encryption is effective at 

ensuring messages are sent in a secure way, but this also runs into the issue of onboard 

power consumption (Maple et al., 2022). Encryption is also limited because of the vast 

distance the communication travels, leading to time delays (Shah et al., 2014). These time 

delays make various encryption methods infeasible for extensive use across long-

distances (Shah et al., 2014). 

Figure 1: Ground Station as a Service Problem 
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 Problems such as high bit-error rates and increased time delays are compounded 

by the constrained power draw of satellite communications. Cybersecurity in space 

equipment has often been constrained by the limited resource nature of satellites and 

other space equipment (Maple et al., 2022). For this reason, protection methods in space 

must ensure little resources are used for communication.  

 With the advent of increased space traffic and mega-constellations in Low Earth 

Orbit (LEO) and beyond, cybersecurity in space has become a major issue. Along with 

that, there are an ever-increasing number of for-rent ground stations that an adversary 

could use for malicious purposes (Poole et al., 2021). Because an attacker could use these 

ground stations to send false requests to orbiting or long-distance satellites, there must be 

an authentication method to ensure non-repudiation in these space devices.  

 Access to long distance space devices should be limited to only authenticated 

devices. An attacker could use a weak authentication method to gain access and send 

malicious instructions to a space device. Some encryption algorithms can prevent this 

from happening, but they also require higher power in a resource constrained device. 

Encryption algorithms might ensure integrity and privacy, but some fail to solve the non-

repudiation and access control aspects of satellite communication security. This limits the 

usability of such algorithms to ensure integrity and non-repudiation. To limit computing 

power consumption, a modified whitelist was introduced. This method ensured that the 

data being sent to the satellite was, first, correct. It then employed a ground station 

specific key to verify the sender. This computation was limited because the ground 

station was doing much of the computing involved in the creation of the message. This 

limited the on-board satellite computation because the message was sent in a format that 
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was easily read and understood. The satellite only needed to receive the data and verify 

the message that was sent by the authenticated ground station.  

 The research question for this study, “Can an algorithm be developed that ensures 

non-repudiation in long distance communications of power constrained devices?” The 

approach involved using three hashes to authenticate and validate the message sent to the 

long-distance constrained device. In this question, a successful condition was when the 

satellite could check the message and ensure it was coming from an authenticated ground 

station within the time delay plus two minutes. The failure condition was if the message 

that is received was not accepted by satellite or was received outside of the time delay 

window. This method was tested to ensure it can reliably prevent an unauthorized party 

from sending commands to a long distance, constrained device. It was also tested to 

ensure that outdated messages are not able to be used to harm satellite functions and 

processes. 

 The paper will be organized in the following manner. Chapter II includes the 

related works and will set up the foundation for the program background. Chapter III will 

go over the setup of the program and how tests will be conducted. Chapter IV will 

discuss the results of the testing and how they relate to the research question. Chapter V 

will conclude the paper and discuss any future topic that needs to be explored in this 

research.  
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CHAPTER II 

 

RELATED WORK 

 

 

 

Various research has been proposed regarding security in satellite 

communications. These studies form the foundation for the tools that are employed in this 

research. These studies will be compared to other studies and the applications of these 

research papers to this study will also be discussed. 

UDP, or User Datagram Protocol, is a connection-less protocol (Postel, 1980). 

This means it does not need to establish a connection with an external device before it 

sends information. UDP sends data in groups called datagrams. A datagram contains the 

source port, destination port, length, and checksum sections in the header, along with the 

payload (Postel, 1980). UDP is the protocol to use when time is the constraint of 

communication, such as communication satellites (Criscuolo et al., 2001). As UDP is 

connection-less, it does not need to establish a connection before transmitting 

information. Establishing a connection takes valuable time that would otherwise be used 

to begin sending data. UDP is used because of the time-delay that long-distance satellite 

communications must deal with. 

Time delay is a major issue when communicating long distances such as the 

distance between Earth and Mars, 378 million km, at the furthest point (Attwood, 2018). 
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At this distance the time delay is around 21 minutes one-way (Koktas & Basar, 2022; 

Attwood, 2018). This means that each message sent to and from a satellite orbiting mars 

would take 21 minutes to be received and another 21 minutes to be acknowledged 

totaling 42 minutes (Attwood, 2018). As the Earth and Mars get closer, the distance 

lessens as well as the time delay. At the closest point, the distance from Earth to Mars is 

56 million kilometers and communications take around 3.2 minutes (Attwood, 2018). 

