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Abstract

Dihydroxyacetone (DHA) is a three-carbon sugar that is the active ingredient in sunless tanning
products and a by-product of electronic cigarette (e-cigarette) combustion. Increased use of
sunless tanning products and e-cigarettes has elevated exposures to DHA through inhalation
and absorption. Studies have confirmed that DHA is rapidly absorbed into cells and can enter
into metabolic pathways following phosphorylation to dihydroxyacetone phosphate (DHAP), a
product of fructose metabolism. Recent reports have suggested metabolic imbalance and
cellular stress results from DHA exposures. However, the impact of elevated exposure to DHA
on human health is currently under-investigated. We propose that exogenous exposures to
DHA increase DHAP levels in cells and mimic fructose exposures to produce oxidative stress,
mitochondrial dysfunction, and gene and protein expression changes. Here, we review cell line
and animal model exposures to fructose to highlight similarities in the effects produced by
exogenous exposures to DHA. Given the long-term health consequences of fructose exposure,
this review emphasizes the pressing need to further examine DHA exposures from sunless

tanning products and e-cigarettes.
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Introduction

Dihydroxyacetone (DHA) is the simplest ketone sugar. When applied to the skin surface, it
undergoes a Maillard reaction with the proteins to produce pigments called melanoidins. These
melanoidins produce the browning effect associated with sunless tanning lotions. Tanning
applications of DHA were discovered accidentally when DHA was tested as an alternative
carbohydrate source to treat diabetes and other metabolic disorders (Wittgenstein and Berry,
1960; Martini, 2017). Browning of skin and gums were noted on patients administered DHA.
DHA's topical use was quickly commercialized and received FDA approval for topical
applications of up to 20% wt/vol in the late 1970s (FDA, 2002; FDA, 2015). Exposure
estimates from a weekly topical application of a self-tanning lotion containing 10% DHA range

from 0.91 mg/kg bw/week to 7.68 mg/kg bw/week, depending on absorption (SCCS, 2010).

More recently, DHA has also been found in the aerosols generated from electronic cigarettes
(e-cigarettes). E-cigarettes use e-liquids containing propylene glycol and vegetable glycerin
(glycerol) to mobilize flavorants and nicotine. Free radical oxidation of the e-liquids generates
DHA with the amount of DHA generated depending on the device's combustion temperature
(Vreeke et al., 2018). Exposure to DHA from e-cigarette vapor is estimated to be 0.5-2.33

pg/puff (Lee et al., 2018; Vreeke et al., 2018).

Sunless tanning exposures and the popularity of e-cigarettes have increased DHA
concentrations to which humans are exposed (Pantini et al., 2007). Beyond skin absorption,
DHA can be inhaled and absorbed through mucous membranes from e-cigarettes or the use of

home or commercial spray tanning apparatuses. However, the systemic exposure effects of



DHA are poorly understood. Several recent studies have demonstrated the cytotoxicity and

genotoxicity of DHA, but mechanisms underlying these outcomes are still being investigated.

Endogenously, the phosphorylated form of DHA, dihydroxyacetone phosphate (DHAP), is
produced during glycolysis and fructolysis along with its isomer glyceraldehyde-3-phosphate
(GAP; Figure 1) (Burch et al., 1970). When presented exogenously, DHA is rapidly absorbed
into cells and is converted to DHAP by Triokinase/Flavin mononucleotide cyclase (TKFC,
Figure 1), sometimes known as DHA kinase (DAK; Cabezas et al., 2005; Moreno et al., 2014;
Marco-Rius et al., 2017). DHAP can integrate into nine different metabolic pathways (Burch et
al., 1970; Moreno et al., 2014; Marco-Rius et al., 2017), either via glycerol-3-phosphate (G3P)
following its reduction or via GAP following a thiamine diphosphate catalyzed isomerization

(TPI, Figure 1).

High fructose diets lead to an increase in cellular DHAP and G3P levels, which are linked to
increased formation of reactive oxygen and reactive nitrogen species (ROS/RNS), changes in
metabolic profile, and reduced mitochondrial function (Gizak et al., 2019; Hernandez-
Diazcouder et al., 2019; Taskinen et al., 2019). Elevated DHAP and G3P contribute to the
development of insulin resistance associated with type 2 diabetes and advanced glycation end
products (AGEs), which form when elevated levels of sugar metabolites react with proteins or
lipids (Richard, 1993). These harmful compounds can react with amino, nucleic, and fatty acids
to cause protein, DNA/RNA, and membrane damage (Yamagishi and Matsui, 2010; Fournet et
al., 2018). Imbalances in DHAP and G3P due to elevated intracellular fructose levels also alter
gene expression and create post-translational modifications that modulate enzyme activity,

further hindering the efficiency of cellular metabolic pathways (Moraru et al., 2018).



Given that exogenous DHA exposure can also create imbalances in DHAP and G3P, examining
fructose exposures may offer insight into the cellular consequences and mechanism underlying
the cytotoxicity and genotoxicity of DHA. Here, we review in vitro and in vivo studies that
examine fructose exposures to understand the emerging literature on DHA and contextualize

the potential human health consequences of the exogenous DHA exposure.
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Fructose Exposures Generate Reactive Species

It is well known that elevated cellular levels of reactive species increase oxidative stress within
the cell and specific organelles. High levels of ROS/RNS can lead to intracellular damage of
DNA and proteins inducing mutations and dysfunction. Within the mitochondria, increased
levels of ROS and RNS have been shown to alter electron transport, reduce oxidative
phosphorylation, reduce metabolic output, induce mitochondrial DNA (mtDNA) damage, and

eventually trigger cell death (Indo et al., 2007).

