
University of South Alabama University of South Alabama

JagWorks@USA JagWorks@USA

Undergraduate Honors Theses Honors College

5-2024

Side Channel Detection of PC Rootkits using Nonlinear Phase Side Channel Detection of PC Rootkits using Nonlinear Phase

Space Space

Rebecca Clark
University of South Alabama, rebeccaclark@icloud.com

Follow this and additional works at: https://jagworks.southalabama.edu/honors_college_theses

 Part of the Computer and Systems Architecture Commons, Hardware Systems Commons, Information

Security Commons, OS and Networks Commons, Other Computer Engineering Commons, and the Other

Computer Sciences Commons

Recommended Citation Recommended Citation
Clark, Rebecca, "Side Channel Detection of PC Rootkits using Nonlinear Phase Space" (2024).
Undergraduate Honors Theses. 43.
https://jagworks.southalabama.edu/honors_college_theses/43

This Undergraduate Thesis is brought to you for free and open access by the Honors College at JagWorks@USA. It
has been accepted for inclusion in Undergraduate Honors Theses by an authorized administrator of
JagWorks@USA. For more information, please contact jherrmann@southalabama.edu.

https://jagworks.southalabama.edu/
https://jagworks.southalabama.edu/honors_college_theses
https://jagworks.southalabama.edu/honors_college
https://jagworks.southalabama.edu/honors_college_theses?utm_source=jagworks.southalabama.edu%2Fhonors_college_theses%2F43&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/259?utm_source=jagworks.southalabama.edu%2Fhonors_college_theses%2F43&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/263?utm_source=jagworks.southalabama.edu%2Fhonors_college_theses%2F43&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/1247?utm_source=jagworks.southalabama.edu%2Fhonors_college_theses%2F43&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/1247?utm_source=jagworks.southalabama.edu%2Fhonors_college_theses%2F43&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/149?utm_source=jagworks.southalabama.edu%2Fhonors_college_theses%2F43&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/265?utm_source=jagworks.southalabama.edu%2Fhonors_college_theses%2F43&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/152?utm_source=jagworks.southalabama.edu%2Fhonors_college_theses%2F43&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/152?utm_source=jagworks.southalabama.edu%2Fhonors_college_theses%2F43&utm_medium=PDF&utm_campaign=PDFCoverPages
https://jagworks.southalabama.edu/honors_college_theses/43?utm_source=jagworks.southalabama.edu%2Fhonors_college_theses%2F43&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:jherrmann@southalabama.edu

 2

© 2024

Rebecca Clark

ALL RIGHTS RESERVED

 3

TABLE OF CONTENTS

LIST OF TABLES 4

LIST OF FIGURES 5

ABSTRACT 6

CHAPTER 1 7

INTRODUCTION 7

1.1 Research Goals 8

1.2 Research Questions 8

CHAPTER 2 10

BACKGROUND and LITERATURE REVIEW 10

2.1 Rootkits 10

2.2 Malware Detection Techniques 12

2.3 Side Channel Data Collection 14

2.4 Nonlinear Phase Space Analysis (NLPSA) 15

2.5 Graph Dissimilarity 18

2.6 Related Phase Space Experiments 21

CHAPTER 3 23

METHODOLOGY 23

3.1 Laboratory Setup 23

3.2 Data Collection 25

3.3 NLPSA Training 27

CHAPTER 4 31

RESULTS 31

CHAPTER 5 36

CONCLUSION and FUTURE WORK 41

5.1 Conclusions and Key Contributions 41

5.2 Future Work 41

REFERENCES 43

 4

LIST OF TABLES

Table 1: Trainable Parameters .. 16

Table 2: Percent of Parameter Sets with minDD = 0.0 ... 36

Table 3: Percent of Parameter Sets with minDD = 0.083 for kBeast ... 36

 5

LIST OF FIGURES

Figure 1: Nonlinear Phase Space Analysis ... 15

Figure 2: Testbed Layout .. 23

Figure 3: Testbed Environment .. 24

Figure 4: Disk Jockey ... 24

Figure 5: DAQ Software ... 25

Figure 6: Visual of Threshold and SOAT Analysis .. 29

Figure 7: ROS for FUTo 12V ... 31

Figure 8: ROS for FUTo 5V ... 32

Figure 9: ROS for FUTo 3.3V .. 32

Figure 10: ROS for Azazel 12V.. 33

Figure 11: ROS for Azazel 5V.. 33

Figure 12: ROS for Azazel 3.3V... 34

Figure 13: ROS for kBeast 12V .. 34

Figure 14: ROS for kBeast 5V .. 35

Figure 15: ROS for kBeast 3.3V ... 35

Figure 16: Detection Distance Summary for All Rootkits .. 36

Figure 17: Parameters with minDD = 0.0/minFW = 0 ... 37

Figure 18: Combined Features Producing minDD = 0.0 for FUTo .. 38

Figure 19: Combined Features Producing minDD = 0.0 for Azazel 5V and 12V 38

Figure 20: Combined Features Producing minDD = 0.083 for Azazel 3.3V 39

Figure 21: Combined Features Producing minDD = 0.083 for kBeast 5V and 12V 39

Figure 22: Combined Features Producing minDD = 0.19 for kBeast 3.3V 40

 6

ABSTRACT

 Cyberattacks are increasing in size and scope yearly, and the most effective and common

means of attack is through malicious software executed on target devices of interest. Malware

threats vary widely in terms of behavior and impact and, thus, effective methods of detection are

constantly being sought from the academic research community to offset both volume and

complexity. Rootkits are malware that represent a highly feared threat because they can change

operating system integrity and alter otherwise normally functioning software. Although normal

methods of detection that are based on signatures of known malware code are the standard line of

defense, rootkits that have never been seen before (zero-day threats) are not easily defeated

because of their ability to evade scanners and present false system information. In this research,

we propose to evaluate a novel approach of rootkit detection based on collection of time-serial

voltage data from the internal motherboard of standard desktop PCs.

