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ABSTRACT

Swanepoel, Helene, M.S., University of South Alabama, May 2022. The Slope
Conjecture and Normal Surface Theory. Chair of Committee: Christine Lee, Ph.D.

In this thesis we explore the relationship between quantum link invariants

and the geometric and topological properties for a family of pretzel knots

P (−2r, 2r + 1, 2r + s), r ≥ 1 and s ≥ 3, as predicted by the Slope conjecture. This

conjecture asserts a connection between the degree of the colored Jones polynomial

and boundary slopes of these knots. We introduce fundamentals of knot theory and

prove that the minimum degree of the Jones polynomial for the family of pretzel

knots P (−2r, 2r + 1, 2r + s), r ≥ 1 and s ≥ 3, is −6r − 3r + 3.

In addition, we consider normal surface theory to find the boundary slopes of

essential surfaces in the knot complement. As example, we consider the Lens Space

L3,1 and compute the Q-matching equations associated with the triangulation. Since

every essential surface is isotopic to a Haken sum of normal surfaces, we hope to one

day combine the theorem proven in this thesis with normal surface theory in order

to prove or disprove the Slope conjecture for the family of pretzel knots

P (−2r, 2r + 1, 2r + s).

vii



CHAPTER I

INTRODUCTION

One of the main goals of knot theory is to identify properties that distinguish

knots. These properties are known as knot invariants. In 1984, Vaughan Jones

discovered a new polynomial for knots and links called the Jones polynomial [1].

This was a major breakthrough as Jones polynomials were introduced as knot

invariants.

In order to define the Jones polynomial, we use Kauffman’s formulation of

this polynomial called the bracket polynomial. We then use this polynomial, along

with the Chebyshev polynomial, to calculate the Jones polynomial.

The Slope conjecture, by Garoufalidis, predicts a connection between the

degree of the colored Jones polynomial and boundary slopes of knots [5]. This is a

difficult problem since the definition of the color Jones polynomial is combinatorial

and based on the diagram of the knot, which does not easily relate to the topology of

surfaces lying inside of the three dimensional manifold that is the knot complement.

The Slope conjecture is known for alternating knots [5], adequate knots [3,4],

iterated torus knots [11], families of 3-tangle pretzel knots [12], knots with up to 9

crossings [5, 11], family of 2-fusion knots [6] and graph knots [16]. Lastly, knots

obtained by iterated cabling and connect sums of knots from any of the above

classes also satisfy this conjecture [16].

We first present the ideas involved in knot theory such as knot invariants.

Consequently, fundamentals of knot theory are introduced in Chapter II. Here, we
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discuss knot invariants, the Kauffmann bracket, the Jones polynomial, colored Jones

polynomial and techniques needed to prove our main theorem.

In Chapter III, we prove that the minimum degree of the Jones polynomial

for the family of pretzel knots P (−2r, 2r + 1, 2r + s) for r ≥ 1 and s ≥ 3 is

−6r− 3s+3. We are interested in this family since the Slope conjecture has already

been proven for alternating knots and the family is non-alternating.

Next, we relate the degree of the colored Jones Polynomial to the slopes of

essential surfaces using the slope conjecture in Chapter IV.

Finally, in Chapter V, we summarize the progress provided in this thesis and

discuss upcoming research. In the future, we hope to use the theorem, proven in

Chapter III, along with normal surface theory to prove or disprove the Slope

conjecture for the family of pretzel knots P (−2r, 2r + 1, 2r + s).

2



CHAPTER II

KNOTS AND KNOT INVARIANTS

2.1 Knots and Knot Diagrams

Knot theory investigates how a one-dimentional “string” can lie in

three-dimensional space. We start by defining a knot and then a special class of

knots, called pretzel knots.

Definition 2.1.1. [13] A link L of m components is a subset of R3, that consists of

m disjoint, piecewise linear, simple closed curves. A link of one component is a knot.

An example of a knot:

+1

+1

+1

Figure 1. Trefoil knot

We use diagrams or projections to study knots. A knot diagram consists of

edges and crossings [18]. Consider, for example, two different diagrams or

projections of the trefoil knot:

3



Figure 2. Trefoil knot and Braid trefoil knot

We assign an orientation to a knot diagram. An orientation of a knot

diagram is an assignment of {+1,−1} values to each crossing following the rule:

+1 -1

Figure 3. Right-hand and left-hand crossing of the knot

2.2 Knot Invariants

An important question to ask is whether or not two knots are the ”same”.

We use knot invariants to distinguish between knots and classify them. We say that

two knots are equivalent if they are related to each other by an ambient isotopy.

Definition 2.2.1. [13] A knot invariant is a property of a knot that does not

change under ambient isotopy.

Definition 2.2.2. Links L1 and L2 in the three-sphere S3 are equivalent if there is

an orientation preserving piecewise linear homeomorphism h : S3 → S3 such that

h(L1) = L2.

An example of a knot invariant is the crossing number of a knot K, denoted

c(K). It is the least number of crossings that occurs in any projection of a knot [1].

The trefoil knot 1 has crossing number 3.