Fructose exposures induce elevated reactive species formation by disrupting the balance
between a cell's antioxidant defense mechanism and free radical concentration resulting in
elevated oxidative stress (Touyz, 2012). ROS is produced as a natural consequence of flux
through the fructolysis pathway, but increased flux can overwhelm the natural antioxidant
balance allowing more reactive species to remain in the cell. ROS is also produced by fructose
through the activation of NADPH oxidases (Delbosc et al., 2005). Interestingly, uric acid
production also has a role in producing ROS following fructose exposure (Madlala et al.,
2016). Increases in dietary fructose consumption promoted uric acid formation, which
increased total cellular ROS via activation of transforming growth factor f1 (TGF-B1) and

nicotinamide adenine dinucleotide phosphate (NADPH) oxidase 4 (Madlala et al., 2016).

ROS and RNS are induced by fructose exposure at both low (< 10 mM) and high (>10 mM)
doses (Table 1). At 5 mM doses, the hepatocyte cell lines, rat hepatic parenchymal cells
(RHPC), human hepatic (HLO2), and human hepatocellular carcinoma (HepG2) cells show

elevated levels of hydrogen peroxide (H202), malondialdehyde (MDA), and nitric oxide

xii



synthase (iNOS) for up to 48 hr (Zhang et al., 2015). Hepatic phagocytic Kupffer cells did not
show any increase in total cellular ROS, H202, or MDA levels at 5 mM dosing, indicating
metabolic differences between cell lines alter the generation of reactive species (Zhang et al.,

2015).

At high fructose doses, L6 myotubes generated mitochondrial ROS within 1 hr and nitric oxide
(NO) within 6 hr of 15 mM fructose treatment (Jaiswal et al., 2015a; Jaiswal et al., 2015b).
INOS also remained elevated for 48 hr indicating the prolonged presence of reactive species
(Jaiswal et al., 2015a). While the human embryonic kidney (HEK293) cell line exposed to 30
mM fructose produced elevated total cellular ROS levels (Dornas et al., 2017), 15 mM fructose
did not promote the generation of reactive oxygen species in dendritic cells. However,
increased production of AGEs did occur (Jaiswal et al., 2019) in dendritic cells, emphasizing

that fructose exposures induce reactive species in a cell-specific manner.

Systemic exposures to fructose also increased reactive species and oxidative damage at both
low (<10% dietary intake) and high doses (>10% dietary intake) in animal models (Table 2).
Dietary integration of 10% fructose led to the elevated generation of ROS and RNS across
animal models. Sprague—Dawley rats exposed to 10% fructose dose for 8 weeks showed
elevated total ROS, H202, MDA, xanthine oxidase, and iNOS, which all contributed to
increases in hepatic oxidative stress (Zhang et al., 2015). A 12-week duration of the same dose
in Wistar rats also resulted in high levels of total ROS generation in peripheral blood
mononuclear cells but not in bone marrow mononuclear cells (Porto et al., 2015). Even
C57BL/6 mice exposed to a 10% fructose dose over 20 weeks showed an 80% increase in total

cellular ROS in cardiac tissue along with elevated mitochondrial H202 generation (Zhang et al.,
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2016). These studies suggest that chronic exposure to low dose fructose increases total cellular

reactive species in the liver and cardiac tissues.

As expected from the low dose fructose results, high fructose doses further increased
intracellular ROS and oxidative stress. A 20% fructose diet increased oxidative stress levels in
Fischer and Sprague—Dawley animal models for 20 weeks and during lactation/gestation
periods, respectively (Dornas et al., 2017; Yamada et al., 2019). Hippocampal analysis of
Sprague-Dawley rats demonstrated a 1.5-fold increase in total ROS due to increased fructose
consumption (Yamada et al., 2019). Fischer rats treated with 20% fructose combined with 8%
saline experienced hypertension, linking dysfunction to AGE formation and contractile changes
in the vasculature (Dornas et al., 2017). High-dose fructose also elevated oxidative stress in
response to increased 8-OHdG levels in Sprague—Dawley rats (Cioffi et al., 2017). Wistar rats
exposed to a 60% fructose dose for 24 weeks showed elevated methylglyoxal and increased
oxidative stress (Szucs et al., 2019). Of note, 60% fructose also elevated oxidative stress in
Spontaneously Hypertensive rats, Wistar rats, and C57BL/6 mice (Cavarape et al., 2001;

Mellor et al., 2010; Wu et al., 2017).