 7

CHAPTER 1

INTRODUCTION

 Cyberattacks are increasing in size and scope in recent years. After the Covid-19

pandemic, cyber criminals took advantage of businesses moving to remote work environments.

In 2020, malware attacks increased by 358% compared to 2019. Since then, cyberattacks have

increased globally by 125% through 2021. The first half of 2022 alone has seen around 236.1

million ransomware attacks globally [1]. With this increasing threat landscape, organizations are

realizing that cyber security concerns need action to be taken and are investing in cyber security.

Not only are cyberattacks dangerous for companies, they’re also expensive. The cost of data

breaches to businesses continues to increase and as of November 2022, they cost businesses an

average of $4.35 million [1]. The issue is that most organizations feel that they do not have the

skills to deal with these data breaches and are unprepared to fight off a cyberattack.

 Adversaries have multiple techniques they use to get access to a system, and they often

use malware to obtain credentials or maintain access to a system. Malware is software designed

to damage or gain unauthorized access to a computer system. A rootkit is a special type of

malware that can gain administrative privilege on a system, or “root” privilege. Rootkits

typically work by injecting and altering code in key system processes. With this escalation of

privilege, they can use stealth to operate without detection, avoiding tools like malware and virus

scanners. Because they can operate undetected, an attacker can maintain access for long-term

surveillance or data theft and even remotely control your computer. A rootkit can change

anything on the operating system (i.e., Windows/Linux) so that your system does not report

infection. Their ability to operate undetected can allow long-term surveillance and data theft for

any compromised system, thus making rootkits popular in advanced persistent threat (APT)

 8

scenarios. Recent statistics [2] also show that 44% of rootkit attacks target government agencies,

representing the largest sector of interest. As a study by Positive Technologies notes [3], rootkits

have traditionally been designed to gain administrator or system privileges, but a large number

now prioritize the ability to evade detection. Given this current trend, the need for robust

detection methods remains a top research priority.

1.1 Research Goals

In this research we investigate whether side-channel power data can be used to detect the

presence of rootkits executing on standard desktop personal computers (PCs). Prior experiments

in this area showed that a simple multimeter that operates at very low frequency and coarse

power measurements could be used to detect the execution of certain rootkits using standard

machine learning algorithms. In this study, we plan to evaluate whether a more fine-tuned

approach with standard time-series data collection using a data acquisition (DAQ) system is

feasible and whether a nonlinear phase space approach can be as effective as other machine

learning algorithms in detecting whether a rootkit is running on standard desktop computers.

1.2 Research Questions

Our research methodology will seek to answer several questions. We build upon prior

work in this area by creating our own experimental laboratory environment for executing live

rootkits on real physical desktop PCs and collecting data related to normal and abnormal

operation of those machines. In conducting our case study analysis, we expect to answer the

following questions:

1) Can we accurately detect rootkits running on a system with out of band voltage data

collected from a DAQ and in-line voltage measurements with the PC motherboard?

 9

2) Can we train a nonlinear phase space algorithm to detect rootkits based on these

power signatures?

3) Given multiple channels of voltage data, does one type of voltage level perform better

than others in terms of rootkit detection?

The rest of this document is organized as follows. Chapter 2 provides background

material and related work in the literature for dynamic detection of rootkits using side-channel

power collection. Chapter 3 presents our case study methodology which details the rootkit

corpus used for experiments, the environmental setup of computers, collection devices, and

monitoring software, and the training of a nonlinear phase space algorithm for detecting

anomalous behavior from rootkit execution. Chapter 4 presents results of experimental case-

studies using three different rootkits along with the associated data. In Chapter 5, we provide our

conclusions and recommendations for future work.

 10

CHAPTER 2

BACKGROUND and LITERATURE REVIEW

 This chapter provides background information on rootkits and malware detection

techniques. It also provides the context of our work related to other researchers in the field.

2.1 Rootkits

There are many kinds of rootkits, including bootloader, firmware, kernel, memory, and

application rootkits. A bootloader rootkit infiltrates and replaces the bootloader that loads the

operating system on your computer, infecting your computer with malware before you can use

the operating system. A firmware rootkit hides in the firmware which is software that provides

control over the piece of hardware it’s written for. It can affect your hard drive or the system’s

BIOS, which is important software in your computer’s motherboard. As these rootkits target

hardware, attackers use them to log keystrokes and monitor online activity. Kernel rootkits attack

the core of the operating system, giving an adversary significant control of the system. These

rootkits are the most severe because adversaries use them to access files and add code to change

the functionality of the operating system [4]. A memory rootkit infects the computer’s Random

Access Memory (RAM) and can slow your machine down. They use your computer’s resources

to carry out malicious activities behind the scenes. Luckily, these rootkits disappear as soon as

you reboot the system since they hide in your computer’s RAM. An application rootkit can

modify your regular files [5] and can change the way a standard application like Microsoft

Office or Notepad works. Adversaries use these to obtain access to your computer each time an

infected program runs.

There are quite a few ways a system can detect a rootkit, including using alternative

trusted medium, signature-based detection mechanisms, and behavioral-based detection

 11

mechanisms. An alternative trusted medium is another device that is used to scan an infected

device. This runs before the system is booted up, preventing a rootkit from using the infected

device’s operating system to conceal its presence [6]. Of course, this doesn’t allow for real-time

detection, as the system must be powered off to use this. Signature-based detection mechanisms

are effective against well-known rootkits, using signatures as a basis. Signatures are specific

patterns that allow detectors to recognize malicious threats, like known malicious instruction

sequences used by families of malware. These signatures are from malware that have already

been discovered and cataloged as part of a database. Behavioral analysis is a more reliable

method for detecting rootkits. Instead of looking for the rootkit itself, this analysis focuses on

looking for rootkit-like behavior. This looks for deviant behavior patterns on the system and

notices when the system has started behaving out of character. This analysis focuses on how the

rootkit acts with its environment, including the file system, the registry, and the network.