4



2.3 Pretzel Knots

For this thesis, we are interested in pretzel knots, specifically the family of

pretzel knots P (−2r, 2r + 1, 2r + s) for r ≥ 1 and s ≥ 3. It is usually much more

relevant to consider various classes of knots and links that have been found to be

interesting, rather than to seek some list of all possible knots that would satisfy the

Slope conjecture.

We consider the family P (−2r, 2r + 1, 2r + s), r ≥ 1 and s ≥ 3 more

compelling, since the Slope conjecture has already been proven for alternating

knots [5] and our family is non-alternating. An alternating knot is a knot with a

diagram that has crossings that alternate between over and under as one travels

around the knot in a fixed direction [1]. However, the family of pretzel knots

P (−2r, 2r + 1, 2r + s) has no alternating diagrams.

Definition 2.3.1. Let (a1, a2, ..., an) be a set of non-zero, positive or negative

integers. A pretzel link P (a1, a2, ..., an) is a link that has a diagram obtained by

joining n twist regions side-by-side (see Figure 4). Each twist region is associated

with an ai and has either left- or right-hand crossings, as shown below. The ai

indicates the number of crossings in twist regions 1, 2, ..., n respectively. If ai is

positive then the twist region has right-hand crossings and if ai is negative we will

have left-hand crossings in the twist region.

5



a1 a2 an

Figure 4. Pretzel knot P (a1, a2, ..., an)

In the figure above, the pretzel knot has all right-hand crosings. The family

P (−2r, 2r + 1, 2r + 3) for r ∈ N are considered pretzel knots, since they are a link of

one component. This is because we have at most one twist region with an even

crossing number (rest odd). If we have more than one twist region with even

crossing number, then this gives a link. This is because the two twist regions with

even crossing number combine in such a way that it ”links” or ”hooks” together

(one crossing over, one crossing under) to form two disjoint, simple closed curves.

2.4 The Colored Jones Polynomial

The colored Jones polynomial is a powerful example of a knot invariant. In

order to define the colored Jones polynomial we first define the Kauffman bracket

polynomial, the Jones polynomial and the Chebychev polynomial.

Definition 2.4.1. [13] The Kauffman bracket is a function from unoriented link

diagrams in the oriented plane to Laurent polynomials with integer coefficients in

one variable A. It maps a diagram D to ⟨D⟩ ∈ Z[A−1, A] and is characterized by

1. ⟨⃝⟩ = −A2 − A−2

2. ⟨ ⟩ = A⟨ ⟩+ A−1⟨ ⟩

6



Here ⟨D⟩ denotes the bracket polynomial of the knot K and A is a variable

of the polynomial. In order to find the bracket polynomial of K, the first rule says

that the polynomial of the trivial knot will be −A2 − A−2. The second rule replaces

the crossing with a resolution.

Next, we define the writhe of a knot K, the Jones polynomial and then the

Chebyshev polynomial.

Definition 2.4.2. [1] The writhe w(D) of a knot diagram D is the sum of all the

positive and negative crossings.

Definition 2.4.3. [13] The Jones polynomial VL(t) of an oriented link L is the

Laurent polynomial in t−1/2, with integer coefficients, defined by

VL(t) = (−A)−w(D)⟨D⟩t1/2=A−2 ∈ Z[t−1/2, t1/2]

where D is any oriented diagram for L and w is its writhe.

Note that we can talk about the Jones polynomial of a link since the

polynomial is not dependent on the diagram D.

Definition 2.4.4. [10] For n ≥ 0, the Chebyshev polynomial Sn(x) is defined

recursively as follows:

Sn+2(x) = xSn+1(x)− Sn(x), S1(x) = x, S0(x) = 1

Now, we can define the colored Jones polynomial.

Definition 2.4.5. [10] For a knot K ⊂ S3 let JK,n(t) denote the n-th colored Jones

polynomial of K. For n > 0,

JK,n(t) = ((−1)n−1t(n
2−1)/4)w(−1)n−1⟨Sn−1(D)⟩

7



Here ⟨Sn−1(D)⟩ is the linearly extended Kauffman bracket, D represents a

link diagram and w is the writhe of the specific choice of diagram. Dn is interpreted

as the n-blackboard cable of the link diagram D.

The colored Jones polynomial can detect more boundary slopes than the

regular Jones polynomial - which computes boundary slopes only for alternating

knots [2].

A simple example of JK,3(t) where K is the trefoil knot follows:

JK,3(t) = (t6)⟨S2(D)⟩

where S2(D) = D2 − 1. So then for this example,

⟨S2(D)⟩ = ⟨D2⟩ − 1

where D2 is the following diagram:

Figure 5. D2-cable of the trefoil knot

2.5 The Slope Conjecture

Let K be a knot in S3 and let N̊(K) be a tubular neighborhood of K. Define

the knot complement M = S3 − N̊(K).

Definition 2.5.1. [2] A compact, orientable, properly embedded surface S ⊂ M is

said to be incompressible if for any disc D ⊂ M with D ∩ S = ∂D, there exists a

disc D′ ⊂ S, with ∂D′ = ∂D.