Another factor for time delay is the processing requirements for more stringent securing 

methods such as various encryption algorithms. Maple et al., (2022), discusses the time 

delay used for encrypting packets sent to and from the International Space Station (ISS). 

During these tests the Elliptic Curve Integrated Encryption Scheme (ECIES) encryption 

took at most 35 ms for 500 bytes of data and decryption took 25 ms for 500 bytes of data 

(Maple et al., 2022). These numbers in themselves are very good compared to the 21 

minutes the message would take to be sent to mars, but this leaves out the power 

requirement of encrypting and decrypting a large volume of messages across a distance 

such as Mars to Earth. While on the surface, encryption is a good idea because it restricts 

the ability of an adversary to read messages sent in plain-text. However, encryption takes 

up valuable computing resources such as energy that is scarce in constrained devices such 

as satellites (Maple et al., 2022).  

Hashing algorithms have become popular for uses in data validation and host 

authentication (Pittalia, 2019). These algorithms take a variable sized input and convert it 

into a fixed sized output (Pittalia, 2019; Zniti & Ouazzani, 2023). The given output is 

always the same for the same input (Pittalia, 2019). Because of this, data validation can 

be performed using hashing algorithms (Zniti & Ouazzani, 2023). If data being used has 
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been altered or changed, the hash of that data will be different from the original. Another 

aspect of certain hashing algorithms is the one-way hash. A one-way hash is the inability 

to determine the input based on a given output (Pittalia, 2019). Some of the most 

common hashing algorithms today are Message Digest 5 (MD5) and Secure Hash 

Algorithm (SHA). MD5 is good for data validation and error checking while SHA is 

better for authentication uses (Pittalia, 2019). MD5 struggles with collision, which is a 

serious issue when using it for authentication instead of data validation (Pittalia, 2019). 

MD5, however, is faster to compute than SHA (Pittalia, 2019). For these reasons, SHA is 

used for Authentication, but data validation where MD5 is used because it requires less 

resources to compute. 

Hashing for use in authentication of satellite communications can be seen in the 

Galileo Open Service system (Götzelmann et al., 2023). This system relies on the Open 

Service Navigation Message Authentication (OSNMA) protocol to protect users from 

malicious data and ensure users don’t transmit malicious data (Götzelmann et al., 2023). 

This system provides Message Authentication Codes (MACs) generated using Keyed-

Hash Message Authentication Codes (KMAC) (Götzelmann et al., 2023). KMACs use 

the data or payload being sent to the Galileo device on Earth and a cryptographic key to 

generate a MAC for the message (Götzelmann et al., 2023). These generated MACs can 

be used to find the next MAC key as the following key is generated from the existing 

MAC key (Götzelmann et al., 2023). This allows the user to verify previous or future 

keys from data that has already been received (Götzelmann et al., 2023). This method 

requires the use of a public key to be retrieved from the Galileo Service Centre during the 

test and preparation phase (Götzelmann et al., 2023). Various other studies also looked at 
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using public-private key pairs to ensure authentication (Khan et al., 2022; Liu et al., 

2022). This might restrict usability in long-distance satellite communications as the time 

delay will be too great for a public key to be feasible (Shah et al., 2014). The reason for 

this has to do with the time delay associated with using such a key. If the satellite must 

query the ground station for its public key, the communication time of a message will 

increase as there is another message that needs to be sent to the ground station. On the 

other hand, if the ground station is attempting to send a message, it must either have the 

satellite’s public key stored locally or must send a long message to retrieve it from the 

satellite. Another issue with using encryption during these communications is the power 

consumption for satellites is limited, making encryption costly (Maple et al., 2022).  

Bit Error Rate (BER) is the communication system performance that depends on 

errors resulting from electronic-circuit related noise and turbulence (Mahdieh & 

Pournoury, 2010). There are three ways by which errors can result in communication 

such as scintillation, beam spreading, and beam wander (Mahdieh & Pournoury, 2010). 

