
University of South Alabama University of South Alabama

JagWorks@USA JagWorks@USA

Theses and Dissertations Graduate School

5-2022

Enhancing System Security Using Dynamic Hardware Enhancing System Security Using Dynamic Hardware

Sydney L. Davis
University of South Alabama, sld1424@jagmail.southalabama.edu

Follow this and additional works at: https://jagworks.southalabama.edu/theses_diss

 Part of the Information Security Commons

Recommended Citation Recommended Citation
Davis, Sydney L., "Enhancing System Security Using Dynamic Hardware" (2022). Theses and
Dissertations. 57.
https://jagworks.southalabama.edu/theses_diss/57

This Thesis is brought to you for free and open access by the Graduate School at JagWorks@USA. It has been
accepted for inclusion in Theses and Dissertations by an authorized administrator of JagWorks@USA. For more
information, please contact jherrmann@southalabama.edu.

https://jagworks.southalabama.edu/
https://jagworks.southalabama.edu/theses_diss
https://jagworks.southalabama.edu/gradschool
https://jagworks.southalabama.edu/theses_diss?utm_source=jagworks.southalabama.edu%2Ftheses_diss%2F57&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/1247?utm_source=jagworks.southalabama.edu%2Ftheses_diss%2F57&utm_medium=PDF&utm_campaign=PDFCoverPages
https://jagworks.southalabama.edu/theses_diss/57?utm_source=jagworks.southalabama.edu%2Ftheses_diss%2F57&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:jherrmann@southalabama.edu

ENHANCING SYSTEM SECURITY USING DYNAMIC HARDWARE

A Thesis

Submitted to the Graduate Faculty of the

University of South Alabama

in partial fulfillment of the

requirements for the degree of

Master of Science

in

Computer and Information Sciences

by

Sydney L. Davis

B.S., University of South Alabama, 2020

May 2022

ii

ACKNOWLEDGEMENTS

I express my deepest gratitude to my research mentor and supervisor, Dr. Todd

Andel, for his close guidance, valuable critiques, and continued support throughout the

research process. I thank Dr. Todd McDonald and Dr. Sam Russ for sharing their

invaluable knowledge and giving me so much of their time in the development of this

research. To the National Science Foundation, I give my deepest appreciation for funding

my research under grant D0GE-1564518. And finally, I give my special thanks to my

family for supporting me from beginning to end. Thank you.

iii

TABLE OF CONTENTS

Page

LIST OF TABLES ...v

LIST OF FIGURES ... vi

LIST OF ABBREVIATIONS ... viii

ABSTRACT ...x

CHAPTER I INTRODUCTION ...1

1.1 Research Questions and Goals ...2

1.2 Thesis Outline ..3

CHAPTER II BACKGROUND AND RELATED WORKS ..4

2.1 Background ..4

2.1.1 Moving Target Defense (MTD) ...4

2.1.2 Obfuscation ..5

2.1.3 Circuit Variance ...6

2.1.4 Field Programmable Gate Arrays and Application-Specific Circuits6

2.1.5 Partial Reconfiguration and Partial Dynamic Reconfiguration

(PR & PDR) ...7

2.1.6 Dynamic Hardware/Software Partitioning...8

2.1.7 Side Channel Analysis (SCA) ...8

2.1.8 Differential Power Analysis (DPA) ..9

2.1.9 Electromagnetic Analysis (EMA) ...10

2.1.10 Data Encryption Standard (DES) ..11

2.2 Related Works ..15

2.2.1 Software Protection through Dynamic Code Mutation15

2.2.2 Enhanced Software Security through Program Partitioning17

iv

CHAPTER III METHODOLOGY ..18

3.1 Explaining the Approach ...19

3.1.1 Task I ..19

3.1.2 Task II ..21

3.1.3 Task III ...24

CHAPTER IV RESULTS ...28

4.1 Observations in Vivado..28

4.1.1 Before Optimization Removal ..29

4.1.2 After Optimization Removal ..33

4.2 Observations in Inspector SCA ..37

4.2.1 The Power Side Channel ..40

4.2.2 The Electromagnetic Side Channel ...46

CHAPTER V CONCLUSIONS ..54

5.1 Summary of Findings ...56

5.2 Future Work ...57

REFERENCES ..57

APPENDICES ...64

Appendix A “Dont_Touch” Script...64

Appendix B Vivado SDK HelloWorld.c (Encryption) ..66

BIOGRAPHICAL SKETCH ...67

v

LIST OF TABLES

Table Page

3.1. Development Environment ...22

4.1. Device Utilization without Optimization ..36

4.2. Trace Acquisition Measurements ...39

vi

LIST OF FIGURES

Figure Page

2.1. Basic DES Cipher [23]..13

2.2. Detailed DES Overview ..14

3.1. PET Translation Flow ...21

3.2. Native DES Block Diagram ..23

3.3. Native DES SDK Terminal ...23

3.4. System Under Test (SUT) ...26

3.5. 16 Distinct Rounds of DES [35] ...27

4.1. Logic Cells ..30

4.2. Device View: Native DES with Optimization ..31

4.3. Device View: Variant DES_20 with Optimization ...31

4.4. Device View: Variant DES_50 with Optimization ...32

4.5. Device View: Native DES ..33

4.6. Device View: Variant DES_20 without Optimization..34

4.7. Device View: Variant DES_50 without Optimization..34

4.8. Execution Time Measurement ..37

4.9. Power: Native DES – 250MHz ...40

4.10. Power: Native DES – 250MHz – Moving Target Average41

vii

4.11. Power: Native DES – 250MHz - Spectrum ..41

4.12. Power: Variant DES_20 – 250MHz ...43

4.13. Power: Variant DES_50 – 250MHz ...44

4.14. Power: Native DES – 500MHz ...44

4.15. Power: Variant DES_20 – 500MHz ...45

4.16. Power: Variant DES_50 – 500MHz ...45

4.17. Spectral Intensity – Native DES ...47

4.18. Spectral Intensity – Variant DES_20 ..48

4.19. Spectral Intensity – Variant DES_50 ..48

4.20. Emag: Native DES ..49

4.21. Emag: Native DES – Zoomed ..50

4.22. Emag: Native DES – Harmonics ...51

4.23. Emag: Native DES – Spectrum ..51

4.24. Emag: Variant DES_20...52

4.25. Emag: Variant DES_50...52

viii

LIST OF ABBREVIATIONS

AES Advanced Encryption Standard

ARM Advanced RISC Machines

ASIC Application Specific Integrated Circuit

AXI Advanced Extensible Interface

CBC Cipher Block Chaining

CFB Cipher Feedback

CLB Configurable Logic Block

CMOS Complementary Metal Oxide Semiconductor

DES Data Encryption Standard

DPA Differential Power Analysis

ECB Electronic Codebook

EMA Electromagnetic Analysis

FF Flip Flop

FPGA Field Programmable Gate Array

fs Sample Frequency

GPIO General Purpose Input/Output

GPP General Purpose Processor

I/O Input/Output

IP Initial Permutation

LUT Look Up Table

MTD Moving Target Defense

OFB Output Feedback

PCC Power Consumption Curves

PDR Partial Dynamic Reconfiguration

ix

PET Program Encryption Toolkit

PL Programmable Logic

PR Partial Reconfiguration

SCA Side Channel Analysis

SDK Software Development Kit

SoC System on a Chip

SUT System Under Test

te Execution Time

UART Universal Asynchronous Receiver-Transmitter

VHDL VHSIC Hardware Description Language

XOR Exclusive OR

x

ABSTRACT

Davis, Sydney, L., M. S., University of South Alabama, May 2022. Enhancing System

Security Using Dynamic Hardware. Chair of Committee: Todd, Andel, Ph.D.