8



Definition 2.5.2. [2] A compact orientable, properly embedded surface S ⊂ M is

∂-incompressible if for each disc D ⊂ M with D ∩ S = ∂+D, and D ∩ ∂M = ∂−D.

There is a disc D′ ⊂ S with ∂+D
′ = ∂+D and ∂−D

′ ⊂ ∂S.

D D

∂M

Figure 6. Left: A compressing disk. Right: A boundary compressing disk

Definition 2.5.3. [2] A compact, orientable, properly embedded surface S ⊂ M is

essential if it is both incompressible and ∂-incompressible. A compact

non-orientable and properly embedded surface S ⊂ M is essential if the induced

inclusion map ι∗ on fundamental groups:

ι∗ : π1(S) ↪→ π1(M)

is injective.

Definition 2.5.4. [10] Let S be an essential surface with non-empty boundary in

N̊(K). A fraction p
q
∈ Q ∪ 1

0
is a boundary slope of K if pµ+ qλ represents the

homology class of a component of ∂S in H1(∂N(K)). Here µ is the meridian and λ

is the longitude.

The set of boundary slopes of a knot is an invariant of the knot, and we know

the set is finite by [8].

Definition 2.5.5. [5] For a knot K ⊂ S3 let d+[JK,n(t)] and d−[JK,n(t)] denote the

maximal and minimal degree of JK,n(t) in t, respectively. The degrees d+[JK,n(t)]

and d−[JK,n(t)] are quadratic quasi-polynomials. This means that, given a knot K,

9



there is nK ∈ N such that for all n > nK we have

d+[JK,n(t)] = aK(n)n
2 + bK(n)n+ cK(n)

d−[JK,n(t)] = aK(n)n
2 + bK(n)n+ cK(n)

where the coefficients are periodic functions from N to Q with finite integral period.

Definition 2.5.6. [5] For a knot K, define the Jones slopes jsK by:

jsK = { 2

n2
deg(JK,n(t))|n ∈ N}

Let bsK denote the set of boundary slopes of essential surfaces of K.

The Slope Conjecture asserts that the Jones slopes of any knot K are

boundary slopes.

Conjecture 1. [5] (The Slope Conjecture) For every knot we have

2jsK ⊂ bsK

This means that from the colored Jones polynomial, we can find a boundary

slope for any knot using the degree of this polynomial.

10



CHAPTER III

THE DEGREES OF THE JONES POLYNOMIAL OF PRETZEL

KNOTS

3.1 The Kauffman States of Pretzel Knots

In this section we prove our main theorem, which states that the minimum

degree of the Jones polynomial of the family of pretzel knots P (−2r, 2r + 1, 2r + s)

for r ≥ 1 and s ≥ 3 is −6r − 3s+ 3. We begin by proving that the minimum degree

of the Jones polynomial of P (−2, 3, 7) as well as the P (−4, 5, 7) pretzel knot is −18.

We then use the techniques developed to generalize to a proof for the family of

pretzel knots P (−2r, 2r + 1, 2r + s) for r ≥ 1 and s ≥ 3. Generally, we will label the

three twist regions from left to right by a, b and c.

Definition 3.1.1. [13] A state s for a diagram D with n crossings labelled 1, ..., n

is a function

s : {1, 2, 3, ...n} → {−1, 1}

Given a link diagram D and a state s for D, sD is constructed from D by

resolving each crossing into an A- or B-resolution according to whether s(i) is equal

to 1 or s(i) is equal to −1 respectively. See the figure below.

11



s(i) = 1 s(i) = −1

Figure 7. The A and B resolutions of left-hand crossing

For the purpose of our research, we use the unreduced version of the

Kauffman bracket, where the value of the bracket of the unknot is equal to

−A−2 − A2 instead of 1. We modify Lickorish’s Proposition 5.1 accordingly:

If D is a link diagram with n crossings, the Kauffman bracket of D is given

by

⟨D⟩ =
∑
s

A
∑n

i=1 s(i)(−A−2 − A2)|sD| (III.1)

where the diagram sD, having no crossings is a set of disjoint simple closed

curves and | sD | is the number of circles after resolving the crossings.

Let s+ and s− be the two constant states such that s+ has value +1 on every

crossing and s− has value −1 on every crossing. Fix the diagram

P (−2r, 2r + 1, 2r + s) of a 3-tangle pretzel knot. We denote the three twist regions

from left to right by a, b and c. Also, let s−{ka, kb, kc} be the Kauffman state that

chooses the A-resolution on ka crossings in twist region a, kb crossings in twist

region b, and kc crossings in twist region c, where ka, kb, kc are positive integers ≤

the twist number. The Kauffman state chooses the B-resolution on all the rest of

the crossings.

For example, s−{1, 1, 1}, is the Kauffman state that chooses the A-resolution

on one crossing in twist region a , b, and c, while the remaining crossings have

B-resolution.

12



3.2 The P (−2, 3, 7) Pretzel Knot

a b c

Figure 8. The P(-2,3,7) Pretzel knot

According to Lickorish, if two segments of s+D that replace a crossing of D

never belong to the same component of s+D, then D is plus-adequate. Similarly, if

two components of s−D do not belong to the same component of s−D then D is

minus-adequate [13].