Scintillation is due to small inconsistencies in the atmosphere as a beam passes through 

(Mahdieh & Pournoury, 2010). Beam spreading is the tendency for a beam to spread as it 

travels (Mahdieh & Pournoury, 2010). Beam wander is caused by much larger 

inconsistencies in the atmosphere as the beam is passing through (Mahdieh & Pournoury, 

2010). Bohora and Bora, (2014), attempt to analyze the BER for different modulation 

schemes such as Binary Phase Shift Keying (BPSK) and Quadrature Phase Shift Keying 

(QPSK). Modulation techniques are used to improve BER performance (Bohora and 

Bora, 2014). Based on the results provided by Bohora and Bora, 2014, Binary Phase Shift 
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Keying is the more effective method to reduce BER in wireless communications (Bohora 

and Bora, 2014). 

Shah et al., (2014), attempts to provide security and vulnerability information for 

commercial and military satellite communications. To ensure communication security, 

five features must be considered, confidentiality, authentication, integrity, access control, 

and key management (Shah et al., 2014). Confidentiality means that authenticated users 

are the only ones with access to the information (Shah et al., 2014). Authentication 

requires the user to verify his or her identity and can be done a variety of ways, each with 

their own pros and cons (Shah et al., 2014). Integrity ensures that the information being 

sent remains intact and hasn’t been tampered with (Shah et al., 2014). Access Control 

ensures a system cannot be accessed without authorization via a compromise (Shah et al., 

2014). Key management is the management of security keys used for things such as 

authentication (Shah et al., 2014). This research will handle four of these features, 

authentication, integrity, access control, and key management. 
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CHAPTER III 

 

METHODOLOGY 

 

 

 

 To address the research question, “Can an algorithm be developed that ensures 

non-repudiation in long distance communications of power constrained devices?” The 

discussion of the environment, creation of the authentication method, validation of 

authentication, and testing setup is performed in this section. If the setup of the research 

is done in this fashion, it will produce a method of sending commands to a long-distance 

constrained device for applications in the space industry. The resulting testing proves that 

this method is valid and can prevent an attacker from sending malicious commands or 

replaying a previous message. 

The testbed was set up with two-nodes. The two-node setup assumes the planet is 

facing the direction of the target. The reason for this is because, if the planet was facing 

away from the direction the radio dish is pointing, then there would need to be a relay to 

allow for constant communication. This is out of the scope of this research as this is proof 

of concept. A ground station was implied to be capable of transmitting high-energy 

focused radio signals. For this research it was assumed there was a satellite in Mars-orbit 

that captures batch command transmissions and sends individual commands from the 
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batch to a subservient device or internal process. The language chosen to produce and 

verify the message was Bash. This language was employed because of the versatility it 

provides. It comes with most distributions of Linux and can be easily implemented. 

 

3.1 Creation of The Message 

 

 The modified whitelist system was similar to the Dynamic Host Configuration 

Protocol for IPv4 (DHCPv4), which uses the MAC address to authenticate a whitelist 

(Xie et al., 2021). This protocol was used to model the design of the assigning of the 

unique client identity. This ensured a lightweight protocol was implemented for whitelist 

checking to ensure limited round trip time (RTT) delay. Each packet sent to the satellite 

had the MAC address of the sender attached to it to ensure that the packet will be 

accepted by the satellite. This project deviated from the DHCPv4 method as it instituted 

multiple one-way hash functions to authenticate the Authenticated Ground Station. 

Instead of using only the MAC address, it also instituted information about the message 

being sent into the hash. Included is a MD5 hash of the payload or the commands sent 

from the ground station, the MAC address of the ground station, and the time the 

message was sent in Base64. 