Within the ever-advancing field of computing, there is significant research into

the many facets of cyber security. However, there is very little research to support the

concept of using a Field Programmable Gate Array (FPGA) to increase the security of a

system. While its most common use is to provide efficiency and speedup of processes,

this research considers the use of an FPGA to mitigate vulnerabilities in both software

and hardware. This paper proposes circuit variance within an FPGA as a method of

Moving Target Defense (MTD) and investigates its effect on side-channels. We

hypothesize that although the functionality of native and variant circuits is the same, their

subsequent side-channel characterizations will differ thus creating unique

electromagnetic signatures. The investigation and observations of the study include

circuit variant construction, side channel attacks and analyses, and subsequent

comparisons of electromagnetic signatures. We found that in the analysis of variant DES

implementations, there are small but present differences in side channel depictions from

native to variant.

1

CHAPTER I

INTRODUCTION

In an increasingly technologically advancing world, ensuring the security of

systems and their integrity against malicious attacks has become a major research focus

in the computer security community. Although computer security and its many facets are

advancing at an exponential rate, hackers are unfortunately progressing at a similar rate.

Just recently, an Equifax data breach orchestrated by a community of hackers cost 143

million Americans the sensitivity of their confidential personal information [1].

Misfortunes such as these generate an even bigger outcry for more secure systems. A

very widely used method of securing these systems is moving target defense otherwise

known as MTD. This technique creates a more difficult environment for an attacker to

implement a successful intrusion thus defending against vulnerabilities within the system

[2], [3], [4], [5]. Although there are various types of MTDs, a specific application is the

use of circuit variance, which at its most basic level is the act of generating equivalent

circuits to produce variants that are constantly changing over a previously specified

period. Using these variants creates the illusion that the entire system is constantly

changing which assists in making it more challenging for an attacker to reverse engineer

the system.

2

In this research, we investigate the utilization of programmable hardware to

identify and mitigate vulnerabilities in software and/or hardware. We theorize that

implementing circuit variance as a method of MTD will provide added security to a given

system because side channel characterizations of native and variant will be different. In

exploration of this theory, we chose an FPGA as the programmable hardware and decided

on a simple implementation of DES encryption as the native circuit. The goal of the

research is to determine if side channel characterizations, whether power consumption or

electromagnetic signatures, differ between native and variant although they are

functionally equivalent.

1.1 Research Question and Goals

Often defense mechanisms for system intrusions by attackers are fixed. The

defenses stay the same and do not vary therefore allowing attackers ample time to

determine the inner workings of a circuit with the purpose of reverse engineering it. This

paper proposes circuit variance as a method of moving target defense (MTD) to counter

attacks and increase the overall level of security for the system. We theorize that while

the functionality of native and variant circuits is the same, their subsequent side-channel

characterizations will differ thus creating unique electromagnetic signatures.

The goal of this research is to determine if employing circuit variance as a method

of moving target defense (MTD) will provide varying levels of security. The fundamental

question underlying the research is “How does circuit variant implementation relate to

side channel characterization?” Therefore, in this approach, the side-channel

characteristics of a native DES circuit implementation and its variants will be evaluated

3

and compared with the purpose of determining if these characteristics can distinguish

native from variant.

1.2 Thesis Outline

The remainder of this document is outlined as follows: Chapter II presents an

overview of background concepts and related works. Chapter III describes in detail the

methodology and process for the experimental setup and analyzation of data. Chapter IV

details our experimental results and discussion. Chapter V summarizes our conclusions

and gives a brief proposal for potential future work.

4

CHAPTER II

BACKGROUND AND RELATED WORKS

This chapter provides background on frequently mentioned concepts and methods

in Chapter III as well as an overview of relevant literature in this field. Section 2.1 offers

the contextual information necessary to grasp the concepts presented in the remainder of

this document including an overview of such topics as moving target defense, circuit

variance, properties of FPGAs, and side channel analysis Section 2.2, presents and

summarizes relevant related works in this research area including but not limited to

dynamic code mutation, and software partitioning.

2.1 Background

In this section, several key words and phrases will be defined in detail. These

subsections and their contents will help to give a well-rounded view of the research area

and in turn create a level knowledge base for those unfamiliar with the specifics of this

field.

2.1.1 Moving Target Defense (MTD)

 Moving Target Defense (MTD) is a fairly new concept of security that involves

increasing entropy in any given system in order to reduce the attack surface available to

hackers or any entity that would do harm to the system [3], [2], [4]. In systems, both

5

hardware and software, that do not utilize an MTD method an attacker’s biggest

advantage is often the static nature of the system [2], [5]. Because manufacturers do not

always design a system with an attacker’s plans in mind, most systems are vulnerable to

intrusion based solely on the fact that there is no variance within the system itself. An

attacker can take all the time he needs to attempt to reverse engineer the circuit or the

program because he knows that he can always return to this same circuit or program.

Conversely, employing MTD confuses attackers by creating more entropy or randomness

thus allowing a considerably smaller window for successful invasions. Investigating this

method using obfuscation and/or circuit variance is the overarching goal of this research.

2.1.2 Obfuscation

Obfuscation is one of several defense mechanisms used to mitigate attacks by

hackers that would do harm to a system. It is simply the use of obscurity to thwart

intrusion. Designers who implement obfuscation into their code or circuits desire to make

the code or circuit as challenging to comprehend as possible while still retaining the

identical functionality [6], [7]. The use of obfuscation reduces the chances of an attacker

reverse engineering a system in order to gain access to it [2], [5], [8]. By making the

system harder to interpret, the attacker must spend more time attempting to figure it out.

Using this tactic as a form of moving target defense (MTD) along with the entropy it

creates helps to ensure the security of a system. This research investigates circuit

obfuscation by introducing redundancies into the variant DES implementation to be

analyzed therefore expanding the circuit.