Current fructose exposure studies use various animal models and investigate multiple tissue
types with little overlap between tissues studied and fructose dosing (Table 2). Of the studies
discussed here, dietary supplementation of 7 —10% and 60% fructose per day elevated reactive
species formation in hepatic tissue of Sprague—Dawley rats and Wistar rats, respectively
(Cavarape et al., 2001; Zhang et al., 2015; Cioffi et al., 2017). However, hepatic tissue from
Wistar rats with 25% fructose administration exhibited no elevation in ROS levels (Garcia-

Berumen et al., 2019; Yamada et al., 2019). Cardiac tissue showed increased ROS for C57BL/6

Xiv



mice with 10% and 60% dietary fructose and Wistar rats given 60% fructose (Zhang et al.,
2015; Szucs et al., 2019). Only limited analysis of kidney tissue was conducted with ROS
formation observed after 20% fructose exposure in Fischer rat models (Dornas et al., 2017).
Finally, Sprague—Dawley rats given a 20% fructose diet showed elevated ROS formation in
hippocampal tissue, and Spontaneously Hypertensive rats administered a 60% fructose diet
presented increased ROS in rostral ventrolateral medulla (RVLM) tissue (Wu et al., 2017;
Yamada et al., 2019). While the models and dosing vary, these studies demonstrate excess
fructose generates reactive species. However, dose-dependence and tissue-specificity cannot be

inferred from the current literature.
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Fructose Exposures Induce Mitochondrial Dysfunction

Fructose exposures also impact mitochondrial health by altering the metabolic output. Animal
models show that fructose exposures impair insulin signaling pathways, reducing cellular
glucose uptake and establishing a condition of chronic glucose intolerance (Tobey et al., 1982).
Reductions in glucose uptake inhibit metabolic productivity exhibited by decreased oxygen
consumption rate (OCR) and ATP content (Collins-Nakai et al., 1994). Current literature
reveals that both low (<10%) and high fructose (>10%) supplementation induces mitochondrial

dysfunction (Zhang et al., 2015; Jaiswal et al., 2015a; Jaiswal et al., 2015b).

In hepatoma FaO cells, 5.5 mM fructose alters mitochondrial respiration after 72 hr (Grasselli
et al., 2019). In addition, 5 mM fructose alters mitochondrial membrane potential in RHPC,
HLO2, and HepG2 liver cells (Zhang et al., 2015). High-dose fructose exposures increased
mitochondrial membrane leakage, lowered mitochondrial membrane potential, and induced
mitochondrial DNA damage in L6 myotubes (Jaiswal et al., 2015a). L6 myotubes also showed
impaired insulin signaling, inhibited glucose uptake, and insulin resistance following 3 hr of the
15 mM fructose (Jaiswal et al., 2015b). Decreased rates of respiration were also observed in
both dendritic cells and L6 myotubes after 15 mM fructose supplementation (Jaiswal et al.,
2015a; Jaiswal et al., 2019). Moreover, high fructose exposure to L6 myotubes led to reduced
rates of mitochondrial biogenesis and total cellular ATP production, contributing to a loss of
metabolic function evident with a 30.5% reduction in ATP-related respiration (Jaiswal et al.,

2015a).
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Low dose fructose exposures to animal models have been linked to reduced rates of
mitochondrial respiration, inhibited glucose uptake, and cofactor imbalances (Warren et al.,
2014; Zhang et al., 2016). Low dose fructose intake for 20 weeks led to a 60% decrease in
complex Il respiratory activity and reduced oxygen consumption in States 11 and IV in
C57BL/6 mice (Zhang et al., 2016). Similarly, analysis of Sprague—Dawley revealed reduced
respiratory activity of complex I and Il in the extensor digitorum longus (EDL) and soleus
muscles, respectively; however, the respiratory activity of other complexes remained
unchanged (Warren et al., 2014). Findings of reduced mitochondrial respiration correlate with

reports of diminished ATP synthesis (Milakovic and Johnson, 2005).

Decreases in cellular glucose uptake for high-dose fructose supplementation to animal models
leads to a decreased mitochondrial respiration (Table 2). Reduced glucose integration into
metabolic pathways contributed to impaired mitochondrial function, as shown with high-dose
fructose exposures to Sprague—Dawley and Wistar rats that exhibit decreased rates of

respiration (Garcia-Berumen et al., 2019; Yamada et al., 2019).

High-dose fructose exposures in animal model studies have been capable of inducing elevated
forms of oxidative damage evident through increased formation of nuclear and mtDNA lesions
(Table 2). Fructose concentrations greater than 20% have produced oxidative mtDNA damage
in the liver of Sprague—Dawley rats. In male Sprague—Dawley rats administered 30% of
fructose per day, mtDNA copy number reduced by half, and there was a significant reduction in
mitochondrial biogenesis, which decreased metabolic output (Cioffi et al., 2017). As shown by
high-dose exposures to cell line models, fructose can institute mitochondrial impairment

through changes in mitochondrial membrane potential (Table 1).
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It should be noted that while fructose supplementation induced detrimental metabolic
alterations such as reduced glucose uptake and insulin resistance in cell lines and animal
models, human clinical trials do not show that fructose has a significant role in reducing
metabolic health (Tappy and Le, 2012). However, there is evidence showing that diabetic
patients exhibit elevated fructose concentrations in blood plasma (Kawasaki et al., 2002).
Unfortunately, fructose plasma levels have not been measured in animal studies. More focus
has been placed on plasma glucose and leptin measurements. Altogether, there is evidence that
low- and high-dose fructose changes metabolism in cell lines and animals (Tables 1 & 2). More

work is needed to understand how fructose effects in animal models translate into humans.