 The message being sent to the satellite was set up in a way that allows for easy 

reading by the destination satellite as seen in Figure 2. The first line of the message 

contained an MD5 hash of the payload of instructions sent to the satellite. This hash was 

created by computing the MD5 hash of lines 3 – 14, or the payload. An MD5 hash was 

chosen because it is good for integrity checking of files and strings. The second line 

contained a SHA256 hash of the payload hash from line 1 and the MAC address of the 
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authenticated ground station, and the Base64 timestamp. A Base64 encoded timestamp 

was added to the end of the SHA256 hash to validate time and to protect against certain 

replay attacks. Base64 was chosen because it is not a one-way hash and can be undone 

for comparison upon arrival to the satellite. Lines 3 – 14 contained instructions or the 

payload of the message. These instructions were general terms for any predefined 

commands to be run on the satellite. They were the instructions set to be executed by the  

 

 

 

 

 

satellite upon the message’s arrival. If any of the instructions aren’t used, they were 

considered a NULL command, and nothing was done. These NULL commands were still 

needed to fill the line, as the message format is constant and needs to be maintained. To 

maintain the format of the message the word “NULL” was placed in any un-used 

command sent to the satellite. The message finished with line 15 where there was another 

MD5 hash of the entire message with the other two hashes included. Lines 1-14 were 

Figure 2: Correct Message Structure 
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hashed with MD5. The contents of these lines were the MD5 of the payload in line 1, the 

SHA256 for authentication on line 2, the Base64 of the timestamp from line 2, and the 

payload of commands from lines 3-14. All of these were hashed using MD5 and placed 

on line 15. This hash ensured file integrity and that it hadn’t been altered during transit.  

 Obfuscation of the hashes was used to ensure the hashes couldn’t be reproduced 

or brute forced. This was done through an obfuscation mechanism used during the 

creation of the hashes. A string was first split in half. The second half was put in the 

front, and the first half was put in the back. The resulting string was then reversed per 

character. This was a simple way to increase the complexity of brute-forcing these 

hashes. Hashes on line 1 and line 15 used this method without any modifications. The 

SHA256 hash on line 2 used this method, but before the hash was reversed per character, 

the base64 encoded timestamp was added to the back of the hash. It was then reversed 

per character as in the other two hashes. The message that was created can then be sent to 

the satellite. 

 

3.2: Checking The Message on The Satellite 

 

Once the message arrived, the first action was reversing the SHA256 hash on line 

2. The Base64 timestamp was pulled out for future comparison with the arrival time. 

Because the Base64 in Line 2 hadn’t been through the full obfuscation routine, a reversal 

was all that is needed to pull it out. The SHA256 hash was then de-obfuscated and saved 

for future comparison. The de-obfuscation process involved reversing the hash per 

character, splitting the hash in half, and putting the first half in the back and the second 

half in the front. Thus, reversing the previous obfuscation technique performed during the 
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creation of the message. Line 1, or the MD5 hash of the payload, was then pulled out and 

went through the de-obfuscation process as well. It was then saved for future comparison. 

Line 15 then went through the de-obfuscation process and was saved for future 

comparison. 

The satellite then generated these hashes using the information provided. Hash 1, 

or the MD5 of the payload of commands, was the computed MD5 hash of the payload 

inside the message that was received. Hash 2, or the SHA256 hash, computed a SHA256 

hash using Hash 1 and the MAC address of the authenticated ground station (AGS) stored 

locally on the satellite. Hash 3, or the MD5 of the entire message, computed the MD5 

hash of Hash 1, Hash 2, the Base64 timestamp from the message, and the payload from 

the message. A current timestamp was then taken and stored for future use during 

comparison. 

The satellite then decoded the Base64 timestamp from the ground station and 

computed the difference of the current timestamp. If the difference was greater than two 

minutes from the expected time delay from the ground station, the satellite errors and sent 

a message to the AGS saying the message failed. The time inside the file couldn’t be 

altered because this changed the integrity hashes within the file as well. The first hash to 

be checked was the MD5 hash located on line 15, or the MD5 of the whole message. This 

made sure the message being sent had not been altered. If the hash matched Hash 3 

computed by the satellite, the program continued to the next hash, otherwise, another 

failed message was sent to the AGS, and the process ended. The next hash checked was 

the SHA256 hash, or the authentication hash on line 2. This ensured the message was 

coming from the correct place and wasn’t reproduced or replayed. This hash was checked 
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against Hash 2 computed by the satellite. If they were not the same, another failed 

message was sent, and the process stopped. The last hash to be checked was the MD5 

hash on line 1. This was more of a confirmation to validate the integrity of specifically 

the payload. This hash was checked against Hash 1 that was computed by the satellite. If 

the message was faulty, lost integrity, or the authentication hash didn’t match, the 

program transmitted a small message back to the AGS saying the message had an error. If 

all the tests passed, a small message was sent stating that the message was received 

successfully. These messages sent back to the ground station were not a form of 

handshake, they were more to ensure the process is working. The reason this was used 

instead of a handshake-based protocol was because the use of long-distance 

communications is expensive, especially for resource constrained devices. Using a 

handshake-based protocol requires extra communications. 