6

2.1.3 Circuit Variance

Circuit variance is the method of creating obfuscated logic or generating

functionally equivalent variants of a circuit with the intention of creating a more difficult

environment for an attacker to thrive [7], [6], [8]. These variants are a “family of

equivalent circuits that maintain the functional program properties…, but look entirely

different from a structural point of view” [9]. Circuit variance is a type of dynamic

variation meaning that the variants generated are constantly changing over a period of

time. This variation in the structure of the logic would appear to an attacker as several

completely different circuits as opposed to variants of the same logic. Because one of the

first things an adversary must determine when attempting to reverse engineer a system

are the different components of a circuit and their function within that circuit, using this

obfuscated logic within the system aids in deterring the adversary from going any further

in their plans to tamper with the system.

2.1.4 Field Programmable Gate Arrays and Application-Specific Circuits

Field Programmable Gate Arrays otherwise known as FPGAs are powerful,

reconfigurable integrated circuits that have logic structures that can execute the logic of a

given circuit or program [2], [10]. They consist of an array of interconnected logic blocks

that can be programmed at both the function of the logic blocks, the connections between

the blocks, and the inputs and outputs [11]. In this regard, the FPGA is considered

reconfigurable hardware. FPGAs combine the advantages of general-purpose processors

and specialized circuits because they can be reconfigured during run-time to better meet

the needs of a system. These chips are quickly replacing the widely accepted Application-

Specific Integrated Circuit (ASIC). An ASIC is a smaller and faster integrated circuit that

7

unlike an FPGA, has its logical structure hardwired into its design. Although smaller and

faster than an FPGA, an ASIC is not reconfigurable like an FPGA. This along with cost

and scope of use are causing the ASIC to be replaced with the FPGA more and more

[10], [9].

Since its invention, the applications of the FGPA have included speeding up

security processes, ensuring the integrity of a program during run-time, and increasing

overall program speed [9], [12]. Although several of its applications have to do with

enhancing the security of a system by providing speedup of security processing, FPGAs

themselves have not been the specifically used to mitigate software or hardware

vulnerabilities. This research, however, considers the use of FPGAs to identify and

potentially mitigate vulnerabilities within various circuits and their side channel

characterizations.

2.1.5 Partial Reconfiguration and Partial Dynamic Reconfiguration (PR & PDR)

“Partial reconfiguration and partial dynamic reconfiguration is the ability of an

FPGA to change its functionality without having to be powered down” [2]. This means

the FPGA can be reconfigured during execution time. There are two different types of

PR: difference-based and module-based. Difference based partial reconfiguration is a

process in which there are small changes made to an FPGA configuration by relating to

the FPGA what the difference is between the old and new configurations. Module based

partial reconfiguration makes uses of several modular design concepts to reconfigure

large blocks of logic within the FPGA. These large blocks of logic are then able to

replace old configurations without disrupting the rest of the hardware [2], [13]. An

advantage of utilizing PR and PDR is increased performance within a system. By using

8

these techniques, a system can perform without a loss of functionality because of the

hardware’s ability to efficiently function without powering down every time something

needs to be reconfigured. Another advantage of the use of PR and PDR is reduced power

consumption and overall size/amount of the hardware used [14]. This functionally is

essential in allowing for the concepts proposed in this research into the possibilities of

run-time circuit variance and obfuscation for the purpose of system security.

2.1.6 Dynamic Hardware/Software Partitioning

Hardware/Software partitioning can be defined as dividing a program into

software on a microprocessor and hardware co-processors. This approach has recently

incorporated the use of an FPGA and microprocessor on a single chip, as the hardware,

which has made the process more efficient. “By treating the FPGA as an extension of the

microprocessor, a designer can move critical software regions from the microprocessor

onto FPGA hardware, resulting in improved performance and usually reduced energy

consumption…”[15]. Although this is often used as an energy consumption reduction

technique, this paper proposes that it be used to better ensure the integrity of a program

and its overall security.

2.1.7 Side Channel Analysis (SCA)

Side channel leakage can be easily defined as specific information leakage [16].

Often side channel leakage is in the form of energy or power consumption. SCA attacks

are attempts by attackers to use system leakage such as power consumption to aid in

reverse engineering that system or to leak cryptographic keying information. “These

attacks are conducted by collecting power consumption data of the hardware, referred to

as power traces…and statistically correlating this data to the cryptographic key.” [9].

9

Once the attackers obtain the cryptographic key, the system is essentially hacked; and all

of this has been done by just analyzing the subsequent side channels of the system. This

research proposes that circuit variance, obfuscation, and dynamic reconfiguration will

increase the difficulty of side channel analysis, adding to the overall security of a given

system.

2.1.8 Differential Power Analysis (DPA)

Differential Power Analysis is an SCA technique that utilizes power side channels

to obtain cryptographic keys. Power attacks seek to ascertain information related to

operations and manipulated data by examining a device’s power consumption [17]. These

attacks are carried out “by collecting power consumption data of the hardware, referred to

as power traces…and statistically correlating this data to the cryptographic key” [18]. A

trace usually shows at least one iteration of encryption, but it is possible to generate a

more detailed view of the operation depending on the equipment used to take the

measurements and complete the analysis. To take these traces, a current probe must be

placed in series with the power source to accurately capture the current. A trigger must

also be configured to prompt the probe to capture traces.

Once the probe and trigger are placed and configured, the attacker must decide

which part of the algorithm she would like to analyze. For example, if analyzing the Data

Encryption Standard, the analysis can either be performed on the first round of DES with

the plaintext or on the sixteenth round with the ciphertext. If the analysis is chosen to be

performed on the first round, the subkey along with the inputs to each S-box are

calculated in turn and their outputs analyzed. Conversely, if the analysis is on the last

round, the outputs to each box are calculated and their inputs analyzed.

10

Once traces are gathered, power consumption curves (PCCs) are collected. These

are differential curves derived from box output bits. Because there are sixty-four partial

subkey combinations, sixty-four of these traces must be performed. In the analysis, a very

noticeable spike should be present in the PCC that was plotted with the correct subkey

bits which gives confirmation of key block guesses. Repeating this process yields all 48

subkey bits for the round (where the last 8 bits can be determined by analyzing another

round) [17], [19]. Because our goal is not to break the DES cipher and acquire the key,

the PCCs will not be gathered and analyzed for subkey bits. Although DPA will not be

used directly in this research, power side channels will be collected and analyzed to make

comparisons between variant circuits.