Examples of famous rootkits include Stuxnet, Flame, Necurs, and ZeroAccess. Stuxnet is

one of the most notorious rootkits and the first rootkit to infect Industrial Control Systems (ICS).

It was a malicious computer worm discovered in 2010 that caused significant damage to Iran’s

nuclear program. Flame was a rootkit used for espionage in the Middle East that was discovered

in 2012. It was able to monitor traffic, capture screenshots of the system and record audio, and

log keystrokes. Necurs was reportedly detected in 83,000 infections in 2012 and was technically

complex and able to evolve. In 2011, the kernel rootkit ZeroAccess was discovered and found to

have infected more than 2 million computers worldwide. This rootkit downloaded and installed

malware on the infected machine and would make it part of a global botnet to carry out

cyberattacks [4].

 12

Rootkits are dangerous tools that adversaries use in many malicious ways. Despite the

many ways to detect them, there is a need for an out-of-bound detection mechanism that is robust

against the evasion techniques rootkits use. My research focuses on using low-frequency side-

channel power data to detect rootkits with a nonlinear phase space approach.

2.2 Malware Detection Techniques

Static detection is a malware detection method that occurs while the system is not

running. Static analysis can identify malicious infrastructure, libraries, or packed files using

indicators like file names, hashes, strings, domains, and file header data [7]. Virus and malware

scanners that come with your operating system typically rely on static detection. There has been

much research done in the static analysis of rootkit detection that could be implemented into

those virus and malware scanners. Alazab et al. focuses on detecting zero-day rootkits using

application program interface (API) calls and data mining techniques. Their method has a true

positive rate of more than 98.5% and a false positive rate of less than 2.5% [8]. They are able to

perform a deep analysis of the code and its properties while offline.

Additionally, Liang et al. focuses on creating a detection prototype system called

DeepScanner that effectively detects stealthy malware using inter-structure and imported

signatures. It uses a hypervisor-based monitor to protect those imported signatures. However,

they also note that detection can be compromised by rootkits designed specifically to tamper

with those detection mechanisms, showing a need for a detection mechanism outside the

operating system [9]. Static analysis allows for an in-depth view at what a rootkit is doing, but

this detection mechanism cannot occur in real-time, requiring the system to be off. However,

polymorphic malware can bypass this traditional signature-based detection mechanism, and

researchers have tried to combat this with different dynamic detection mechanisms [10].

 13

Dynamic analysis relies on detecting malware while the system is running. This method

focuses on analyzing how the malware is behaving as it’s executing. This allows for an in-depth

look at the runtime behavior of the malware as it’s running. Because dynamic analysis allows for

real-time detection, there has been lots of prior work into this method that consider several

approaches. For example, Lobo et al. focuses on creating a dynamic detection algorithm on the

operating system level for rootkit classification into malware categories that anti-virus software

typically uses. Using Rootkit Behavioral Analysis Classification Systems (RBACS), they focus

on Windows processes that are hooked by injected rootkit code [11]. The issue with this method

is that rootkits can be designed to modify this detection mechanism.

Khasawneh et al. considers using Hardware Malware Detectors (HMDs) that use low-

level features to detect malware. They prove that existing HMDs can be reverse-engineered and

evaded, allowing malware to avoid detection. Their work focuses on creating a new type of

resilient HMD or RHMD that switches between different detectors to resist reverse engineering

and evasion [12]. Singh et al. focuses on using hardware performance counters (HPCs) to detect

hooking rootkits through behavioral detection. With an accuracy of over 99%, they are able to

detect zero-day rootkits, or those that had never been seen before. However, when detecting

zero-day rootkits, the rootkit has to have been using previously seen attack mechanisms [13].

Despite these results, HPCs are most impacted by a hooking mechanism and this detection will

not necessarily work for other types of rootkits. For example, rootkits employing a direct kernel

object manipulation do not have a significant impact on HPCs and will not be detected. This

shows that there is a need for a more robust out-of-bound rootkit detection mechanism.

 14

2.3 Side Channel Data Collection

Side-channels are mostly associated with side-channel attacks which are any attacks

based on extra information that is leaked from measuring or analyzing various physical

parameters like supply current, execution time, or electromagnetic emission. However, many

studies have used side-channel data for cyber event detection. For instance, Pham et al. presents

a novel approach to detecting malware on Internet of Things (IoT) devices that uses

electromagnetic signal acquisition to obtain information about the malware type and identity.

They can avoid any obfuscation techniques that could prevent static or symbolic binary analysis.

From 30 different malware samples, they can predict three generic malware types with an

accuracy of 99.82%, demonstrating the potential for side-channel detection mechanisms resistant

to obfuscation techniques [14].

Additionally, Hernandez et al. focuses on using a different side-channel parameter:

power. Theoretically, malware is just more code running on top of the system’s code, thereby

producing more power. Hernandez proposes that by going outside of the system being monitored

we can see this spike of power and detect an anomalous event. Hernandez proves that malware

does indeed leave a signal on the power consumption of a general PC [10], but does not consider

different states of the system. Furthermore, Luckett et al. focuses on using low-frequency power

data and various machine learning algorithms to detect rootkits. With a 97% accuracy rate using

neural networks, Luckett successfully validated the power data approach to detect rootkits [15].

However, the machine learning algorithms Luckett used for detection varied based on operating

systems, as different operating systems performed better with different machine learning

algorithms. This shows that there may be a better approach than traditional machine learning

algorithms for rootkit detection.

 15

2.4 Nonlinear Phase Space Analysis (NLPSA)

We will focus on using a nonlinear phase space analysis (NLPSA) to analyze our data

developed by Hively et al. [16] – [18]. This nonlinear approach demonstrates great flexibility

across a variety of domains including biomedical, industrial, and cyberspace for detecting

anomalous behavior. A phase space is a representation of all possible systems states. These states

represent unique points, which ultimately become vertices in a graph. Figure 1 provides a

graphic representation of NLPSA for phase space creation. Table 1 describes the trainable

parameters of NLPSA. The assignment of values to each parameter allows for processing of

cutsets in each observation file, allowing creation of phase space graphs for each cutset.