 

3.3: Testing Background 

 

 

Figure 3: Malicious Message Structure 
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 The security of this implementation was tested by an unauthorized third party. 

This third party sent a message to the satellite that was slightly altered, and the message 

was tested to see if the third party was able to gain access to the satellite. The 

unauthorized individual sent a batch of commands to the satellite and attempted to run 

false commands. These commands were different from the ones sent by the AGS and 

were used to test the integrity checks put in place in the message. If the device sent an 

error message back to the AGS, this test was considered a success. If an accepted 

message was sent from the satellite to the AGS, this was seen as a fail. 

 To test the timeout function used on the satellite, a second evaluation of the 

message was done. This test attempted to simulate sending the exact same message sent 

by both the AGS and the unauthenticated ground station (UGS). The UGS sent the 

message after the timeout setting of 2 minutes was passed. The time the message was sent 

was documented in a Base64 timestamp included in Line 2. This was tested by sending 

the same message twice. If the second message was not executed and an error was 

transmitted back to the ground station instead, this was considered a success.  

 

 

 

 

Figure 4: Accepted Message 

Figure 5: Error Message 
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One of the issues with using a hash function is the ability to replay the 

communication and attempt to gain unauthorized access to the device. This issue was 

negated by using the authenticated hash for every transmission. A malicious party would 

also have to be positioned directly above the ground station to have the ability to capture 

and retransmit packets. This is because the use of high-energy focused radio signals 

necessitates the adversary being directly above the AGS. To further prevent a party from 

submitting outdated credentials, the instructions sent and the MAC address of the AGS 

was used to create a SHA256 hash that changed with each message sent.  

Testing was performed using a laptop to simulate the AGS and a Raspberry Pi 

Zero to simulate the constrained device or satellite. These devices were connected via 

ethernet using a network switch. Because of this, there was a limited time delay between 

devices. This time delay was simulated via a wait call that pauses the sending of the 

message until the desired time delay has been reached. Three separate time delays were 

tested 5 minutes, 14 minutes, and 21 minutes for three distances in Mars’ orbit.  

The laptop acted as the AGS compiled and sent the message to the long-distance 

constrained device or satellite. The AGS had an open port listening for sending messages 

from the constrained device. The constrained device had the MAC address of the AGS 

loaded onto it. The constrained device was listening for incoming messages on an open 

port. These messages were sent for checking before any of the commands are run. A third 

device was connected to the ethernet network to simulate the UGS attempting to recreate 

the message being sent to the constrained device.  

To listen and send messages, Socat (Socket Cat) was used because it doesn’t send 

extra messages like net cat. Net cat sent a TCP FIN message when it closed a session, and 
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this was extra overhead that is not viable in the long-distance satellite environment that 

was emulated. This didn’t come natively installed on Linux, so it needed to be installed 

before deployment. The Earth is assumed to be in constant communication with the long-

distance constrained device and it does not block communication by spinning away from 

the constrained device. The MAC address was pre-loaded onto the long-distance 

constrained device.   
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CHAPTER IV 

 

RESULTS 

 

 

 

The test conducted was the 5-minute test, which had the Authenticated Ground 

Station (AGS) sending a message to the constrained device with the wait setting at 5 

minutes. The Unauthenticated Ground Station (UGS) then attempted to recreate the 

message by sending a message with identical authenticated and integrity hashes and a 

different payload. The first success condition was if the constrained device accepts the 

commands from the AGS and ran them then transmitted a received message back to the 

AGS. The second success was if the constrained device sends an error or a failed message 

to the AGS if the UGS sent a message to the constrained device with an altered payload. 

This proved the UGS message failed and was labeled as Failed. This test was done for the 

14-minute and the 21-minute time delays as well. This test was not testing the timestamp 

mechanism because this mechanism was to prevent another type of replay attack that was 

tested in the next test. 