Xviii



Fructose Exposure Causes Transcriptional Changes

Fructose exposures also induced unique transcriptional changes in response to elevated cellular
stress, ROS, mitochondrial dysfunction, and cell death mechanisms (Figure 2). Oxidation of
DNA and RNA by elevated ROS can disrupt replication, transcription and induce mutations
within the genome (Poetsch, 2020). Oxidative DNA lesions can also act as transcription
regulators through epigenetic or enhancer repressor activity to directly regulate gene expression

(Ghosh and Mitchell, 1999; Pastukh et al., 2015; Fleming et al., 2017).

Low dose fructose altered Thioredoxin Interacting Protein (TXNIP) expression, associated with
a cellular inflammatory signaling response to oxidative stress, in hepatocytes, RHPCs, HLO2s,
and HepG2s cells (Zhang et al., 2015). Low dose fructose exposure also induced NLRP3
expression, which stimulates inflammasome formation and is linked to non-alcoholic fatty liver
disease (NAFLD). Cultured hepatocytes (primary rat hepatocytes, RHPCs, HLO2, and HepG2
cells) treated with 5 mM fructose showed significant up-regulation of NLRP3 and
inflammasome components Apoptosis-associated speck-like protein containing a CARD
(ASC), Caspase-1, interleukin-1 B (IL-1p), and IL-18 (Zhang et al., 2015). Low dose fructose
exposures were also able to elevate fatty acid synthase (Fas) activity by 125% and MDA levels
by 67% in primary hepatocytes (Grasselli et al., 2019). Elevated protein levels of signal
transducer and activator of transcription 3 (STAT3) and suppressor of cytokine signaling-3
(SOCS3), which increase inflammatory cytokines, were also present in cultured HepG2 cells
after low dose fructose exposures (Zhang et al., 2015). Even 550 uM fructose caused a 3.5-fold

increase in adipogenesis, indicated through overexpression of peroxisome proliferator-activated
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receptor y (Ppary) and Glucose transporter type 4 (GluT4) in 3 T3-L1 pre-adipocytes (Du and

Heaney, 2012).

High-dose fructose exposures elevated iNOS, Nrf2, Jnk, Erk, Nf-kb, and Mapk in response to
oxidative stress in L6 myotubes (Jaiswal et al., 2015a; Jaiswal et al., 2015b). Human dendritic
cells and HEK?293 cells treated with high doses of fructose exhibited elevated expression of
NF-«B and its translocation to the nucleus (Dornas et al., 2017; Jaiswal et al., 2019). Human
dendritic also showed increased expression of inflammasome proteins IL-1p, IL-6, TNF-a, and
IFN-y at 24, 48, and 72 hr after high fructose exposure (Jaiswal et al., 2019). Dendritic cells
also showed elevated apoptotic marker proteins and AGEs, which led to the activation of the
receptor for advanced glycation end products (RAGE) (Jaiswal et al., 2019), consistent with

Caspase-3, Caspase-7, and Caspase-9 activation in L6 myotubes (Jaiswal et al., 2015a).

Glucose exposure to animal models similarly showed elevated oxidative stress and induction of
apoptosis (Piro et al., 2002). Glucose exposures disrupt cell metabolic pathways and lead to
metabolic syndrome through signs of reduced glucose uptake and reduced OCR (Moreno-
Fernandez et al., 2018). Given that glucose and fructose can use similar metabolic pathways, it
is not surprising that elevation in GLUT proteins was also observed. GLUT1 and GLUT4
participate in glucose uptake, while GLUTS5 aids in fructose transport. Although there were no
GluT4 and GIuT5 mRNA expression changes for L6 myotubes treated with high-dose fructose,
GluT4myc translocation to the cell surface was impaired upon fructose exposure (Jaiswal et al.,
2019). GLUT1 expression increased in human dendritic cells exposed to 15 mM fructose
(Jaiswal et al., 2019). 3 T3-L1 pre-adipocytes exhibited elevated levels of GIuT5 expression at

Days 4 and 6 following high fructose incubation, indicating that cellular activity became
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altered as a function of fructose exposure, which suggests altered metabolic function (Du and

Heaney, 2012; Legeza et al., 2014).

Low dose fructose exposures in animal models showed similar changes (Table 2). A 5%
fructose dose with high-fat administered to Wistar rats produced elevated levels of 11-1p, 11-6,
and Nadph oxidase (Rosas-Villegas et al., 2017). Further, there were altered levels of catalase,
glutathione peroxidase, glutathione reductase, and Sod1 due to exposure (Rosas-Villegas et al.,
2017). Sprague—-Dawley rat livers exhibited increased expression of Nlrp3 inflammation, Asc,
Caspase-1, II-1p, and I1-18 after 10% fructose exposure (Zhang et al., 2015). Wistar male and
female rats exposed to low dose fructose also showed elevated levels of inflammatory
cytokines, Tnf-a, II-1p, I1-6, 11-10, and 11-18 expression in adipose tissues (Pektas et al., 2016).
A 10% fructose dose in Wistar rats also showed increased expression of advanced oxidation
protein products (AOPPs), apoptotic marker proteins, and inflammatory cytokines such as Il-
12p70 and 11-6 (Porto et al., 2015). Elevated AGEs were also found in Wistar, Lewis, and
hypertriglyceridic (HTG) rats administered with 10% fructose dose through increased post-

translational pentosidine levels in rat aorta and skin tissue samples (Mikulikova et al., 2008).