2.1.9 Electromagnetic Analysis (EMA)

Electromagnetic analysis is an attack that captures and analyzes electromagnetic

emanations from a target device. “Since each active component of the device produces

and induces various types of emanations, these emanations provide multiple views of

events unfolding within the device at each clock cycle” [20]. Electromagnetic

emanations or emissions are the results of current flows through different parts of the

device. These emanations can either be intentional or unintentional. The intentional

emissions are created from intentional current flows in the device and often correspond to

short bursts of current. The unintentional emissions on the other hand are created as a

result of proximity. The proximity of the hardware components on a device result in

electrical and electromagnetic coupling, and this in turn creates the emanations. The

unintentional emanations often provide especially useful and often compromising

information about a device and the programs running on it [20]. Because the foundation

11

of EMA is emanations, it is important to note that in CMOS devices current only flows

when logic states are changed; and the changing of states is controlled by a square-wave

clock. This in turn means that the resulting emanations carry valuable information about

what a program may be doing during each clock cycle.

Analysis of the electromagnetic side channel of a DES cipher begins like DPA

with the placement of current probes in addition to near field probes. The near field probe

must be placed on the smartcard as close to the microprocessor as possible. The current

probe on the other hand is placed in series with the power supply to capture the changing

currents through the device. A powerful scope must also be used to capture enough

samples of the executing cipher for a meaningful trace. Just like DPA, a trigger is needed

to prompt the software to begin taking traces of the cipher. Before traces are collected, an

XY scan must be completed on the device to determine the precise location the cipher or

process is executing. With the probes and capturing equipment programmed to this

hotspot, the signal can be collected. Once captured, the data is analyzed and evaluated

similar to that of a DPA attack.

2.1.10 Data Encryption Standard (DES)

The Data Encryption Standard was chosen for evaluation in this research for a

variety of factors. First, the cipher is very well known, very easily implemented, and very

easily broken. Although these would be cons when determining whether to implement

this cipher in real-world applications, these reasons are what makes it a desirable cipher

for research purposes. Because our purpose in implementing the cipher is not to break it,

it is even more suitable for this research. Second, the DES cipher is very well supported

in the Program Encryption Toolkit (PET) that this research will be utilizing to create both

12

native and variant circuits for evaluation. This toolkit is our circuit generator of choice, so

it follows that we choose a cipher that is compatible. Lastly, side channels of DES

ciphers are widely evaluated and are able to be straightforwardly analyzed because of the

simplicity of the algorithm.

The Data Encryption Standard, often referred to as DES, is a cipher method

formulated by researchers at IBM in the early 1970s and adopted into the United States

government’s National Bureau of Standards by the National Institute of Standards and

Technology in 1977 [21]. It was the first encryption method to be endorsed by the United

States government and used for classification at a federal level.

The algorithm for this method can be described in its simplest form as a

substitution cipher where “an input block of 64 bits, regarded as a ‘letter’ in this alphabet,

is replaced with a new letter, the output block” [22]. A graphical representation of this

simple algorithm can be found in Figure 2.1 [23]. Essentially, the DES algorithm takes an

input of 64 bits and a key of 64 bits and generates the ciphertext output of 64 bits. In the

64 bit key however, we can see that only 56 bits are used as the effective key and the

remaining 8 are used as parity bits [24].

Within this algorithm, the encryption of the plaintext or input block is handled in

16 rounds meaning there are 16 identical iterations of the same encryption operation.

Before the first round, the input block is fed through an initial permutation (IP) and

divided into 32-bit halves. Within each round, the left and right halves of the input block

are each operated on and fed into the next round with the only difference in the rounds

being that the expanded right 32 bits are XOR-ed with a subkey. Each round uses a

different subkey derived from the main 64-bit key. After the final round is completed,

13

Figure 2.1 Basic DES Cipher [23].

“the right and left bits are concatenated and finally pass through a final

permutation…which is the inverse of the initial permutation (IP)” and the subsequent

output is the 64 bit ciphertext block [21], [25], [22], [24]. An image outlining this portion

of the algorithm can be found in Figure 2.2 [26]. Because this encryption is a private key

algorithm, the same key is used for both encryption and decryption meaning that the

decryption process is identical to the encryption process save that the subkeys are used in

reverse order [24].

For ease of access and the need for a variety of applications of DES, four different

modes of operation were developed for the algorithm: Electronic Codebook (ECB),

Cipher Block Chaining (CBC), Cipher Feedback (CFB), and Output Feedback (OFB).

Each of these modes successfully implements DES encryption, but all in a different way

and for use in different applications. OFB is often used for encrypting satellite

communications while CBC and CFB are most commonly used to authenticate

14

Figure 2.2 Detailed DES Overview.

data. [21], [25], [27]. Various applications of DES include “automated key management

applications, file encryption, mail encryption, satellite data encryption, and other

applications” [21].

Because of the way DES was developed and the fact that it is a publicly known

algorithm, it has become a relatively easy encryption algorithm to break, making it

vulnerable to attacks. Although DES is still widely used in a variety of applications and

functions, in most cases it has been replaced with the newer and more secure Advanced

Encryption Standard (AES) as well as others. A combination of the publicity of the DES

algorithm and the easily identifiable 16 rounds of encryption contribute to why it has

been chosen for side channel analysis in this paper. In addition to the vulnerability of the

algorithm, it’s ease of implementation on reconfigurable hardware, specifically FPGAs,

15

is another motive for using such a cipher. The implementation of a well-known cipher

will aid in analyzing the difference between native and variant circuits. In this work, it is

important to remember our goal is not to break the cipher using SCA, rather it is to

understand the effect of functional cipher variants on side channel characterizations; and

for this reason, we have chosen DES for the analysis.

2.2 Related Works

In researching topics related to software protection and circuit variance, there

were two papers that stood out as integral related works. The first is a conference paper

by authors Madou et al. [28] entitled Software Protection through Dynamic Code

Mutation.

This paper focuses on techniques for circuit variance. The second of these papers was a

graduate thesis, Enhanced Software Security through Program Partitioning, written by L.

Whitehurst. In her thesis, Whitehurst aims to provide a technique for program

partitioning. The methods proposed in each of these papers provide the basis for the

research completed in this thesis.

2.2.1 Software Protection through Dynamic Code Mutation

In their 2005 conference paper, Madou et al. [28] propose dynamic code mutation

as a way to secure software. They begin their paper by outlining just how negative the

aftereffects of reverse engineering can be on a system. They make it clear that one of the

most effective ways of deterring hackers and the like from attempting to illegally obtain

access to a system is to make the attack surface as small as possible by making the code

as incomprehensible as it can be while still retaining functionality. In this paper, they

16

focus on obfuscated code variants that change dynamically while the program runs as the

way to do this [28]. The authors suggest that although there has been some research on

dynamic code generation, the techniques described in their conference paper are

considerably different because the previous research was not done with the intent to

thwart hackers and reverse engineering.

Madou et al. [28] consider two types of code mutation in their paper, one-pass

mutation and cluster-based mutation which both work through the use of edit scripts.