Lemma 1. The diagram for the P (−2, 3, 7) is plus-adequate, but not

minus-adequate.

Proof. We change D to s+D by replacing all the crossings in the positive manner as

shown in the figure below. In other words, s+D is the Kauffman state that chooses

the A-resolution on all crossings.

13



Figure 9. s+D

According to Lickorish, if two segments of s+D that replace a crossing of D

never belong to the same component of s+D, then D is plus-adequate. From the

above figure 9, we see for each crossing, the two resulting arcs belong to different

components. Thus, D is plus-adequate

Consider the Kauffman state s−D, which chooses the B-resolution on all

crossings.

Figure 10. s−D

From the above figure, we see that the purple and orange edge on twist

region a have ends on the same circle. Therefore, there exists two segments of s−D

that belong to the same component of s−D, and D is not minus-adequate.

14



Let M⟨D⟩ and m⟨D⟩ denote the maximum and minimum powers of A that

occur in the bracket (Laurent) polynomial of a diagram D.

We use the unreduced form of Lickorish’s Lemma 5.4 to calculate the

maximum M⟨D⟩ degree of the Jones polynomial of the knot:

Lemma 2. [13, Proposition 5.4] Let D be a link diagram with n crossings. Then

M⟨D⟩ ≤ n+ 2 | s+D | with equality if D is plus-adequate, and

m⟨D⟩ ≥ −n− 2 | s−D | with equality if D is minus-adequate.

Since our knot is plus-adequate, but not minus-adequate, we have that

M⟨D⟩ ≤ n+ 2 | s+D |= 12 + 2 | 3 |= 18. We set out to calculate the minimum

degree of the knot, m⟨D⟩.

In order to prove the main Theorem, we first prove the following Lemma:

Lemma 3. Let x, h, and f be non-negative integers. Then

x∑
i=0

(
x

i

)
Ah+2i(−A2 − A−2)f+i = (−1)xA4x+h(−A2 − A−2)f

Proof. Note,

x∑
i=0

(
x

i

)
Ah+2i(−A2 − A−2)f+i = Ah(−A2 − A−2)f

x∑
i=0

(
x

i

)
A2i(−A2 − A−2)i

= Ah(−A2 − A−2)f
x∑

i=0

(
x

i

)
(−A4 − 1)i

Using the Binomial Theorem, we have

= Ah(−A2 − A−2)f [(−A4 − 1) + 1]x = (−1)xA4x+h(−A2 − A−2)f

15



Recall by (III.1) that ⟨D⟩ is defined by summing over polynomials

A
∑n

i=1 s(i)(−A−2 − A2)|sD| associated to each Kauffman state. From this definition it

is clear that we are interested in
∑

s(i) and the number of circles |sD|.

From the proof of Lemma 5.4 in Lickorish, we know that any state s can be

achieved by starting with s+ and changing, one at a time, the value of s+ on

selected integers that label the crossings [13]. Similarly, any state can be achieved

by starting with s− and resolving each crossing one at a time. This also means that

for states s0, s1, ..., sk, sq−1D and sqD for q = 1, 2, ...k are the same diagram except

near one crossing of D, and |sqD| = |sq−1D| ± 1.

Therefore, since the minimum degree of the polynomial associated to the

Kauffman state s is equal to
∑

s(i)− 2|sD| and
∑

sq(i) ≥
∑

s−(i) + 2, we have

that the degree of s− will always be smaller than or equal to the degrees of all other

states.

Theorem 1. The minimum degree of the Jones polynomial for the pretzel knot

P (−2, 3, 7) is m⟨D⟩ = −18 with coefficient 1.

Proof. We start with s− and find all the other states that have the same degree as it

by changing the resolutions on crossings from B to A. The Kauffman state s− has

degree −30. This is because the number of crossings is 12, the sum of s−(i) = −12

and the number of circles in s− is 9, which gives that −12−2(9) = −30. We consider

cases between −30 and −18 and show by direct calculation, with the help of lemma

3, that the minimum degree of the Jones polynomial is −18 with coefficient 1.

We organize these states by the number of crossings chosen in twist region b

and c and then group the number of crossings in a with the same degree.

0 crossings chosen in twist region b and c:

Note that, if zero crossings are chosen in twist regions b and c, no matter

which crossing we choose to change to an A-resolution on twist region a, the state
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we end up getting will have the same degree as s−. This is because no matter which

crossing we choose to change, the circles |sD| on twist region a will merge. More

precisely, let U be a subset of the crossings of twist region a, and let sU be the

Kauffman state obtained from s− by changing the resolution on crossings in U from

B to A. Then |sUD| = |s−D|+ |U |.

In this situation the sum of all the polynomials associated to states that

choose 0 crossings in twist region b and c with degree = −30 is the same as∑2
i=0 A

−12+2i(−A2 − A−2)9+i.

We apply Lemma 3, with x = 2, f = 9, m = 0 and h = −12.