Figure 1: Nonlinear Phase Space Analysis

 16

Table 1: Trainable Parameters

 We can reconstruct a phase space by sampling time series data uniformly before applying

Takens’ time delay embedding theorem to form state vectors. With multiple dimensions, these

vectors collectively represent each specific state. We can analyze the change in the dynamics of a

system over time by looking at the succession of those state vectors. For each phase space graph,

we can look at the graph features and compare them against other phase space graphs to detect

the change from normal to abnormal behavior (i.e., a rootkit executing).

 An observation is a set of time-series data that is sampled at a regular frequency from a

system. A single observation represents some time where the system is either in a normal or

potentially abnormal state. We split observation data into cutsets, which are equal partitions

containing N data points each. Data are sampled at time ti, giving raw data points for each cutset,

ei = e(ti). NLPSA then treats some B number of cutsets at the beginning of each observation as

normal or baseline behavior (base-cases) and the remaining cutsets in an observation as test-

cases for training.

 17

 We process each cutset individually by first filtering noise and artifacts from the data

using a zero-phase quadratic filter, fitting the ei-data to a parabola in a least-squares sense and

using the central point as an estimate of the artifact (fi) data. The filter then calculates artifact fi

for each data point ei, leaving a filtered value gi = ei – fi (Artifact Filtered Data). We apply

symbolization to each data point to help normalize the data. One of a predefined number of

symbols (S) is substituted for each data point (gi) leaving a symbolized value si. The number of

symbols is predetermined such that si is one of S different integers 0, 1, …, S – 1:

0 ≤ 𝑠𝑖 = 𝐼𝑁𝑇 [𝑆
𝑔𝑖 − 𝑔𝑚𝑖𝑛

𝑔𝑚𝑎𝑥 − 𝑔𝑚𝑖𝑛
] ≤ 𝑆 − 1

 The INT function rounds down a value to the lowest integer. gmax and gmin represent the

largest and smallest values of gi. Takens’ theorem allows for dynamical reconstruction by a time-

delay embedding that is smooth and non-intersecting. After symbolization, symbolized data are

converted into vectors yi:

𝑦𝑖 = [𝑠𝑖 , 𝑠𝑖+𝐿 , … , 𝑠𝑖+(𝐷−1)𝐿]

The yi states capture the topology of the underlying dynamics. This dimension is a trainable

parameter to achieve the best detection. L is the time-delay lag, which cannot be too small (as si

and si+L would be indistinguishable) or too large (as si and si+L would become independent by

long-time unpredictability). D is the embedding dimension, which must not be too large to avoid

over-fitting but large enough to capture the dynamics. The yi states form nodes in the phase space

with yi ⇒ y(i+M), forming state-to-state links for some value M. An undirected graph G = (Y, E) is

formed, with Y representing the set Y = {y1, y2, …, yn} of phase space nodes and E representing

the set E = {e1, e2, …, en} of edges that connect two of the phase space nodes. The set of nodes Y

have topologically-invariant properties independent of unique labeling.

 18

2.5 Graph Dissimilarity

We use features of the phase space graphs as a basis for determining how the system is

changing from normal behavior. Graph invariant properties (features) are computed for the base-

case cutset graphs and the test-case cutset graphs of each observation which is then used as the

basis for determining whether the system has changed in behavior due to malware possibly

executing. Each graph dissimilarity feature is computed for phase space graphs in each

observation. Base-case graphs are compared amongst themselves in (
𝐵

2
) fashion (comparing B

graphs two at a time). A base-case dissimilarity average 𝑢 and standard deviation 𝜎𝑢 are

computed from the (
𝐵

2
) comparisons. Each test-case graph is then compared against each base-

case graph to compute graph differences based on the feature being considered, producing

dissimilarity values 𝑢𝑘. We then computer a normalized dissimilarity measure for the test-case

graph as 𝑢𝑘 = (𝑢𝑘 − 𝑢)/𝜎𝑢.

We will use the following 16 graph invariant feature differences for comparing any two

graphs, A and B.

Node Directed (NDD): the number of (unique) nodes in graph A that are not in B: | (YA \

YB) | / | YA |

Node Inverted (NDI): the number of (unique) nodes in graph B that are not in A: | (YB \

YA) | / | YB |

Link Directed (LKD): the number of (unique) links in graph A that are not in B: | (EA \

EB) | / | EA |

 19

Link Inverted (LKI): the number of (unique) links in graph B that are not in A: | (EB \

EA) | / | EB |

Algebraic Connectivity (ACD): AC is the second-smallest eigenvalue of the Laplacian

matrix of some graph G. AC difference is computed as | AC(AC) – AC(B) | or 0 if either

graph does not give at least two Laplacian eigenvalues.

Adjacency Symbol Eigenvalue (ASE): Given the ordered vector of eigenvalues of the

adjacency matrices for graph A and B, notated as eigA and eigB, we compute the

difference as | sym(eigA) – sym(eigB) |. The function sym is computed as:

𝑠𝑦𝑚(𝑒𝑖𝑔) = {

0, 𝑖𝑓 |𝑒𝑖𝑔| < 3

∑ (𝜆𝑛 − 𝜆|𝑒𝑖𝑔|−𝑛−1)2
|𝑌|

𝑛=1
, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

The number of unique nodes/links in each cutset can vary widely. Consequently, the

normalized form of the adjacency matrix (which is used in the entropy feature) is

preferred.