They define one-pass mutation as a code mutation technique where a procedure or piece

of code is made into a template and “scrambled” until right before it is to be executed. At

this time, the code is put back into its original form for execution. Cluster-based mutation

on the other hand is defined as a technique whereby one procedure or piece of code

generates several different variants or a cluster of variants that will all map to the same

memory locations. They assert that the larger the cluster, the greater the degree of

obfuscation because the large number of variants all mapping to the same memory

location in turn creates more confusion and entropy [28].

 In their experiment, the authors created a prototype of the code mutation

technique using the tool Diablos. They found that using both obfuscation methods, both

one-pass and cluster-based, they are capable of protecting 92% of all (non-library)

procedures in a program [28]. From this and various other results, they concluded that

their dynamic code mutation technique gave the intended results so long as the variants or

random generator are not broken. The discoveries made by Madou et al. in their research

lends better insight into the realm of software protection through obfuscation which in

turn enables MTD at the hardware level.

17

2.2.2 Enhanced Software Security through Program Partitioning

In her graduate thesis, Whitehurst [12] proposes that partitioning a program

between a general-purpose processor (GPP) and an FPGA can mitigate attacks that rely

on a stack. She proposes that this method of placing software vulnerabilities onto an

FPGA can eliminate vulnerabilities altogether, specifically software vulnerable to buffer

overflow attacks [12]. In her problem statement, she states that although FPGA’s have

been used to speed up the security of a system and several other applications, they have

not actually been used for the purpose of providing security to a system. This method

would be useful because by placing the parts of a piece of software vulnerable to attacks

that require address spaces onto an FPGA which has no addresses to attack, the overall

program is made more secure [12].

 To test this hypothesis, Whitehurst created a vulnerable program and showed the

vulnerabilities to attacks on two GPPs. She then tested two more partitioned programs

against these same attacks to directly compare the security against the buffer overflow

attacks. In her results, she discussed how the vulnerable program that did not utilize the

partitioning method did in fact succumb to the buffer overflow attack; but the programs

which did utilize the partitioning method prevented the attack and were successfully

secured [12].

18

CHAPTER III

METHODOLOGY

To complete this research and determine if our hypothesis can be supported there

are several objectives that need to be met. Those objectives and their sub-objectives are

below:

1. Obtain native DES circuit implementation and generate variants

a. Use Program Encryption Toolkit to generate variants and translate

from BENCH files to VHDL

2. Implement three distinct hardware variants of DES onto an FPGA

a. Program FPGA with Xilinx’s Vivado Development Kit(s)

3. Capture related side channels from both native and variant(s) under

operation

a. Utilize the Riscure hardware and software (Inspector SCA)

b. Capture electromagnetic signatures as well as power consumption

behavior

4. Evaluate/analyze differences between the signals

a. Determine if the implementation of circuit variance changes the

circuit enough that its signatures present as a completely different

circuit.

19

3.1 Explaining the Approach

The work for this research has been carried out in three distinct tasks. Task I

describes the process of ascertaining an original DES circuit implementation and the

generation of its variants. Task II summarizes programming the native and variant

hardware implementations onto an FPGA. And Task III outlines side channel analysis

and comparison of these analyses.

3.1.1 Task I

This task describes how the various DES circuits were ascertained as well as the

method of language translation for the circuits. The three circuits we use in this research

were originally BENCH netlists obtained from thesis committee member, Dr. Jeffrey

McDonald. These circuits are implementations of DES encryption generated from Dr.

McDonald’s Program Encryption Toolkit (PET). We believe the PET-generated circuits

are implementing DES encryption, but these circuits cannot be verified against other

implementations of DES. It seems the input/output relationships within these circuits

contain different byte ordering than those employed in verifiable DES implementations.

Although the generated ciphertext from these circuits does not directly resemble DES

encryption, the ciphertext for both native and variant circuits are equivalent. Therefore,

we will continue utilizing these circuits in this research as the fundamental question and

hypothesis center around side channel characterizations of functionally equivalent

circuits and not the functionality of the circuits themselves.

Of these circuits, the native is the simplest of the three, and the variants are

functional equivalents to the native circuit with added redundancies for obfuscation. The

redundancies in the variant circuits were created by inserting multiple AND-trees to the

20

logic of the native circuit while allowing it to keep its original functionality. AND-trees

are essentially trees that perform the logical AND operation upon all inputs into the tree

[29]. With circuit inputs as inputs to the AND-trees, the addition of these trees adds only

redundancy into the circuits. The functionality and integrity of the circuits themselves

remains unchanged and it is for this reason they were chosen for obfuscation in this

research. The two variants differ in that one uses 20 AND-trees for obfuscation and the

other uses 50. Hereafter the native, 20 AND-tree variant and 50 AND-tree variants will

be referred to as Native DES, Variant DES_20, and Variant DES_50 respectively.

Because the circuits were originally in BENCH netlist format, they need to be

translated before they are used to program the FPGA. To do this, PET is again utilized.

This software, while it has many functions, is used in this research to take the original

netlists of the circuits, decompose any multi-fan-in, and translate them into VHDL so that

they can be used in the Vivado Design Suite. The translation could be done by hand, but

because the circuits all have upwards of 20,000 total gates, utilizing PET makes this

process more efficient and reliable. A flow chart of this process can be found in Figure

3.1.

21

Figure 3.1 PET Translation Flow.

3.1.2 Task II

The following section summarizes the process of packaging the DES circuit(s)

and programming them onto the Zedboard’s FPGA. The details of the development

environment can be found in Table 3.1.

Once Native DES, Variant DES_20, and Variant DES_50 were ascertained and

translated to VHDL, they were then ready to be programmed onto an FPGA. The Vivado

Design Suite was utilized to accomplish this. The initial programming of the board

included producing a block diagram of the system, creation of a new IP for the project in

the Vivado Design Suite, instantiation of the VHDL circuit, synthesis, implementation,

and bitstream generation.

22

Table 3.1 Development Environment

Task Hardware/Software Utilized Reference

Language Translation Program Encryption Toolkit [30]

SoC / FPGA Zynq-7000 SoC XC7Z020-CLG484-1 [31]

Design Suite Xilinx Vivado Design Suite 2017.1 [32]

Software Development Xilinx Vivado Software Development Kit 2017.1 [33]

Of the above steps for hardware programming and specification, the creation and

instantiation of the IP requires the most hands-on approach and attention to detail. In the

IP creation process, the VHDL translated circuits are used to create a new IP with inputs,

outputs, and logic all packaged into one module. It is important to note that the logic

within this module is tagged as “dont_touch” to keep the synthesizer from optimizing the

circuit and removing the redundancies intentionally inserted in the logic. This module is

then able to be inserted into a block diagram along with the Zynq ARM processing

system and other modules necessary for the circuit to execute. A depiction of the block

diagram created and utilized in for Native DES can be found in Figure 3.2. Here the

created IP for Native DES (“des_ip_0” in the diagram), the Zynq processing system,

processor system reset, and AXI interconnect, GPIO (pin trigger), and their

interconnections are all clearly visible. With the exception of the IP utilized for Native

Upon completion of the hardware specifications, the project and most importantly

the generated bitstream are then exported to Xilinx’s Software Development Kit (SDK)

for the last steps in programming the FPGA. In the SDK, the FPGA is programmed to

receive serial communication through the UART. A simple “HelloWorld” file is created

23

Figure 3.2 Native DES Block Diagram.

and written to initiate the encryption specified by the IP in Vivado (found in Appendix

A). The board’s UART is then connected, the board is programmed, and the ciphertext is

visible in the SDK’s terminal. Figure 3.3 shows the SDK terminal of Native DES just

after encryption was initiated on the device. The project in the SDK is then transferred to

a boot loader so that the device can be programmed from flash memory and remain

programmed when power cycled. These same steps are taken to program all three circuits

onto the Zedboard.