Then,

2∑
i=0

A−12+2i(−A2 − A−2)9+i = (−1)2A4(2)+(−12)(−A2 − A−2)9

= A−4(−A2 − A−2)9

1 or 2 crossings chosen in twist region b and c: Similar to the case where 0

crossings are chosen in twist region b and c, if a state has 1 or 2 crossings chosen in

twist regions b and c its degree is −26 and −22 respectively, regardless of which

subsets we choose to change the resolution from B to A in twist region a. We

account for the number of states by multiplying the polynomial by
(
10
1

)
and

(
10
2

)
respectively since there are 10 crossings total in b and c.

The polynomials resulting from these two cases are shown below.

(1 crossing case)

(
10

1

)
[

2∑
i=0

A−10+2i(−A2 − A−2)8+i]

=

(
10

1

)
[(−1)2A4(2)+(−10)(−A2 − A−2)8] =

(
10

1

)
[A−2(−A2 − A−2)8]
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(2 crossing case)

(
10

2

)
[

2∑
i=0

A−8+2i(−A2 − A−2)7+i]

=

(
10

2

)
[(−1)2A4(2)+(−8)(−A2 − A−2)7] =

(
10

2

)
(−A2 − A−2)7]

3 crossings chosen in twist regions b and c. We account for the number of

states by multiplying the polynomial by
(
10
3

)
. Except for the state where all 3

crossings are chosen to have A-resolutions on twist region b, we have that resolving

crossings in twist region a will split the same number of circles as the number of

crossings in the subset.

(3 crossing case 1) [

(
10

3

)
− 1][

2∑
i=0

A−6+2i(−A2 − A−2)6+i]

= [

(
10

3

)
− 1][(−1)2A4(2)+(−6)(−A2 − A−2)6]

= [

(
10

3

)
− 1][A2(−A2 − A−2)6]

The case of the Kauffman state that chooses all crossings in twist region a to

have A-resolution and B-resolution for the other crossings is shown below. We

multiply the polynomial by
(
3
3

)
and

(
7
0

)
to account for the single case. This is

because we choose all crossings in twist region b to have A-resolution and none of

the other crossings in twist region c. The degree of one of the terms is −22.

(3 crossing case 2)

(
3

3

)(
7

0

)
[A−6(−A2 − A−2)8]

The next states that have degrees ≤ −18 are listed below. The first state to

consider is the Kauffman state that chooses the A-resolution for all the crossings in
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twist region b, as well as one crossing in twist region c, all other crossings have

B-resolution. We multiply the polynomial by
(
3
3

)
and

(
7
1

)
to account for these seven

cases.

s−{0, 3, 1}
(
3

3

)(
7

1

)
[A−4(−A2 − A−2)7]

Next, consider the Kauffman state that chooses the A-resolution for all the

crossings in twist region b, as well as one crossing in twist region a, all other

crossings have B-resolution. We multiply the polynomial by
(
2
1

)
and

(
3
3

)
to account

for these two cases.

s−{1, 3, 0}
(
2

1

)(
3

3

)
[A−4(−A2 − A−2)7]

Finally, consider the Kauffman state that chooses the A-resolution for all the

crossings in twist regions a and b and B-resolution for all crossings in twist region c.

We multiply the polynomial by
(
2
1

)
and

(
3
3

)
to account for these two cases.

s−{2, 3, 0}
(
2

2

)(
3

3

)
[A−2(−A2 − A−2)8]

Let d denote the degree of the Kauffman state s and ds the degree of the sum

over all states that satisfy the conditions 0 ≤ ka ≤ 2 and kb + kc equal to the

number of crossing(s) chosen to have A-resolution in b and c for the state

s−{ka, kb, kc}. To summarize,
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Table 1. Degrees of States of P (−2, 3, 7)

d ds State Polynomial

−30 −22 0 ≤ ka ≤ 2 and kb + kc = 0
(
10
0

)
A−4(−A2 − A−2)9

−26 −18 0 ≤ ka ≤ 2 and kb + kc = 1
(
10
1

)
A−2(−A2 − A−2)8

−22 −22 s−{0, 3, 0}
(
3
3

)(
7
0

)
A−6(−A2 − A−2)8

−18 −18 s−{1, 3, 0}
(
2
1

)(
3
3

)(
7
0

)
A−4(−A2 − A−2)7

−18 −18 s−{2, 3, 0}
(
2
2

)(
3
3

)(
7
0

)
A−2(−A2 − A−2)8

−18 −18 s−{0, 3, 1}
(
3
3

)(
7
1

)
A−4(−A2 − A−2)7

Note that the 2 crossing case is not included in the table, since the minimum

degree of the polynomial is larger than −18.

We have accounted for all the cases with three crossings in twist regions b

and c. The only case with four crossings in twist region b and c that we need to

consider is s−{0, 3, 1}, because other cases have degree bigger than −18.