As seen in Table 1, the AGS could send batch-command messages to the 

constrained device. The time delay settings successfully authenticated or denied the given 

ground station. These messages used the format 5 minutes to the constrained device and 5 

minutes for accepted or failed requests back to the authenticated ground station. The UGS 
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attempted to send different commands to the constrained device. When these messages 

made it to the constrained device, they were calculated to be unauthenticated, and a failed 

message was sent to the AGS. 

 

Table 1: Results of Testing: AGS vs UGS 

 

 

 

The second test attempted to resend the message a second time after a message 

had previously passed the accepted time-delay window. Each window allowed for 2 

minutes more than the current time delay of a message being sent. For a 5-minute time 

delay, there was a 7-minute window from the time sent for the message to be received. If 

it was received after that, it was not accepted, and an error message was sent back to the 

ground station. In this test, the payload/instructions or the hashes was not be modified, 

the message was only retransmitted to attempt to overload the constrained device with 

instructions. This was tested for each of the three time-delay settings, 5 minutes, 14 

minutes, and 21 minutes. The time window for these were 7 minutes, 16 minutes, and 23 

minutes, respectively. 

 

 

 

 

 

 

Time Delay Setting AGS Result AGS Time UGS Result UGS Time 

5 Minutes Success 10:01.25 Min Failed 10:00.58 Min 

14 Minutes Success 28:00.76 Min Failed 28:02.24 Min 

21 Minutes Success 42:00.52 Min Failed 42:00.65 Min 
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Table 2: Results of Testing: Within Time Window and Outside Time Window 

 

 

 According to these tests, a freshly generated message could be sent to the 

constrained device. However, the same message sent outside the time window was not 

processed by the constrained device. This shows that the time window method did ensure 

that an adversarial replay attack was prevented. Each test was done with another message 

and each replay attack was performed with the message generated by the AGS.  

  

Time Delay Setting AGS Result AGS Time UGS Result UGS Time 

5 Minutes Success 10:02.52 Min Failed 18:17.58 Min 

14 Minutes Success 28:01.21 Min Failed 35:23.15 Min 

21 Minutes Success 42:00.93 Min Failed 49:42.12 Min 
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CHAPTER V 

 

CONCLUSION AND FUTURE RESEARCH 

 

 

 

This research was successfully able to simulate authentication in a satellite 

environment. The authenticated ground station could send commands to the constrained 

device or satellite. Once these commands made it to the constrained device, it 

authenticated the sender and checked the validity of the message. If the sender was 

correct, an accepted message was sent back to the authenticated ground station. The 

unauthenticated ground station also attempted to send a seemingly authenticated 

message. This message was checked in the same manner and proven to be false. The 

constrained device then sent a failed message back to the authenticated ground station for 

logging purposes. These tests simulated the creation of a novel method of ensuring non-

repudiation for long-distance communications on constrained devices without 

dramatically increasing time delay or increasing the resource requirements of the 

communication. 

This research could be taken in many different directions. In this instance, there 

was no handling of error messages sent back to the authenticated ground station. This 

included retransmit handling or unauthenticated device access handling. Because no 

encryption was used in this research, employing a light-weight encryption algorithm that 
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doesn’t need a handshake or session might prove useful. This method also needs to be 

compared against other standard methods of ensuring non-repudiation for long-distance 

devices. Attacks such as more complex replay attacks, denial-of-service attacks, 

intentional format issues, command injections, etc. could be tested against this method in 

future research. The programming language used in this research was Bash. This 

language, while versatile and easily implementable, does increase the overhead of the 

algorithm. Future research should be done to reproduce this algorithm using a less 

computationally expensive language such as C or C++.   
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APPENDIX 

 

Appendix A: Bash Code 

 

 This appendix includes all the code used to perform this research. They are listed 

by the file the code belongs to. 