Figure 3.3 Native DES SDK Terminal.

24

3.1.3 Task III

This section outlines the process of gathering side channel traces and the

subsequent comparison. For the analysis of these circuits, both power and

electromagnetic traces are collected. Riscure’s Inspector SCA is used to carry out these

analyses and provide the traces necessary to make comparisons between Native DES,

Variant DES_20, and Variant DES_50. Although the purpose of the research is not to

break the DES encryption and ascertain the key, the traces gathered will provide insight

into the inner workings of the circuits, which we believe will highlight their differences.

Before these traces can be collected, a trigger must be created. This is what alerts

the software to begin taking traces of the system. Although not every analysis requires a

trigger, it is necessary for this research since multiple circuits are analyzed and compared

from beginning to end of the encryption process. The simplest and most easy to

implement trigger is one that signals the software to begin capturing when a pin goes

high and end capturing when that same pin goes low. The pin trigger will be utilized in

both the power and electromagnetic analyses and can be seen in Figure 3.2 as the GPIO

IP. The trigger can also be used to determine the execution time (te) of each circuit.

Because a pin is set to go high just before encryption starts and low just after it ends, te

can easily be ascertained by analyzing the width of the square wave pulse generated

during every execution cycle. This calculation is essential to collecting useful traces

because a precise execution time ensures traces gathered include the entire encryption

process and not just bits and pieces.

With te determined, the software must be set up to take measurements of the

device. The first acquisition measurements to be defined are the oscilloscope

25

specifications. The first of these is the sample frequency (fs). Sample frequency is the

number of samples taken per second of the signal and must be at least twice the operating

frequency of the device. For our device, our sample frequency must be at least 200MHz,

so for our acquisition the closest frequency greater than or equal to twice our operating

frequency is 250MHz. The next acquisition measurement to be calculated is the number

of samples to be taken. This figure is dependent on the sample frequency and the

execution time of the implemented design. It can be evaluated using the formula below,

𝑁𝑢𝑚 𝑆𝑎𝑚𝑝𝑙𝑒𝑠 = (𝑓𝑠)(𝑡𝐸).

The next acquisition measurements to specify are the trigger properties. The

trigger is connected to the external channel of the scope so this should be specified in the

acquisition. The voltage level must be set to 300mV and the slope set to rising edge to

guarantee the software catches the voltage spike from the trigger when encryption starts.

The delay and timeout values should keep their default values, 0.00s and 1.0s

respectively.

The channel properties for the PicoScope are specified next. These measurements

are specific to the type of measurement being taken (i.e. power, electromagnetic, etc.).

For collections of power traces, the voltage range must be set to 20mV, the offset set to

0.0V, the bandwidth set to “Full”, and the coupling should be “DC”. This will ensure the

traces taken yield the best view of the changing power measurements across the device.

For electromagnetic traces on the other hand, the voltage range must be at least 500mV to

capture the full trace and reduce clipping. The offset voltage, bandwidth, and coupling

specifications for electromagnetic traces are the same as those for power traces. The

26

specific acquisition measurements for each trace collected are consolidated into tables in

the next section.

Next in the trace collection process is the setup of the FPGA with the PicoScope

and Riscure Inspector SCA. A representation of the experimental setup is shown in

Figure 3.4. Here for power measurements, a differential current probe is placed in series

with the power supply and PicoScope where the probe measures the current across the

device’s Current Sense. For electromagnetic measurements, the current probe is replaced

with an electromagnetic probe to capture emanations across the device. This system will

hereafter be referred to as system under test (SUT).

Figure 3.4 System Under Test (SUT).

27

Once analysis begins, traces of the encryption are generated. In this process,

Inspector SCA takes “snapshots” of the system during different periods of the encryption

process. These “snapshots” of power consumption and electromagnetic signatures are

what will be used to compare the native to its variants. Sample traces obtained from

Riscure SCA tutorials can be found in Figure 3.5. The data comes from a power trace of a

software implementation of DES analyzed using Riscure’s Inspector SCA, which is the

proposed analysis tool for this research. The figure shows an initial power trace of

Software DES and clearly indicates the 16 rounds within DES encryption.

Figure 3.5 16 Distinct Rounds of DES [35].

With both power and electromagnetic traces gathered, they can then be compared,

Native to Variant DES_20, Native to Variant DES_50, and Variant DES_20 to Variant

DES_50 as needed.

28

CHAPTER IV

RESULTS

In the experimentation process, we collected and analyzed data in both the Vivado

Design Suite and the Inspector SCA software. In Vivado, the data gathered focused more

on hardware requirements, utilization, and design implementation of the DES circuits.

Results compiled from Inspector SCA on the other hand centered around the collection of

the power and electromagnetic side channels for each circuit. This section will examine

in detail the data gathered in both Vivado and Inspector SCA. The remainder of this

section is as follows, Section 4.1 will analyze the observations and data collection from

the Vivado Design Suite; and Section 4.2 will evaluate those from Inspector SCA.

4.1 Observations in Vivado

Within the Vivado Design Suite, various useful reports and graphs are generated

once synthesis and implementation of the design are completed. This section will

examine several of these reports and any initial conclusions that may be drawn from

them. For each report, Native DES, Variant DES_20 and Variant DES_50 will be

examined and compared in that order.

In Vivado when a design is created, it is packaged and inserted into a block

diagram. From here, the design must be synthesized and implemented to ensure it has

29

been correctly employed on the device and does not exceed the limits of the hardware.

During the implementation process, the design goes through logical, physical, and power

optimizations to provide the most efficient logic cell placement and routing on the device.

Because the bulk of this research depends on logical redundancies to create obfuscation

in both Variant DES_20 and Variant DES_50, it is imperative that this optimization does

not take place. The removal of the optimization step in implementation involves a simple

Python script that places a “dont_touch” attribute on wires within the source VHDL for

each circuit (found in Appendix B). This ensures that the optimizer does not change any

of the logic within the source file therefore keeping the obfuscated logic intact.