Finally, we sum the polynomials in the table:

Table 2. Sum of the coefficients of the A−22 and A−18 terms for P (−2, 3, 7)

Polynomial Coeffiecient of A−22 term Coeffiecient of A−18 term(
10
0

)
A−4(−A2 − A−2)9 −1 −9(

10
1

)
A−2(−A2 − A−2)8 10(

3
3

)(
7
0

)
A−6(−A2 − A−2)8 1 8(

2
1

)(
3
3

)(
7
0

)
A−4(−A2 − A−2)7 −2(

2
2

)(
3
3

)(
7
0

)
A−2(−A2 − A−2)8 1(

3
3

)(
7
1

)
A−4(−A2 − A−2)7 −7

0 1
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Since all of the states with degree less than or equal to −18 have either been

included or exhausted, we have that the minimum degree of the pretzel knot

P (−2, 3, 7) is m⟨D⟩ = −18 with coefficient 1.

3.3 The P(-4,5,7) Pretzel Knot

Figure 11. The P(-4,5,7) Pretzel knot

Theorem 2. The minimum degree of the Jones polynomial for the pretzel knot

P (−4, 5, 7) is m⟨D⟩ = −18 with coefficient 1.

Proof. Similarly to proof of Theorem 1, we begin with s− and find all the other

states that have the same degree as it by changing the resolutions on crossings from

A to B. The Kauffman state s− has degree −38 for this knot. This is because the

number of crossings is 16, the sum of s−(i) = −16 and the number of circles in s− is

11 which gives that −16− 2(11) = −38. We consider cases between −38 and −18

and show by direct calculation, with the help of lemma 3, that the minimum degree

of the Jones polynomial is −18 with coefficient 1.

We organize the states, the same as before, by the number of crossings

chosen in twist region b and c and then group the number of crossings in a with the
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same degree. Again, let d denote the degree of the Kauffman state s and ds the

degree of the sum over all states that satisfy the conditions 0 ≤ ka ≤ 4 and kb + kc

equal to the number of crossing(s) chosen to have A-resolution in b and c for the

state s−{ka, kb, kc}.

We consider cases for kb + kc ≤ 5 and we do not consider the cases for

1 < kb + kc ≤ 4 because the degree will be larger than −18. We summarize the

results,

Table 3. Degrees of States for P (−4, 5, 7)

d ds State Polynomial

−38 −22 0 ≤ ka ≤ 4 and kb + kc = 0
(
12
0

)
(−A2 − A−2)11

−34 −18 0 ≤ ka ≤ 4 and kb + kc = 1
(
12
1

)
A2(−A2 − A−2)10

−22 −22 s−{0, 5, 0}
(
4
0

)(
5
5

)(
7
0

)
A−6(−A2 − A−2)8

−18 −18 s−{0, 5, 1}
(
4
0

)(
5
5

)(
7
1

)
A−4(−A2 − A−2)7

−18 −18 s−{1, 5, 0}
(
4
1

)(
5
5

)(
7
0

)
A−4(−A2 − A−2)7

−18 −18 s−{2, 5, 0}
(
4
2

)(
5
5

)(
7
0

)
A−2(−A2 − A−2)8

−18 −18 s−{3, 5, 0}
(
4
3

)(
5
5

)(
7
0

)
(−A2 − A−2)9

−18 −18 s−{4, 5, 0}
(
4
4

)(
5
5

)(
7
0

)
A2(−A2 − A−2)10

We sum the polynomials:
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Table 4. Sum of the coefficients of the A−22 and A−18 terms for P (−4, 5, 7)

Polynomial Coeffiecient of A−22 term Coeffiecient of A−18 term(
12
0

)
(−A2 − A−2)11 −1 −11(

12
1

)
A2(−A2 − A−2)10 12(

4
0

)(
5
5

)(
7
0

)
A−6(−A2 − A−2)8 1 8(

4
0

)(
5
5

)(
7
1

)
A−4(−A2 − A−2)7 −7(

4
1

)(
5
5

)(
7
0

)
A−4(−A2 − A−2)7 −4(

4
2

)(
5
5

)(
7
0

)
A−2(−A2 − A−2)8 6(

4
3

)(
5
5

)(
7
0

)
(−A2 − A−2)9 −4(

4
4

)(
5
5

)(
7
0

)
A2(−A2 − A−2)10 1

0 1

Since all of the states with degree less than or equal to −18 have either been

included or exhausted, we have that the minimum degree of the pretzel knot

P (−4, 5, 7) is m⟨D⟩ = −18 with coefficient 1.

3.4 The Family of Pretzel Knots P (−2r, 2r + 1, 2r + s)

Now we set out to prove the general case for the pretzel knot. Let

x = 2r, y = 2r + 1, z = 2r + s for r ≤ 1, s ≤ 3 be the number of crossings in twist

region a, b, and c respectively. The Kauffman state s− for the general case has

polynomial with degree −x− 3y− 3z − 2. This is because the number of crossings is

(x+ y + z), the sum of s−(i) = −(x+ y + z) and the number of circles in s− is

y + z − 1 which gives that −(x+ y + z)− 2(y + z − 1) = −x− 3y − 3z − 2. We

consider cases between −x− 3y − 3z − 2 and −6r − 3s+ 3 and show that the
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minimum degree of the Jones polynomial of the family of pretzel knots

P (−2r, 2r + 1, 2r + s) is −18 with coefficient 1.

Theorem 3. The minimum degree of the pretzel knot P (−2r, 2r + 1, 2r + s) for

r ≥ 1 and s ≥ 3 is m⟨D⟩ = −6r − 3s+ 3 with coefficient 1 .