Low dose fructose supplementation in C57BL/6 mice led to decreased cystic fibrosis
transmembrane conductance regulator (CFTR) levels in cardiac tissue, contributing to
heightened mitochondrial oxidative stress, impaired electron transport chain function, and
induced myocardial hypertrophy (Zhang et al., 2016). Mitochondrial efficiency of Sprague—
Dawley was also monitored through peroxisome proliferator-activated receptor-y coactivator-
la (Pge-1a) and Sirt3 protein expression levels after fructose exposure. There was a decrease in

Pgc-1la protein expression in both the EDL and soleus muscles of healthy rats with 10%
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fructose exposure; however, there was an increase in Sirt3 expression in the soleus but a
decline in the EDL muscle (Warren et al., 2014). Low dose exposures in Wistar male and
female rats found elevated mRNA expression levels of insulin receptor 3 (Irp), insulin receptor
substrates (Irs-1, Irs-2), Akt, mTor, Pi3k, Ppary, Nrf2, and eNos, suggesting alterations in

glucose uptake (Pektas et al., 2016).

High-dose fructose exposure to animal models similarly led to transcriptional changes due to
alterations in oxidative stress and metabolic function upon supplementation (Table 2).
Spontaneously, hypertensive rats on a 60% fructose diet per day showed increased Nadph
oxidase and suppression of extracellular Sod expression, contributing to elevated oxidative
stress (Wu et al., 2017). A 20% fructose dose administered to Sprague—Dawley rats induced
decreased lipid hydroperoxide (LPO) and increased 8-OHdG levels in the hippocampal region.
Moreover, there was reduced expression levels of Ucp5, which is known to inhibit ROS
formation with reduced mitochondrial Tfam gene expression levels (Yamada et al., 2019).
Fischer rats administered the same high-dose fructose over 20 weeks exhibited decreased renal
Sod and catalase enzymatic expression (Dornas et al., 2017). C57BL/6 mice administered a
60% fructose dose experienced a non-significant increase of thioredoxin-2 (Thx2) gene
expression levels (Mellor et al., 2010). Wistar rats administered 60% fructose had elevated
expression of the elongation of very-long-chain fatty acids protein 6 (Elovl6) enzyme, which
has an important role in NAFLD by transforming C16 saturated and monounsaturated fatty

acids into C18 compounds (Szucs et al., 2019).

There are indications that high-dose fructose supplementation to animal models has differing

effects on apoptosis triggering pathways (Table 2). High fructose exposed Wistar rats had
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decreased catalase mMRNA expression in the liver, heart, skeletal muscle, and adipose tissue,
which is pro-apoptotic (Cavarape et al., 2001). There were also increased levels of creatine
kinase (CK), CK-MB, and lactate dehydrogenase (LDH), which are indicative of myocardial
injury (Szucs et al., 2019). However, a separate Wistar rat study found no change in caspase-7
and Bax expression upon treatment; however, there was an increase in anti-apoptotic 3-
ketoacyl-CoA thiolase in mitochondria of cardiac tissue, which diminished Bnip3-induced

apoptosis (Szucs et al., 2019).

Both cell line and animal model studies show fructose induces transcriptional changes and
apoptosis (Tables 1 & 2). There are clear links between the elevated reactive species and these
outcomes, suggesting that fructose exposure does have a significant role in toxicity (Porto et

al., 2015; Zhang et al., 2015; Jaiswal et al., 2015a).
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DHA Exposures Show Outcomes Similar to Fructose Exposures

Early toxicological investigations found DHA to be mutagenic in Salmonella typhimurium
strain TA100 with and without metabolic activation (Table 3) (Pham et al., 1979).
Mutagenicity of DHA is not surprising given that glucose, fructose, and galactose are
mutagenic (Brands et al., 2000). Interestingly, ketose sugars like fructose are more mutagenic
than glucose and galactose, and higher mutagenic activity corresponds with a higher Maillard
reactivity (Brands et al., 2000; Laroque et al., 2008). DHA is a ketose, precursor to ribose, the

most reactive sugar in modifying proteins by the Maillard reaction.

Low millimolar doses of DHA are cytotoxic and genotoxic in immortalized keratinocytes,
melanoma cells, human embryonic kidney cells, and reconstructed epidermis (Table 3)
(Petersen et al., 2004; Smith et al., 2018; Smith et al., 2019; Perer et al., 2020). Genotoxicity of
fructose has been previously described and attributed to the generation of genotoxic
metabolites like reactive species (ROS/RNS) and glyoxal (Table 1) (Hansen et al., 2008).
Similarly, the genotoxicity of DHA involves the generation of reactive species and induction of
strand breaks. ROS was generated after 5 mM exposures to DHA in A375P cells (Smith et al.,
2018). ROS was also observed in the immortalized keratinocyte cell line HaCaT after 25 and
50 mM doses (Perer et al., 2020). Increases in ROS were also observed when ex vivo skin was
exposed to DHA then exposed to ultraviolet (UV) light (Jung et al., 2008). Strand breaks and
replication stress were also observed in HaCaT and A375P cells through comet assay and
YH2AX foci formation (Petersen et al., 2004; Smith et al., 2018; Perer et al., 2020). HEK293T
cells did not show increases in ROS, but changes in NAD(P)H and GSH/GSSG levels indicate

the presence of reactive species after 5 mM DHA exposure (Smith et al., 2019).
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Both fructose and DHA exposures increase reactive species content in cell models. However,
fructose investigations infer that the formation of these species can lead to detrimental cellular
effects such as metabolic dysfunction, and evidence is only emerging that DHA exposures
cause these outcomes as well (Table 1). It is currently unknown if ROS formation following
DHA exposure can be driven by uric acid. Elevated ROS formation for both fructose and DHA
investigations are similar in that they are dependent on the activation of NADPH oxidases by

AGEs, which contribute to elevated oxidative stress (Wautier et al., 2001; Kuroda et al., 2010).