4.1.1 Before Optimization Removal

Although optimization is not necessary for this research, some reports from the

optimized designs do lend some insight into the overall design of the circuits and their

similarities. For example, the Device View of each design shows the Zynq-7000 SoC

with highlighted areas representing the utilized logic cells and their placement on the

chip. A zoomed in view of a highlighted section can be found in Figure 4.1 where the

utilized logic cells are look up tables (LUTs).

Keeping this in mind, we can compare the Device View of the implemented

design for Native DES to that of Variant DES_20 and Variant DES_50 shown in Figure

4.2, Figure 4.3, and Figure 4.4 respectively. In these figures it is important to note that the

orange highlights in the design are located where the Zynq processor is on the chip.

Conversely, the blue highlights are in the dedicated portion of the chip for programmable

30

logic (PL). Here from initial observations, when optimization is performed on the

designs, the PL of both variants very closely resemble that of our native circuit,

Figure 4.1 Logic Cells.

with some small variations in logic cell placement. This is expected as the only difference

in the three circuits is the addition of AND-trees in Variant DES_20 and Variant DES_50

while retaining original functionality.

31

Figure 4.2 Device View: Native DES with Optimization.

Figure 4.3 Device View: Variant DES_20 with Optimization.

32

Figure 4.4 Device View: Variant DES_50 with Optimization.

4.1.2 After Optimization Removal

As mentioned in the previous section, to keep the development software from

optimizing our variant circuits, a script was utilized that added in “dont_touch” attributes

to all wire declarations in the design. This prompted the optimizer to skip over these parts

of the logic in the implementation process. The reports that were generated as a result

will be examined below. We will begin by again comparing the Device View of all three

circuits after implementation. The Device View for Native DES, Variant DES_20 and

Variant DES_50 can be found in Figure 4.5, Figure 4.6, and Figure 4.7 respectively.

From these images we can see that all three circuits look different from one another in

logic placement and size. In comparing these images to those in the previous section, the

difference optimization makes in circuit design and logic placement is evident. Without

33

the optimization that would normally occur, the circuits retain their size and redundancies

allowing them to present as three functionally different circuits as opposed to ones that

are functionally equivalent. Interestingly, if we look closely at the logic cell placement

for the variant circuits, we can see parts of our original Native DES in the sections

marked X0Y1 and X0Y2. These similarities are expected since Variant DES_20 and

Variant DES_20 do still contain the basic logic of Native DES with only AND-trees

added for obfuscation. Even with these similarities in logic placement, the circuits appear

to be distinct designs and not variant implementations of the same circuit.

Figure 4.5 Device View: Native DES.

A comparison can also be made from the chip utilizations of each circuit. For

each design, a utilization report is generated that provides specifics on the utilized slices

34

Figure 4.6 Device View: Variant DES_20 without Optimization.

Figure 4.7 Device View: Variant DES_50 without Optimization.

in the PL of the device. In the PL, a configurable logic block (CLB) in the Zynq-7000

SoC is made up of two slices where slices consist of a combination of LUTs and flip

35

flops (FFs). The hardware resources an FPGA has is determined by the number of slices

the device has [34]. Table 4.1 outlines the various logic cell types available on the chip as

well as their utilizations for both native and variant circuits. In the table, we can see that

from Native DES to Variant DES_20 and Variant DES_50 there is a significant increase

in total utilization. The first Variant DES_20 is approximately 5.29 times larger than

Native DES when placed on the chip while Variant DES_50 is around 5.55 times larger

than Native DES and just slightly larger than Variant DES_20 (roughly 5% larger).

In this table, the main contributors to differences in utilization totals are the LUTs

used as logic within the PL of the device. The amount of LUTs as logic used in Variant

DES_20 is roughly 7.38 times more than those used in Native DES. Similarly, the LUTs

used in Variant DES_50 are around 7.78 times more than that of the Native DES

implementation. Again, as expected, Variant DES_20 and Variant DES_50 employ

considerably more LUTs as logic than Native DES which can be attributed to the

redundancies added into the logic for obfuscation. The LUTs as memory, registers as flip

flops, and I/O (input/output) for each circuit yield the same values, so it follows that these

areas of the chip include slices that are required for the base functionality of each DES

implementation.

36

T
ab

le
 4

.1
 D

ev
ic

e
U

ti
li

za
ti

o
n
 w

it
h
o
u
t

O
p
ti

m
iz

at
io

n

T

o
ta

l
U

ti
li

za
ti

o
n

 (
%

)

5
.3

1

2
8
.1

2
9
.5

1

U
ti

li
za

ti
o
n

 (
%

)

3
.5

7

0
.3

6

0
.8

8

0
.5

2
6
.3

6

0
.3

6

0
.8

8

0
.5

2
7
.7

7

0
.3

6

0
.8

8

0
.5

A
v
a
il

a
b

le

5
3
2
0
0

1
7
4
0
0

1
0
6
4
0
0

2
0
0

5
3
2
0
0

1
7
4
0
0

1
0
6
4
0
0

2
0
0

5
3
2
0
0

1
7
4
0
0

1
0
6
4
0
0

2
0
0

U
se

d

1
8
9
8

6
2

9
3
8

1

1
4
0
2
1

6
2

9
3
8

1

1
4
7
7
1

6
2

9
3
8

1

S
it

e
T

y
p

e

L
U

T
s

a
s

L
o
g
ic

L
U

T
s

a
s

M
em

o
ry

R
eg

is
te

r
a
s

F
F

I/
O

L
U

T
s

a
s

L
o
g
ic

L
U

T
s

a
s

M
em

o
ry

R
eg

is
te

r
a
s

F
F

I/
O

L
U

T
s

a
s

L
o
g
ic

L
U

T
s

a
s

M
em

o
ry

R
eg

is
te

r
a
s

F
F

I/
O

N
a
ti

v
e

D
E

S

V
a
ri

a
n

t

D
E

S
_
2
0

V
a
ri

a
n

t

D
E

S
_
5
0

37

4.2 Observations in Inspector SCA

Riscure’s Inspector SCA is used in this research to capture both power and

electromagnetic side channels of the SUT during execution. As stated in Chapter III, to

begin taking traces of a device, the acquisition measurements must first be defined and

set within the Riscure software. The first of these required calculations is the execution

time for each circuit. To determine this value, we connected our device, which had the

circuit design booted from flash memory, to the PicoScope. With the device on and

executing in an infinite loop, we could clearly see the square wave pulse generated by the

pin trigger in the scope software. A snapshot of one of these pulses can be seen in Figure

4.8.

Figure 4.8 Execution Time Measurement.

38

This process was repeated for each circuit implementation to determine the

execution time. Although the exact execution time of each design was calculated, this

value is not what was utilized to compute “Num Samples”. Because we want to ensure

the entire encryption process is included in each trace, we rounded the encryption times

up to the nearest tenth of a millisecond. This guaranteed at least one and at most two

iterations of encryption could be seen in our collected traces. Once this value was

determined, the other acquisition measurements were defined. These values can be found

in Table 4.2.