Proof. Consider the table for the pretzel knot P (−2r, 2r + 1, 2r + s)

Table 5. Degrees of States for the family of pretzel knots
P (−2r, 2r + 1, 2r + s)

d ds State Polynomial

−14r− 3s− 1 2ka − 14r −

3s− 1

0 ≤ ka ≤ x

and kb + kc =

0

(
b+c
0

)
A2ka−x−y−z(−A2 −

A−2)(y+z)−1

−14r− 3s+ 3 2ka − 14r −

3s+ 3

0 ≤ ka ≤ x

and kb + kc =

1

(
b+c
1

)
A2ka−x−y−z+2(−A2 −

A−2)(y+z)−2

−2r − s− 2 −2r − s− 2 s−{0, y, 0}
(
y
y

)(
z
0

)
Ax−y+z(−A2 − A−2)z+1

−6r − 3s+ 3 −6r − 3s+ 3 s−{k, y, 0}

and

1 ≤ k ≤ x

(
x
k

)(
y
y

)(
z
0

)
Ay+2k−x−z(−A2 −

A−2)z+k−1

−6r − 3s+ 3 −6r − 3s+ 3 s−{0, y, 1}
(
y
y

)(
z
1

)
A−x+y−z+2(−A2 − A−2)z
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Table 6. Sum of the coefficients of the A−22 and A−18 terms
for P (−2r, 2r + 1, 2r + s)

State Coeffiecient of A−22 term Coeffiecient of A−18 term

0 ≤ ka ≤ x and kb + kc = 0 −1 −(y + z − 1)

0 ≤ ka ≤ x and kb + kc = 1 0 y + z

s−{0, y, 0} 1 z + 1

s−{0, y, 1} 0 −z

s−{k, y, 0} for 1 ≤ k ≤ x 0 −1

0 1

The coefficients of the A−22 term add up to 0, while the coefficients of the

A−18 term add up to 1. We do not consider other states since then the degree of the

polynomial will be more than −18.
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CHAPTER IV

NORMAL SURFACE THEORY

The difficulty in resolving the slope conjecture lies in determining the Jones

slope and in determining boundary slopes of a knot. From the definition of the

colored Jones polynomial, it is clear that it is very difficult to compute due to the

exponential complexity on the crossings of the knot diagram. On the other hand,

computing the boundary slopes of a knot has been solved with algorithms involving

normal surface theory on triangulated 3-manifolds.

We define a topological manifold M as follows:

Definition 4.0.1. [9] A Topological Manifold M is a topological space with a

family of open sets and functions {(Mα, fα)} such that,

M = ∪αMα

and

∀α, ϕα : Mα → Uα

is a homeomorphism onto an open subset Uα ⊂ Rn

Some examples of manifolds are the circle S1, the two-sphere S2 and the

torus T 2 shown in the figure below.
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Figure 12. Circle S1, sphere S2, and Torus T 2

The standard n-simplex is given as

△n = {(t0, ..., tn) ∈ Rn+1|
∑
i

ti = 1, ti ≥ 0,∀i}

whose vertices are the unit vectors along the coordinate axes. This means that a

0-simplex is a point, a 1-simplex is a line segment in two-dimensional space, a

2-simplex is a triangle in three-dimensional space. We are mostly considered with

the 3-simplex tetrahedron.

Definition 4.0.2. [9] A triangulated n-manifold is a pair (M,C), where M is a

topological manifold of dimension n and C a simplicial complex such that

� |C| = M

� For every compact subset A ⊂ M , the set { f ∈ C|Im(f) ∩ A ̸= Ø } is finite.

We call C a triangulation of M . The union of the images of the simplices in C is

denoted by |C|.

Figure 13. Triangulation of the 3-ball

It is known that all compact 3-manifolds, which includes complements of

knots, admit a triangulation [15]. A normal surface F is a surface embedded in a
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triangulated compact 3-manifold that intersects each tetrahedron in normal disks

which are either triangles or quadrilaterals [7].

Figure 14. Triangulated manifold with normal surface

The set of isotopy classes of normal surfaces of a compact, triangulated

3-manifold is finite, and every essential surface is isotopic to a Haken sum of normal

surfaces [14]. Moreover, by counting the intersection of the boundary of normal

disks with tetrahedra in the triangulation, normal surfaces can be described as

coordinate vectors satisfying a linear system of equations. This reduces the problem

of finding boundary slopes to the linear algebra of finding normal surfaces given a

triangulation on the knot complement.

A normal isotopy is an isotopy which is invariant on each simplex of C [17].

The normal isotopy class of an elementary disk in a tetrahedron is called a disk type

and the normal isotopy class of a spanning arc in a 2-simplex of a tetrahedron is

called an arc type [17]. In each tetrahedron there are seven disk types: four triangles

or T-disks and three quadrilaterals or Q-disks.