Fructose cytotoxicity is less well described independent of other stressors, but 12 mM fructose
was 50% cytotoxic to primary hepatocytes (Lee et al., 2009). Recent characterization of DHA
demonstrates higher genotoxicity and cytotoxicity than is associated with fructose exposures,
indicating the metabolic mechanisms to deal with excess fructose are more robust than those
that deal with an excess of 3-carbon metabolites. The metabolic dependence of DHA
cytotoxicity is supported by variations in DHA sensitivity and the mechanisms of cell death
between cell lines. Petersen et al. and Perer et al. report cytotoxic doses for the immortalized
keratinocyte cell lines HaCaT at 25 mM, while A375P melanoma cells and HEK293T cells
show more sensitivity with 1C90 doses of 5 mM (Petersen et al., 2004; Smith et al., 2018;
Smith et al., 2019; Perer et al., 2020). The different cell line models had varied cell death
mechanisms from apoptosis (HaCaT and A375P) to autophagy (HEK293T) (Petersen et al.,
2003; Smith et al., 2018; Smith et al., 2019; Perer et al., 2020). A brief period of senescence
was even observed in the A375P melanoma cells exposed to 5 mM DHA (Smith et al., 2018),

supporting metabolic dependence for the cytotoxic effects and likely the genotoxic effects.

XXV



Work with hyperpolarized DHA injected into C57BL/6 mice and Sprague—Dawley rats
demonstrated generation of different metabolites after DHA exposures in the liver and kidney
(Moreno et al., 2014; Marco-Rius et al., 2017). These works focused on using the
hyperpolarized DHA as a metabolic probe, so high millimolar doses and short exposure time
points were used (Table 3). These data confirm DHA is rapidly absorbed by tissues and
incorporated into metabolic pathways. Critically, the rates of incorporation were dependent on
the fed state of the animal (Moreno et al., 2014). Additionally, conversion of DHA to DHAP by
TKFC seems to be a rate-limiting step for metabolic incorporation, with higher levels of DHA
seen in the kidney than in the liver (Marco-Rius et al., 2017). TKFC expression varies across
tissues, and mutations in TKFC are observed in individuals with metabolic disorders (Uhlen et

al., 2015; Uhlen et al., 2017; Wortmann et al., 2020).

Once incorporated into metabolic pathways, DHA and DHAP can induce AGE formation,
damaging proteins and lipids, similar to fructose exposures. Perer et al. demonstrated that
DHA-derived AGEs could be measured in immortalized keratinocytes, human epidermal
constructs, and mouse skin (Perer et al., 2020). This is consistent with observed AGE formation
in fructose exposure studies; however, DHA is a more efficient glycation agent (Seneviratne et
al., 2012). Perer et al. also showed that non-cytotoxic doses of DHA activated stress-related
signal transduction pathways (p-p38, p-Hsp27[S15/S78], p-elF2a) in immortalized
keratinocytes (Perer et al., 2020). Elevated levels of stress response genes HSPA1A, HSPAG,
HSPD1, IL6, and DDIT3, were also observed in both cell culture and reconstructed skin

(Figure 2) (Perer et al., 2020).
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Along with AGEs and stress responses, DHA exposures altered mitochondrial function and
impacted NAD(P)H pools (Smith et al., 2018; Smith et al., 2019). Similar to low dose fructose
exposures, DHA reduced ATP production and respiration rates in HEK293T cells (Smith et al.,
2019). Fructose exposures also showed reductions in mtDNA, mitochondrial biogenesis, and
respiratory activity (Tables 1 and 2). These findings within fructose literature provide insight
into the potential metabolic consequences of DHA exposure. The NAD(P)H pool imbalance
likely impacts the efficiency of complex | to alter mitochondrial function. Still, a more in-depth
analysis of the mitochondrial impact of DHA is needed to clarify the mechanisms underlying

mitochondrial dysfunction.
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Discussion

While studies to date have focused on more acute DHA exposures (Table 3), the data from
these studies indicate the DHA exposures have metabolic, cytotoxic, and genotoxic outcomes
that are strikingly similar to fructose exposures but occur at much lower doses than fructose
(Gizak et al., 2019; Hernandez-Diazcouder et al., 2019; Taskinen et al., 2019). These
similarities are not surprising, given DHAP is generated from the breakdown of fructose.
However, DHAP from fructose exposures is generated in equilibrium with G3P. DHA
generates DHAP dependent on TKFC activity within each cell or tissue and produces an

imbalance in 3-carbon metabolites uniquely in each tissue.