Normal Laplacian Eigenvalue (NLP): Computed in the same manner as the adjacency

symbol eigenvalue (AdjSymEig) dissimilarity, with the only difference being the vector

of normalized Laplacian eigenvalues is used for values. The difference is computed as

√𝑐𝑜𝑢𝑛𝑡, where 𝑐𝑜𝑢𝑛𝑡 = ∑ (𝜆𝐴𝑛
− 𝜆𝐵𝑛

)2|𝑌|
𝑛=1

Entropy (ENT): Measures complexity of a graph based on its node and link

distributions. We compute the entropy of each graph A and B and calculate the difference

as: | ent(A) – ent(B) |. We calculate the entropy of a graph G based on the vector of its

normalized Laplacian eigenvalues (normG ∈ R) taken from the normalized Laplacian

 20

matrix. Entropy is computed given the normalized eigenvalue vector (norm) as follows:

𝑒𝑛𝑡(𝐺) = ∑ 𝑛𝑜𝑟𝑚[𝑛] ∗ (𝑙𝑛(𝑛𝑜𝑟𝑚[𝑛])/𝑙𝑛(2))
|𝑌}
𝑛=1

Triangles (TRI): A triangle in a graph is a set of three vertices u, v, w, where every two

of the three are connected by an edge. They are often used for complex network analysis

in fields of study related to graph mining. A two-dimensional array stores all triangles for

a graph, derived from its adjacency matrix. Given the set of all triangles triA and triB, we

computer triangle difference as | triA ∩ triB | / | triA ∪ triB |

Singular Value Decomposition (SVD): Compares the n largest singular value

decomposition of two adjacency matrices via Euclidean distance, where n is the size of

the smaller list of singular values. The singular value decomposition of the adjacency

matrix is computed for each adjacency matrix and the difference is computed as √𝑐𝑜𝑢𝑛𝑡,

where 𝑐𝑜𝑢𝑛𝑡 = ∑ (𝑠𝑣𝑑𝐴[𝑥] − 𝑠𝑣𝑑𝐵[𝑥])2𝑛
𝑥=1

Average Centrality: Centrality is a graph feature that identifies important vertices

(nodes) in a graph and is used to measure how “central” a node/edge is among other

nodes/edges in the graph. Average centrality is thus computed by taking the mean of a

characteristic property for all nodes or edges in the graph. We consider six different

versions of this feature:

- Graph Centrality (CGR): the reciprocal of the maximum of all shortest path

distances from a vertex to all other vertices in the graph. Vertices with high graph

centrality have short distances to all other vertices in the graph.

- Degree Centrality (CDG): computes the average degree of all vertices in the graph

where degree is the number of vertices adjacent to a vertex.

 21

- Closeness Centrality (CCL): the reciprocal of the sum of shortest path distances of a

vertex to all other vertices in the graph. Vertices with high closeness centrality have

short distances to all other vertices of a graph.

Betweenness centrality is a measure of centrality in a graph based on shortest paths. For

every pair of vertices in a connected graph, there exists at least one shortest path between

the vertices such that the number of edges that the path passes through is minimized. The

betweenness centrality for each vertex is the number of these shortest paths that pass

through the vertex.

- Node Betweenness Centrality (CNB): computes how often a vertex lies on a

shortest path between each pair of vertices in the graph.

- Edge Betweenness Centrality (CEB): computes how often an edge lies on a shortest

path between each pair of nodes in the graph.

- NodeEdge Betweenness Centrality (CNE): combines node and edge betweenness

together.

2.6 Related Phase Space Experiments

Hernandez et al. demonstrates a novel approach for cyber event detection using a

theorem-based, data-driven, phase space analysis. Using time series data, they create a prototype

implementation for intrusion detections by measuring the precise execution time of events in

energy delivery systems. By establishing a baseline execution profile and capturing the effect of

perturbations in the state from malware, they extract the changing dynamics of the system to

determine that malware is running on it. They prove that a nonlinear approach can detect

anomalous events. Similarly, Dawson et al. uses the same nonlinear, phase space algorithm

 22

developed by Hively on low-frequency power data. Using the rootkit kBeast on the Ubuntu

operating system, Dawson produces a true rate of about 80% or better for about 0.69% of the

tested parameter sets of the algorithm [19]. As Dawson only uses a prediction version of this

algorithm that was previously used for seizure prediction, this shows the need for a classical

detection algorithm for the nonlinear phase space algorithm to consider any detection after the

rootkit would have been installed.

 23

CHAPTER 3

METHODOLOGY

This chapter provides an overview of our laboratory setup for experiments as well as

details our data collection methods. It also covers details about phase spacing training.

3.1 Laboratory Setup

Our experimental framework involves the setup of a PC testbed configured with power

sensors for data collection shown in Figure 2. Figure 3 shows how we modified Luckett’s testbed

environment into the environment we will use. The testbed is not connected to the university

network to ensure that the rootkit does not infect it. The testbed computer is a x86 (32-bit) Dell

Optiplex 320 tower with 8 GB RAM and 3 GHz Pentium processors.

Figure 2: Testbed Layout

 24

Figure 3: Testbed Environment

In the PC, we use a Standard Western Digital 250GB hard drive for operating system

installation. All operating systems are installed fresh, with no patches, onto a master disk drive.

Copies are made from this master drive and each drive is zeroized after each rootkit injection

experiment. We use a disk jockey to copy and clean the hard drives as seen in Figure 4.

Figure 4: Disk Jockey

 Attached to the PC testbed, there is an adaptor for the standard ATX 24-pin power supply

adapter (number 3 in Figure 2). This adaptor provides a voltage and ground signal across a

resistor shunt from three channels that are normally connected across the ATX pin. This feeds

into a Texas Instruments INA4180-A4 current-sense amplifier (number 2 in Figure 2). This will

sense any voltage drops across current-sense resistors at common-mode voltages from -0.2V to

+26V. The three channels we look at are the 3.3VDC, 5VDC, and 12VDC from the internal PC

power supply. These channels then feed into the Measurement Computing USB-1608G Series

 25

Data Acquisition System (DAQ) version 6.72, which is number 1 in Figure 2. The TracerDAQ

software is used to acquire, analyze, and display the data and is shown in Figure 5.

3.2 Data Collection

To collect the data, experiments are run using the data acquisition software on low-

frequency voltage channels while running the operating system on the test machine in one of

three activity states (normal, manual, or stress) and either with or without a rootkit executing

(referred to as clean or infected). Each collection runs for one hour at a rate of 1000 Hz with a

range of ±10V. The tests for the different activity states are summarized below. The DAQ

collection software can visualize collected data that is transferred from the DAQ to the collection

PC. A visual of the DAQ capture software is seen in Figure 5.