There are 3 types of Q-discs:
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a

d

b

c
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d

b

c

ϵki = +1

a

d

b

c

ϵkj = −1 ϵkl = 0

Figure 15. Types of Q-disks

The Q-disks are labeled according to the slope of the terahedra with respect

to the edge [a,b]. Let t denote the number of tetrahedra in a triangulation of the

manifold. If we fix an ordering dQ1 , ..., d
Q
3t and dT1 , ..., d

T
4t of the disc types in C, where

the Q-disc types dQi are listed first followed by the T-disk types dTj . A 7t-tuple

−→
F = (x1, ..., x3t, y1, ..., y4t) called the normal coordinates of F , is assigned to a

normal surface F by letting xi denote the number of elementary Q-disks in F of

type dQi and yj denote the number of elementary T-disks in F of type dTj .

Tollefson, in Normal Suraface Q-theory, describes an approach to normal

surface theory for triangulated 3-manifolds which uses only the quadrilateral disc

types (Q-discs) to represent a nontrivial normal surface. Tollefson shows that it is

possible to represent normal surfaces using only coordinates of quadrilateral disks.

Theorem 4. [17] Let M be a compact 3-manifold with a fixed triangulation K. If

F is a normal surface in M then the Q-coordinates
−→
FQ give an admissible solution

to the Q-matching equations. Moreover, if −→z is a nonzero admissible solution to the

Q-matching equations then there exists a unique normal surface F in M with no

trivial components such that
−→
FQ = −→z .

If F is a normal surface then
−→
F Q = (x1, ...x3t) satisfies the following linear

system of equations, one equation for each interior 1-simplex ek of C.

3t∑
i=1

ek,ixi = 0
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for 0 ≤ xi, 1 ≤ i ≤ 3t. These equations are called Q-matching equations and must

equal 0 so that we have no dangling edges (the corner of each disks must perfectly

aligned/matched).

A connected normal surface containing only elementary T-disks is a 2-sphere

or disk frontier of a regular neighborhood of a vertex of C and will be referred to as

a trivial surface [17]. A non-negative integral solution (x1, ..., x3t) of the Q-matching

equations is admissible if it has the property that for each tetrahedron of C at most

one of the three variables xi corresponding to Q-disk types in the tetrahedron is

nonzero.

We consider Lens Spaces that form a class of examples of 3-manifolds Lp,q

parameterized by two coprime integers p and q. Consider a regular planar p sided

polygon P , together with two points n and s above and below. We connect each

vertex of P to n and s forming a bipyramid that we then fill in. Label each edge of

P , e0, ...ep−1 and label the corresponding triangular faces above and below as ni and

si. Form a quotient space by identifying n to s and the triangular faces ni with

si+qmod p. This forms a closed 3-manifold [9].

ep−2

n

s

ep−1
e0 e1

e2

Figure 16. The Lens Space Lp,1

Consider the space L3,1 (which is two tetrahedra glued):
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n

c

s

d

b

Figure 17. The Lens Space L3,1

In L3,1 the Q-disks are labeled according to the slope of the top tetrahedra

with respect to the edge [n, b] and the bottom tetrahedra with respect to [b, s].

When we identify the triangular faces to form the lens space, we will match the

following edges to form 3 equivalence classes:

1. [n, b] , [s, d] , [s, c]

2. [b, c] , [c, d] , [b, d]

3. [n, c] , [b, s] , [n, d]

We write the Q-matching equations for L3,1: Since we have 3 types of Q-discs

as well as the case of no Q-discs in both top and bottom tetrahedron, we have

4 ∗ 4 = 16 total cases. We consider only 9 of these cases, since the other seven cases

have either one or both tertrahedra with no Q-disc. These seven cases will not

satisfy the Q-matching equations since they must equal 0. The remaining 9 cases

are summarized in the table below. Let △ denote tetrahedra.
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Table 7. Q-matching equations for L3,1

Type of Q-disc in top

△

Type of Q-disc in

bottom △

Satisfies/Does not satisfy the Q-

matching equations

+1 +1 satisfies

+1 −1 satisfies

+1 0 does not satisfy

−1 +1 satisfies

−1 −1 satisfies

−1 0 does not satisfy

0 +1 does not satisfy

0 −1 does not satisfy

0 0 does not satisfy
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CHAPTER V

CONCLUSION

An immediate impact of this research is the better understanding of the

behavior of the family of pretzel knots P (−2r, 2r + 1, 2r + s) for r ≥ 1 and s ≥ 3.

We have proven consistent cancellation in order to determine the minimum degree

of the Jones polynomial for this family.

Since the colored Jones polynomial of pretzel knots are building blocks of the

colored Jones polynomial for general classes of knots, the insights gained have the

potential of generalizing the colored Jones polynomial. In other words, the

evaluation of the Jones polynomial is expected to generalize to the computation of

the colored Jones polynomial. This could be used to prove that the family of pretzel

knots P (−2r, 2r + 1, 2r + s) for r ≥ 1 and s ≥ 3 satisfies or disproves the Slope

conjecture.

The goal is to directly relate the normal surface theory to the

number-theoretic evaluation of the colored Jones polynomial. The hope is to find

parallels between this process and the process of evaluating the colored Jones

polynomial, thereby proving a direct connection between the polynomial and

essential surfaces in the complement of a knot.
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