CreateMessage.sh 

#!/bin/bash 

source hashFile.sh 

source makeKey.sh 

file="./testFile.txt" 

 

 

transformMessage() { 

        local string="$1" 

 

        local length=${#string} 

        local half_length=$(($length/2)) 

 

        local first_half=$(echo "${string:0:$half_length}") 

        local second_half=$(echo "${string:$half_length:$length}") 

 

        echo "$second_half$first_half" 

} 

 

 

 

# Obfuscate Message Hash 

revMD5=$(rev <<< $(transformMessage $md5_hash)) 

 

echo "Obfuscated Payload Hash: $revMD5" 

 

# Generate Authentication SHA256 

shaHash=$(./makeKey.sh) 

currTime=$(date +%H:%M) 
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timeHash=$(base64 <<< $currTime) 

echo "$timeHash" 

# Add Time Hash to the back of SHA256 and reverse everything 

result=$(rev <<< $(transformMessage $shaHash)$timeHash) 

echo "Sha Hash: $shaHash" 

echo "Obfuscated Authentication Hash: $result" 

 

# generage hash of message 

messageHash=$(md5sum <<< $md5_hash$result$payload | awk '{print $1}') 

 

# obfuscate Message Hash 

revMessHash=$(rev <<< $(transformMessage $messageHash)) 

 

echo "Obfuscated Message Hash: $revMessHash" 

 

# Input all the data into the file 

echo "$revMD5" >> temp.txt 

 

echo "$result" >> temp.txt 

 

cat $file >> temp.txt 

 

echo "$revMessHash" >> temp.txt 

 

# Pass data to message.txt 

mv temp.txt message.txt 

 

hashFile.sh 

#!/bin/bash 

 

# provide file path 

file="./testFile.txt" 

 

num_lines=$(wc -l < "$file") 

Hash1='' 

Hash2="" 

payload="" 

Hash3="" 

# Loop through the file using a for loop 
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for ((line_number = 1; line_number <= num_lines; line_number++)); do 

    # Read and process the line at the current line number 

    line=$(sed -n "${line_number}p" "$file") 

 

    payload+="$line" 

 

done < "$file" 

 

# Calculate the generic file hash 

md5_hash=$(md5sum <<< $payload | cut -d ' ' -f 1) 

 

# Return MD5 hash 

#echo "$md5_hash" 

 

makeKey.sh 

#!/bin/bash 

 

# Add source file 

source findNetVector.sh 

source hashFile.sh 

 

# Get the host machines MAC address 

interface_name=$sanitize_string 

 

# Get and parse the mac address  

mac_address=$(ip link show $interface_name | awk '{print $2}' | grep -o -E "([0-

9A-Fa-f]{2}[:-]){5}([0-9A-Fa-f]{2})") 

 

 

# Get hash of file 

fileHash=$md5_hash 

 

# Create ground key Add time too 

textToHash=$fileHash$mac_address 

 

groundKey=$(sha256sum <<< $textToHash| awk '{print $1}') 

 

#flip the hash so it is harder to compute 
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echo $groundKey 

 

 

findNetVector.sh 

#!/bin/bash 

 

# This bash script is used to detect and output the current network device 

# being used. This will be used to send a sentinel packet.  

 

# using IP 

ip_output=$(ifconfig) 

 

# use grep to filter out only active interfaces with IP addresses 

active_interfaces=$(echo $ip_output | awk '/<UP,BROADCAST/{print $1}') 

 

sanitize_string=$(echo $active_interfaces | tr -d ':') 

 

#echo $sanitize_string 

 

sendMessage.sh 

#!/bin/bash 

 

 

#sources 

source ./createMessage.sh 

 

file="./message.txt" 

 

sleep 0 

socat - UDP:<IP Addr>:<Port> < $file 

 

#rm $file 

 

check.sh 

#!/bin/bash 

 

# define file paths 

directory="./Research/check" 

file="message.txt" 
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script="./Research/readFile.sh" 

 

# Check if the file exists in the directory 

if [ -e "$directory/$file" ]; then 

        echo "File Found! Calling another script..." 

 

 

 

        bash "$script" 

 

else 

 

        echo "Waiting on message..." 