Figure 5: DAQ Software

Normal Collection: The system is kept at a constant rate where the OS operates without any user

interaction.

 26

(1) Begin recording using the DAQ;

(2) Power on the computer and log-in;

(3) Allow computer to run for 57 minutes;

(4) Turn off the computer after 57 minutes;

(5) Recording on the DAQ ends after 1 hour.

Manual Collection: These tests follow a procedure where basic tasks are conducted within

different applications on the operating system. For Step 3, Ubuntu application equivalents are

performed for Ubuntu Desktop and Ubuntu Server operating systems.

(1) Begin recording using the DAQ;

(2) Power on the computer and log-in;

(3) Open the following and perform each activity for 5 minutes each and then close:

Notepad, PaintDraw, Calculator, Control Panel, Paint, Notepad, WordPad, Paint, Control

Panel, WordPad;

(4) Turn off the computer after 57 minutes;

(5) Recording on the DAQ ends after 1 hour.

Stressed Collection: Stress tests are performed three times for five minutes each. HeavyLoad is

used for the Windows operating system and stress-ng is used for Ubuntu Desktop and Ubuntu

Server.

(1) Begin recording using the DAQ;

(2) Power on the computer and log-in;

(3) Start HeavyLoad/stress-ng and run for 5 minutes after 10/25/40 minutes have passed;

(4) Turn off the computer after 57 minutes;

 27

(5) Recording on the DAQ ends after 1 hour.

After all data is collected, we convert the data into a format that can be read by the

nonlinear phase space algorithm. A Java program separates the channel values into separate files

based on the different voltage channels. We run four collections for each type of test for both

uninfected and infected states. This results in 72 raw data files per operating system. We then

trim each data file to remove data signals while the test machine is powered off. Only data from

the same test type are combined, whether under normal (U), manual (M), or stressed (S)

conditions. For our last step, we create uniform size time-series observation files so that event

(infected) and non-event (uninfected) data files have the same record size. Event files contain

3,300,000 points of nominal (uninfected) data from raw files of the same test type. All

observation files have 6,600,000 data values after being combined. Data are collected at 1000

Hz, meaning 1000 data values translates to 1 second of wall clock time. The event (rootkit

infection) occurs after 3,300 seconds, or at the 3,300,000 data point of each event file.

3.3 NLPSA Training

For training, we run NLPSA experiments where a random assignment of values is made

to the parameter space. We utilize a Dell Precision T5600 workstation with 128GB RAM and 64

cores for training with NLPSA. We train each operating system and voltage channel

independently, resulting in six categories of training experiments. The parameters were assigned

random values in the following ranges: 36 ≤ 𝐵 ≤ 36, 90000 ≤ 𝑁 ≤ 89000, 2 ≤ 𝑑 ≤ 5, 2 ≤

𝑠 ≤ 5, 30 ≤ 𝑤 ≤ 90, 30 ≤ 𝐿 ≤ 90, and 30 ≤ 𝑀 ≤ 90. A set of observation files created by

pre-processing described in Section 3.2 was used for each training experiment. They both had a

total of 8 (4 event, 4 non-event). For FUTo, we ran 1000 training experiments per voltage rail,

evaluating a total of 3000 parameter sets. For Azazel, we ran a total of 100 training experiments,

 28

evaluating a total of 299 parameter sets. Lastly, we ran a total of 100 training experiments for

kBeast, evaluating a total of 300 parameter sets. For each of the 3599 NLPSA training

experiments, each training experiment also evaluates all 16 graph dissimilarity features in

combinatorial fashion, resulting in 216 = 65,536 combinations. Thus, we evaluated a total of

235,864,064 possible sets of graph dissimilarity values that are processed by the detection

algorithm.

We use a threshold and successive occurrences above threshold (SOAT) approach to

classify observation files as either normal or anomalous, which is visualized in Figure 6. The

algorithm trains the assignment of an independent threshold value for each normalized

dissimilarity feature produced per cutset, per observation. After a threshold is assigned, values

are either above or below that threshold, represented as a 1 or 0. The algorithm then optimizes

the detection accuracy of each feature individually by brute-forcing all possible threshold values

based on the underlying normalized dissimilarity values and the best detection accuracy

achievable. A single plot combines the best-possible threshold values for each feature. Further

analysis is conducted on successive occurrences to find the optimal occurrence number above

threshold with the highest accuracy.

 29

Figure 6: Visual of Threshold and SOAT Analysis

 We use the combination of two common measures for statistical evaluation of accuracy.

The number of true positives (TP) for known event data sets (EV) yields the true positive rate

(sensitivity) of TP/EV. Next, the number of true negatives (TN) for known non-event data sets

(NEV) yields the true negative rate of TN/NEV (specificity). We aim to minimize the detection

distance (DD):

𝐷𝐷 = {[1 −
𝑇𝑃

𝐸𝑉
]

2

+ [1 −
𝑇𝑁

𝑁𝐸𝑉
]

2

}1/2

 We feed the full set of graph dissimilarity feature values into the detection algorithm,

training both the individual feature thresholds and SOAT values for the highest detection

accuracy. It considers all possible combinations of features, resulting in 2k comparisons given k

features. The algorithm ultimately assigns guesses for each observation file in the training set,

which comprises two classes: no detection or a detection based on a specific cutset. The time

 30

between the detection guess and actual event (if present) is the time to detect (minFW). The

algorithm is optimized for minDD = 0.0 while considering the minimum of minFW as factors in

evaluating training experiments.

 31

CHAPTER 4

RESULTS

We use a receiver operating space (ROS) for detection distance that was evaluated during

the experiments using NLPSA with the rootkits: FUTo, Azazel, and kBeast. On the ROS, a dot

shows that some number of parameter sets created the appropriate specificity and sensitivity. For

rootkits FUTo and Azazel, we found parameter sets that produced a minimum detection distance

(DD) = 0.0 for nearly all three voltage channels, indicating a perfect true positive rate (TPR) and

perfect true negative rate (TNR). This is indicated by the red dots on the ROS at the point (0, 1)

seen in Figures 7, 8, 9, 10, 11, and 12.