Imbalance in DHAP and G3P has been linked with anemia, neurological disorders, diabetes,
and cancer (Orosz et al., 2009; Kitada et al., 2010; Rabbani et al., 2016). Imbalance in this
pathway is most often seen when defects in triosephosphate isomerase (TPI), which
interconverts G3P and DHAP, results in the accumulation of DHAP. Excess DHAP is proposed
to be converted to methylglyoxal and other AGEs, damaging DNA and proteins within the cell
and causing neurological disorders and early childhood death, even though energy metabolism

is unaffected (Li et al., 2008; Orosz et al., 2009).

Conversion of exogenous DHA to DHAP should cause a brief imbalance of DHAP/G3P, which
the cell can re-equilibrate through multiple enzymatic reactions. However, the studies
examining DHA exposure reviewed here show more acute genotoxic, metabolic, and cytotoxic
outcomes than expected from equivalent fructose exposures (Tables 1 and 2). This suggests

excess DHA and TKFC-converted DHAP are not readily metabolically incorporated for
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equilibration, or if equilibration occurs, it comes at a price to the cell health. DHA that is not
readily converted into DHAP may induce unique protein and DNA damage that has yet to be
characterized. More work is needed to understand the fate and impact of DHA that is not

converted to DHAP in cells.

The DHA converted to DHAP accumulates endogenous toxins like ROS, RNS, and AGEs that
damage DNA and proteins within cells. Therefore, the wealth of fructose studies already in the
literature provide critical insight into the potential exposure effects of systemic DHA, which
could place significant stress on cellular reduction and oxidation pathways, mitochondrial
function, and metabolism (Tables 1 and 2). More importantly, it also highlights unexplored
areas of systemic DHA exposures where inflammatory cytokines and inflammasome proteins
are up-regulated. Chronic, long-term DHA exposure may act similarly to high fructose diets
and induce metabolic reprogramming that reduces glucose uptake, changes glucose tolerance,
and alters metabolic dependence of tissues. This type of metabolic reprogramming is important

in the pathogenesis of obesity and diabetes.

Additionally, DHAP resulting from DHA exposure could impair lipid metabolism, like fructose
exposures, and contribute to increased adipose tissue, higher body weights, blood pressures,
and plasma triglyceride concentrations in exposed individuals. These types of outcomes from
DHA exposure could impact the development of chronic illnesses like insulin resistance and
NAFLD. More work is needed with animals exposed to DHA under different dietary conditions

to understand the consequences of exposure across different tissue types.
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Critically, work characterizing fructose exposures also demonstrates that other underlying
metabolic factors, like high-fat diets, can alter the cellular consequences of DHA exposure. Co-
exposure of fructose with a high-fat diet showed more elevated ROS generation alongside
increased levels of MDA, H202, and oxidative damage in adipose, liver, skeletal, and kidney
tissue types at lower fructose doses (Rosas-Villegas et al., 2017). The interaction of DHA or
TKFC-converted DHAP with these underlying metabolic conditions could further exacerbate

the reactive species generated and the genotoxicity and cytotoxicity of DHA.

One other possibility is that low dose exposures to fructose or DHA could stimulate antioxidant
mechanisms and transcription factors like NF-kB to reduce reactive species (Figure 2). As
noted in some fructose studies, enzymes that scavenge reactive species are up-regulated and
could provide a beneficial cellular effect by reducing reactive species and promoting the
degradation of damaged proteins. However, there are insufficient studies of low dose DHA
exposure to understand if there is a beneficial vs. adverse dose threshold. More studies,
including both high and low doses of DHA, would offer new insight into the cell's ability to use

DHA as a carbon source and identify where chronic or acute exposure effects occur.

Evidence that exogenous DHA exposures contribute to disease states is currently lacking.
However, there is ample evidence in the literature that imbalances in DHAP and G3P from
fructose exposures, diabetes, and other disease states induce protein and DNA damage,
metabolic reprogramming and contribute to disease progression. Significantly, more work is
needed both in vitro and in vivo to understand the consequences of acute and chronic exposures
to exogenous DHA. Given that DHA exposures are following an increasing trend, the wealth of

fructose data already in the literature offers a unique opportunity to investigate the differences
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between fructose and DHA exposures. Fructose studies also provide comparison points for

examining the health consequences of DHA and TKFC-converted DHAP exposures.
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Conclusions

Exogenous exposures to DHA can occur through the use of sunless tanning products and e-
cigarettes. Exposures to millimolar doses of DHA are genotoxic, cytotoxic, and induce
metabolic reprogramming. Comparison with existing fructose exposure literature highlights
that both fructose and DHA elevate oxidative stress due to the generation of reactive species.
Both agents also induce mitochondrial changes that decreased overall function. The fructose
data suggests these changes occur through alter electron transport and through the induction of

DNA damage. These mechanisms need to be confirmed in DHA exposed models.