 

fi 

 

readFile.sh 

#!/bin/bash 

 

file="./check/message.txt" 

 

 

transformMessage() { 

        local string="$1" 

 

        local length=${#string} 

        local half_length=$(($length/2)) 

 

        local first_half=$(echo "${string:0:$half_length}") 

        local second_half=$(echo "${string:$half_length:$length}") 

 

        echo "$second_half$first_half" 

} 

 

 

extractTime() { 

        local string="$1" 

 

        local length=${#string} 
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        local startIndex=$((length - 8)) 

 

        local timeHash=$(echo "$string" | rev | cut -c 1-8 | rev) 

 

        echo "$timeHash" 

} 

 

# Get the number of lines in the file 

num_lines=$(wc -l < "$file") 

Hash1='' 

Hash2="" 

payload="" 

Hash3="" 

macGS="<Ground Station Mac Address>" 

prevTime="" 

# Loop through the file using a for loop 

for ((line_number = 1; line_number <= num_lines; line_number++)); do 

    # Read and process the line at the current line number 

    line=$(sed -n "${line_number}p" "$file") 

 

    if [ $line_number -eq 1 ]; then 

        Hash1=$(rev <<< $(transformMessage $line)) 

        echo "Hash 1: $Hash1" 

    fi 

 

    if [ $line_number -eq 2 ]; then 

        prevTime=$(echo "$line" | cut -c 1-8 | rev) 

        tempHash2=$(echo "$line" | cut -c 9-) 

        Hash2=$(rev <<< $(transformMessage $tempHash2)) 

        echo "Hash 2: $Hash2"  

    fi 

 

    if [ $line_number -eq 15 ]; then 

        Hash3=$(rev <<< $(transformMessage $line)) 

        echo "Hash 3: $Hash3" 

    fi 

 

    if [ $line_number -lt 15 ] && [ $line_number -gt 2 ]; then 

        payload+="$line" 
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    fi 

 

done < "$file" 

 

currTime=$(date +%s) 

 

echo "Message Sent Time: $prevTime" 

 

Hash1Check=$(md5sum <<< $payload | cut -d ' ' -f 1) 

echo "Hash 1 Check: $Hash1Check" 

Hash2Check=$(sha256sum <<< $Hash1Check$macGS | cut -d ' ' -f 1) 

echo "Hash 2 Check: $Hash2Check" 

revHash2C=$(rev <<< $(transformMessage $Hash2Check)$prevTime) 

Hash3Check=$(md5sum <<< $Hash1Check$revHash2C$payload | cut -d ' ' -f 1) 

echo "Hash 3 Check: $Hash3Check" 

 

decodepTime=$(date -d "$(echo "$prevTime" | base64 --decode)" "+%s") 

 

timeDelay=0 

 

decodepTime=$(echo $decodepTime | sed 's/^0*//') 

currTime=$(echo $currTime | sed 's/^0*//') 

 

echo "Time Sent: $decodepTime" 

echo "Time Recieved: $currTime" 

 

timeDiff=$((currTime - decodepTime)) 

 

echo "Time Difference: $timeDiff" 

 

if [ "$timeDiff" -lt "$(($timeDelay + 120))" ]; then 

        echo "Message is not expired" 

 

        if [ $Hash3Check == $Hash3 ]; then 

                echo "Hash 3 Matches" 

 

                if [ $Hash2Check == $Hash2 ]; then 

                        echo "Hash 2 Matches" 
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                        if [ $Hash1Check == $Hash1 ]; then 

                                echo "Hash 1 Matches" 

                                echo "All Hashes Match! Valid message recieved" 

 

                                sleep $timeDelay 

                                echo "Packet: $Hash1Check Accepted" | socat –  

UDP:<IP>:<Port> 

                        else 

                        sleep $timeDelay 

                        echo "Packet: $Hash1Check ERROR: Payload is  

corrupted/altered" | socat - UDP:<IP>:<Port> 

 

                        fi 

                else 

                sleep $timeDelay 

                echo "Packet: $Hash1Check ERROR: Unauthorized" | socat –  

     UDP:<IP>:<Port> 

 

                fi 

 

        else 

        sleep $timeDelay 

        echo "Packet: $Hash1Check ERROR: File is corrupted/altered" | socat –  

UDP:<IP>:<Port> 

 

        fi 

 

else 

sleep $timeDelay 

echo "Packet: $Hash1Check ERROR: Time Delay Exceeded" | socat - 

UDP:<IP>:<Port> 

 

fi 
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