Figure 7: ROS for FUTo 12V

 32

Figure 8: ROS for FUTo 5V

Figure 9: ROS for FUTo 3.3V

 33

Figure 10: ROS for Azazel 12V

Figure 11: ROS for Azazel 5V

 34

Figure 12: ROS for Azazel 3.3V

 Although none of the 100 parameters for kBeast produced a detection distance of 0, the

5V and 12V channels produced results with DD = 0.083, which means it only had one FP or one

FN. The 3.3V channel produced results with DD = 0.186, which means that it still had a majority

of TP’s and TN’s. The receiver operating space can be seen in Figures 13 – 15.

Figure 13: ROS for kBeast 12V

 35

Figure 14: ROS for kBeast 5V

Figure 15: ROS for kBeast 3.3V

1,908 of the 3599 parameters we evaluated produced perfect detection (DD = 0.0) for the

Azazel and FUTo rootkits. Each parameter set involved combinatorial evaluation of all 16 graph

dissimilarity features, but not all 65,536 combinations of graph features per parameter set were

responsible for minimum detection distance. This means that the minimal detection distance is

recorded for each parameter set and that more than one combination of graph dissimilarity

features may have produced the minimal. Figure 16 and Table 2 provide a summary of detection

distances for all 3599 parameter sets that we evaluated.

 36

Figure 16: Detection Distance Summary for All Rootkits

Of note, for FUTo, at least 80% or more of the 1000 parameter sets for the 5V channel

we tested produced minDD = 0.0, as seen in Table 2. As the 3.3V channel for Azazel did not

produce minDD = 0.0, the percentage of parameter sets was 2% that achieve the best accuracy of

minDD = 0.083. None of the 100 parameter sets for kBeast produced a minDD = 0.0 result, but the

percentage of parameter sets that produced the best accuracy of minDD = 0.083 are shown in

Table 3 for kBeast. The 3.3V channel had a best prediction distance of minDD = 0.19 for 3% of

its parameter sets.

Table 2: Percent of Parameter Sets with minDD = 0.0

 3.3V 5V 12V

Azazel (of 100) 0% 1.01% 3%

FUTo (of 1000) 56.9% 81.5% 52.0%

Table 3: Percent of Parameter Sets with minDD = 0.083 for kBeast

 3.3V 5V 12V

kBeast (of 100) 0% 9 % 1%

 37

Figure 17: Parameters with minDD = 0.0/minFW = 0

Figure 17 shows the number of parameters across the five categories that produced both

perfect accuracy and detection within the same cutset, or where minFW = 0. Figures 18 and 19

show further analysis of best parameter sets producing minimal detection distance (perfect

accuracy) by showing the distribution of graph dissimilarity features that were associated. They

show specifically how many instances of numbers of features (1 to 16) were combined to

produce the optimal results across the each rootkit and their voltage channels. For each figure

shown, these are the graph dissimilarity features that produced the best accuracy result and

detected rootkit infection within the same cutset, or where minFW = 0. As the 3.3V channel for

Azazel and the channels for kBeast did not produce minDD = 0.0, Figures 20 – 22 show the best

accuracy result of either minDD = 0.083 or minDD = 0.19 for those specific channels.

0

50

100

150

200

250

300

350

AZ-5 AZ-12 FU-5 FU-12 FU-3.3

#
 o

f
P

a
ra

m
e

te
rs

Parameters with minDD = 0.0 and min-FW = 0

 38

Figure 18: Combined Features Producing minDD = 0.0 for FUTo

 Figure 18 has a total of 200,500 graph features for the 590 parameter sets that produced a

perfect accuracy result and determined rootkit execution within the same cutset, and this is the

only rootkit result that includes graph feature combinations ranging from 1 to 16.

Figure 19: Combined Features Producing minDD = 0.0 for Azazel 5V and 12V

 39

Figure 19 has a total of 4,100 graph features for the 6 parameter sets that have perfect

accuracy and determine rootkit execution within the same cutset. The 5V and 12V Azazel graph

features include graph combinations from 1 to 15.

Figure 20: Combined Features Producing minDD = 0.083 for Azazel 3.3V

Figure 21: Combined Features Producing minDD = 0.083 for kBeast 5V and 12V

 40

Figure 22: Combined Features Producing minDD = 0.19 for kBeast 3.3V

 41

CHAPTER 5

CONCLUSION and FUTURE WORK

5.1 Conclusions and Key Contributions

Our case study presents results for using power-based data to detect rootkit execution in

PC platforms. We extend prior work utilizing a nonlinear phase space algorithm for detection of

anomalous behavior in dynamical chaotic systems while considering data from multiple voltage

channels of an internal PC power supply. Our study considers 16 separate graph dissimilarity

measures as feature input into a threshold/successive occurrence-based detection approach. We

showed through our study of the Azazel, FUTo, and kBeast rootkits on three different operating

systems that NLPSA could easily train a high percentage of random parameters and a number of

feature combinations to produce perfect detection in five of the nine categories. We see some

distinctions among rootkits with some parameters resulting in perfect detection in training and

some variance between those where the minimal time to detect was also in view. The case study

gives further validation to the efficacy of the NLPSA/side-channel approach as the data produced

detection accuracies with 100% true positive and true negative rates and provides greater insight

for future studies.

5.2 Future Work

 In the future we will test a wider number of parameters, as well as implement a test

runtime version of the nonlinear phase space algorithm that is designed to test the best parameter

sets against new data. We will also analyze which features and feature combinations produce the

best detection accuracy with the quickest time. We will compare our NLPSA approach to

common machine learning algorithms while also considering a wider range of rootkits and

general malware to see if power is indicative of system infection for all malware families.