Additionally, gene expression changes observed in both fructose and DHA exposure models
confirm the induction of cellular stress, even at non-cytotoxic doses that may induce metabolic
reprogramming. In summary, DHA exposures are similar to fructose exposure, but they cause
detrimental cellular consequences more rapidly and at lower doses. Therefore, fructose
exposures can help develop a framework for investigating the health effects of DHA exposures
and provide a better understanding of the potential health consequences for exposed

individuals.
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Appendices

Fructose-1,6-bisphosphate

DHA —> DHAP < > Glyceraldehyde-3-P

e T
NADH NAD(P)H
NAD*

Glycerol —> Glycerol-3-P  Methylglyoxal 1,3-Diphospho-

I l Proteins  8lycerate
Diacylglycerol (AGE) AGEs l .
l KROS Glycolysis
PKC activation RAGE
NAD(P)H
oxidase

Oxygen O, 7T> Superoxide O,
NAD(P)H NAD(P)*

FIGURE 1. Fructose is converted into the two 3-carbon metabolites dihydroxyacetone
phosphate (DHAP) and glyceraldehyde-3-phosphate (Glyceraldehyde-3-P). Exogenous
dihydroxyacetone (DHA) is integrated into 3-carbon metabolism by phosphorylation to DHAP
by triose kinase\FMN-cyclase (TKFC). DHAP and Glyceraldehyde-3-P are interconverted by

triose phosphate isomerase (TPI1). Glyceraldehyde-3-P is converted by Glyceraldehyde-3-
xliv



phosphate dehydrogenase (GAPDH) to 1,3-Diphospho-glycerate. DHAP can also be directly
converted to methylglyoxal by methylglyoxal synthase (MGS). Methylglyoxal and
Diacylglycerol are advanced glycation end products (AGE) which can interact with the

receptor for advanced glycation end products (RAGE), activate protein kinase ¢ (PKC), or even
damage cellular proteins. AGEs and other reactive species like reactive oxygen species (ROS)
can induce DNA, RNA, and protein damage which are detrimental to cell health and can induce

cell death. Human nomenclature for enzymes is used for this summary figure.
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Oxidative Stress = NAFLD

Up-regulated Down-regulated Metabolic Efficiency Cell Death = e
Erk Tfam Up-regulated Down-regulated Up-regulated ﬁ:ﬁi
iNOS Ucp5 Akt Pcg-1a Caspase-1 v
Jnk Nrfl GluT4 Caspase-3 oy
Mapk GIuTS Caspase-7
Nadph oxidase Irs-1 Caspase-9
Nrf-2 Irs-2 |L-1B
NF-kB mTor IL-18
Ppary Sirt3 IL-6

SOCS3 TNF-a

STAT3 IFN-y

ASC

: | "

Oxidative Stress  DNA Repair Cell Cycle
Up-regulated Up-regulated Up-regulated
HSPA1A XRCC2 Cyclin A2
HSPA6 ERCC3 Cyclin B1
HSPD1 SIRT1
IL-6
DDIT3
EGR1

FIGURE 2. Both fructose and DHA exposures alter the expression of proteins involved in
oxidative stress, metabolic efficiency, DNA repair, cell cycle control, and cell death. Changes
in gene expression (italics) or protein levels identified in the summarized studies are presented

here. Species is denoted by the use or lack of capitalization.
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TABLE 1. Fructose exposures in cell line models.
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TABLE 3. DHA exposures across various models.

Model-system
Cell models
A375P

HaCaT

HaCaT

HEK293T
HEK293T

Dose

5 mM

5to 100 mM

Cell viability analysis by flow
cytometry and cell proliferation:
<50 mM; detection of intracellular
oxidative stress: <40 mM; comet
assay (alkaline single cell gel
electrophoresis): 20 mM;
detection of y-H2AX (S139):
<40 mM

5 mM

Animal model systems, human samples, and bacteria

C57BL/6 mice
Sprague-Dawley rats
Skin biopsy samples from

pig

Human serum albumin

Salmonella typhimurium
strain TA100

8 mM

80 mM of hyperpolarized [2-13C]
DHA

5, 10, and 20% DHA

Reaction mixtures included 2, 10, or
30 mM of each DHA or DHAP
and 35 mg of HAS

8% DHA

Key findings

Inhibited cell growth; increases in ROS; no DNA
damage; cell cycle arrest; delayed induction of
apoptosis; increased mitochondrial polarization

No change in cell proliferation with 25 mM dose after
3 hr; cell cycle arrest (50% increase of cells in the
G2/M); doses greater than 25 mM induced cell
death; apoptosis; increase in DNA strand breaks

Impaired cell viability, proliferation, and cell cycle
progression, increased gene expression of HMOX1
due to oxidative stress, increased XRCC2 and ERCC3
gene expression due to DNA damage, increased
AGE formation, increased ROS (only for greater than
40 mM)

Cell cycle arrest confirmed by increased cyclin A2 and
cyclin B1 levels; no apoptosis as exposure did not
lead to cleavage of PARP1 or Caspase 3; autophagy
confirmed with increase in LC3BII to LC3BI ratio and
SIRT1 expression; reduced mitochondrial membrane
potential after 24 hr exposure; initial decline in OCR;
decline in ECAR after 24 hr, decreased ATP
production and lactate production; NAD+/NADH
cofactor imbalances

Exogenous DHA readily enter cells and tissues and
form metabolites

Generation of different metabolites in liver and
kidneys; higher levels of DHA and DHAS in the
kidney than the liver

DHA increases free radical production by 180% in UV-
exposed skin relative to the control untreated group

HSA is shown to undergo glycation by DHA

DHA cytotoxicity with and without metabolic
activation; DHA is mutagenic and can lead to DNA
damage
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