 42

Having shown that this approach works for PC based systems, we will also expand this work to

consider other types of dynamical chaotic systems at risk of malware infection with both

physical systems and virtual environments.

 43

REFERENCES

[1] “The Latest 2022 Cyber Crime Statistics (updated November 2022) | AAG IT Support.”

https://aag-it.com/the-latest-2022-cyber-crime-statistics/ (accessed Nov. 14, 2022).

[2] “Report: Government agencies are top target for rootkit attacks | VentureBeat.”

https://venturebeat.com/security/report-government-agencies-are-top-target-for-rootkit-

attacks/ (accessed Dec. 07, 2022).

[3] “Rootkits: evolution and detection methods.” https://www.ptsecurity.com/ww-

en/analytics/rootkits-evolution-and-detection-methods/ (accessed Dec. 07, 2022).

[4] “How to detect & prevent rootkits.” https://www.kaspersky.com/resource-

center/definitions/what-is-rootkit (accessed Nov. 12, 2022).

[5] “Rootkit | What is a Rootkit? | Malwarebytes.” https://www.malwarebytes.com/rootkit

(accessed Nov. 12, 2022).

[6] “What Is a Rootkit & How to Prevent a Rootkit Infection in 2022?”

https://www.safetydetectives.com/blog/what-is-a-rootkit/ (accessed Nov. 12, 2022).

[7] “Malware Analysis Explained | Steps & Examples | CrowdStrike.”

https://www.crowdstrike.com/cybersecurity-101/malware/malware-analysis/ (accessed

Nov. 12, 2022).

[8] M. Alazab, S. Venkatraman, P. Watters, and M. Alazab, “Zero-Day Malware Detection

Based on Supervised Learning Algorithms of API Call Signatures,” in Proceedings of the

Ninth Australasian Data Mining Conference - Volume 121, 2011, pp. 171–182.

[9] B. Liang, W. You, W. Shi, and Z. Liang, “Detecting Stealthy Malware with Inter-

Structure and Imported Signatures,” in Proceedings of the 6th ACM Symposium on

Information, Computer and Communications Security, 2011, pp. 217–227. doi:

10.1145/1966913.1966941.

[10] J. Hernandez Jimenez, J. Nichols, K. Goseva-Popstojanova, S. Prowell, and R. Bridges,

“Malware Detection on General-Purpose Computers Using Power Consumption

Monitoring: A Proof of Concept and Case Study,” May 2017.

[11] D. Lobo, P. Watters, and X. Wu, “RBACS: Rootkit Behavioral Analysis and

Classification System,” in 2010 Third International Conference on Knowledge Discovery

and Data Mining, 2010, pp. 75–80. doi: 10.1109/WKDD.2010.23.

[12] K. N. Khasawneh, N. Abu-Ghazaleh, D. Ponomarev, and L. Yu, “RHMD: Evasion-

Resilient Hardware Malware Detectors,” in 2017 50th Annual IEEE/ACM International

Symposium on Microarchitecture (MICRO), 2017, pp. 315–327.

[13] B. Singh, D. Evtyushkin, J. Elwell, R. Riley, and I. Cervesato, “On the Detection of

Kernel-Level Rootkits Using Hardware Performance Counters,” in Proceedings of the

 44

2017 ACM on Asia Conference on Computer and Communications Security, 2017, pp.

483–493. doi: 10.1145/3052973.3052999.

[14] D.-P. Pham, D. Marion, M. Mastio, and A. Heuser, “Obfuscation Revealed: Leveraging

Electromagnetic Signals for Obfuscated Malware Classification,” in Annual Computer

Security Applications Conference, 2021, pp. 706–719. doi: 10.1145/3485832.3485894.

[15] P. Luckett, J. T. McDonald, W. Glisson, R. Benton, J. Dawson, and B. A. Doyle,

“Identifying Stealth Malware Using CPU Power Consumption and Learning

Algorithms,” Jul. 2018.

[16] L. M. Hively and J. T. McDonald, “Theorem-Based, Data-Driven, Cyber Event

Detection,” in Proceedings of the Eighth Annual Cyber Security and Information

Intelligence Research Workshop, 2013. doi: 10.1145/2459976.2460041.

[17] L. M. Hively, J. T. McDonald, N. Munro, and E. Cornelius, “Forewarning of epileptic

events from scalp EEG,” in 2013 Biomedical Sciences and Engineering Conference

(BSEC), 2013, pp. 1–4. doi: 10.1109/BSEC.2013.6618498.

[18] L. M. Hively, V. A. Protopopescu, and N. B. Munro, “Enhancements in Epilepsy

Forewarning via Phase-Space Dissimilarity,” Journal of Clinical Neurophysiology, vol.

22, pp. 402–409, 2005.

[19] J. Dawson, J. T. McDonald, J. Shropshire, T. R. Andel, P. Luckett, and L. M. Hively,

“Rootkit detection through phase-space analysis of power voltage measurements,” in

2017 12th International Conference on Malicious and Unwanted Software (MALWARE),

2017, pp. 19–27. doi: 10.1109/MALWARE.2017.8323953.

	Side Channel Detection of PC Rootkits using Nonlinear Phase Space
	Recommended Citation

	LIST OF TABLES
	LIST OF FIGURES
	ABSTRACT
	CHAPTER 1
	INTRODUCTION
	1.1 Research Goals
	1.2 Research Questions

	CHAPTER 2
	BACKGROUND and LITERATURE REVIEW
	2.1 Rootkits
	2.2 Malware Detection Techniques
	2.3 Side Channel Data Collection
	2.4 Nonlinear Phase Space Analysis (NLPSA)
	2.5 Graph Dissimilarity
	2.6 Related Phase Space Experiments

	CHAPTER 3
	METHODOLOGY
	3.1 Laboratory Setup
	3.2 Data Collection
	3.3 NLPSA Training

	CHAPTER 4
	RESULTS

	CHAPTER 5
	CONCLUSION and FUTURE WORK
	5.1 Conclusions and Key Contributions
	5.2 Future Work

	REFERENCES