39

T
ab

le
 4

.2
 T

ra
ce

 A
cq

u
is

it
io

n
 M

ea
su

re
m

en
ts

T

ra
ce

s

1
0

1
0

1
0

1
0

1
0

1
0

1
0

1
0

1
0

S
a
m

p
le

s

5
5
0
0
0

5
5
0
0
0

5
5
0
0
0

1
0
0
0
0
0

1
0
0
0
0
0

1
0
0
0
0
0

5
5
0
0
0

5
5
0
0
0

5
5
0
0
0

f s
 (
M

H
z)

2
5
0

2
5
0

2
5
0

5
0
0

5
0
0

5
0
0

2
5
0

2
5
0

2
5
0

U
ti

li
ze

d
 t

s
(s

)

0
.0

0
0
2

0
.0

0
0
2

0
.0

0
0
2

0
.0

0
0
2

0
.0

0
0
2

0
.0

0
0
2

0
.0

0
0
2

0
.0

0
0
2

0
.0

0
0
2

C
a
lc

u
la

te
d

 (
m

s)

0
.1

0
9
4

0
.1

0
8
3
8

0
.1

0
9
3
2

0
.1

0
9
4

0
.1

0
8
3
8

0
.1

0
9
3
2

0
.1

0
9
4

0
.1

0
8
3
8

0
.1

0
9
3
2

C
ir

cu
it

s

N
at

iv
e

D
E

S

V
ar

ia
n

t
D

E
S

_
2
0

V
ar

ia
n
t

D
E

S
-5

0

N
at

iv
e

D
E

S

V
ar

ia
n

t
D

E
S

_
2
0

V
ar

ia
n
t

D
E

S
-5

0

N
at

iv
e

D
E

S

V
ar

ia
n

t
D

E
S

_
2
0

V
ar

ia
n
t

D
E

S
-5

0

 P
o
w

er

E
m

a
g

40

All samples collected adhere to the acquisition measurements outlined in the

table. The subsequent traces and scans are analyzed and evaluated in this section. The

power side channels of the native and variant circuits will be examined first followed by

the electromagnetic side channels and subsequent traces.

4.2.1 The Power Side Channel

In collecting the power traces for this research, the system was set up just as that

in the SUT depicted in Chapter III, and the acquisition measurements used were those in

Table 4.3. The first set of traces gathered had a sample frequency of 250MHz and 55,000

samples. The resulting trace for Native DES is shown in Figure 4.9.

Figure 4.9 Power: Native DES – 250MHz.

Because this trace is very noisy and not much can be inferred in its raw state, we

applied both a moving average filter and spectrum analysis to make things a bit clearer. A

moving average filter is one that analyzes data points by calculating various averages of

subsets of the full dataset. With this filter we can average the samples in the trace and

therefore reduce the noise in the raw collection. The Native DES power trace with the

moving average filter applied is in Figure 4.10.

41

Figure 4.10 Power: Native DES – 250MHz – Moving Average.

Here we can see that the trace is much clearer but still very noisy with little to no

clear indicators of the encryption on the device. Figure 4.11 shows the Native DES power

trace with spectrum analysis applied. This process analyzes the frequency spectrum of a

trace and verifies clock frequency. The resulting trace gives us an examination of time

series within the frequency domain [35].

Figure 4.11 Power: Native DES – 250MHz – Spectrum.

In this trace there are various peaks present, but the most interesting is the one

near 63MHz. This peak tells us that there is some significant activity going on in the chip

near this frequency. We believe that this activity is the encryption running on the device,

42

but this cannot be verified as the Zynq-7000 processor is very noisy and is controlling

more than just our implemented design.

Comparable to the traces collected for Native DES are those compiled for Variant

DES_20 and Variant DES_50. The same filter and analysis conducted on Native DES

were performed on each variant. The raw trace, spectrum analysis, and moving target

filter for Variant DES_20 can be found in Figure 4.12, and those for Variant DES_50 are

depicted in Figure 4.13. Similar to those in Native DES, the raw traces for each variant

are noisy and almost indecipherable. The moving average filter applied on the raw traces

for each variant again makes the traces clearer but are still difficult to read. The spectrum

analysis conducted on the traces, on the other hand shows us a similar graph to that

generated in Figure 4.11. We can clearly see a distinct peak near 63MHz for each variant.

Because this is present in each implementation, we believe this represents our encryption

but still cannot verify this with these power traces. In comparing the filtered and analyzed

traces to each other directly, it is difficult to distinguish one circuit from another. This

does not altogether disprove our hypothesis because we believe this is due to either the

influence of the processor creating added noise in the traces or the extremely small

changes in current through the current sense that we are measuring over.

The second set of power traces collected had a sample frequency of 500MHz and

took 100,000 samples. With this sample frequency the traces should have 2 iterations of

encryption present in them. These traces, like the first set, all had noisy raw traces and

needed filters and analysis to make them more legible. Both the moving average filter

and spectrum analysis were applied to Native DES, Variant DES_20 and Variant

43

DES_50 traces at 500MHz. These traces, filters and analyses for native and variant

circuits are shown in Figures 4.14, 4.15, and 4.16.

Figure 4.12 Power: Variant DES_20 – 250MHz.

44

Figure 4.13 Power: Variant DES_50 – 250MHz.

Figure 4.14 Power: Native DES – 500MHz.

45

Figure 4.15 Power: Variant DES_20 – 500MHz.

Figure 4.16 Power: Variant DES_50 – 500MHz.

46

In each of the traces generated from the spectrum analysis, two distinct peaks are

present. If we look at them a bit closer, it seems that they are first and second harmonics.

One large peak is near 63MHz and a smaller peak is located around 188MHz. As in the

previous set of traces, we believe these two peaks are representative of the two rounds of

encryption on the device within the selected period. In addition to this similarity, there

are little to no major differences in the graphs from one circuit to another. For this reason,

it is difficult to declare these are three separate circuits if previous knowledge about the

logic is not readily available. Again, we believe this is due to the Zynq-7000 processor.

Therefore, the bulk of our analysis and conclusions will be based on the electromagnetic

side channel measurements as these are based on emanations throughout the device and

not the power consumed during execution. These samples are examined in the next

section.

4.2.2 The Electromagnetic Side Channel

The electromagnetic traces obtained for this research were collected using a slight

variation of the SUT where the current probe is replaced with the electromagnetic probe.

Before these traces could be taken, an XY scan of the device had to be collected first. The

XY scans produce 20x20 spectral intensity graphs that indicate various hotspots on the

device. Once all four hundred device locations and their spectral intensity are gathered,

traces can be taken on user selected areas of the scan. The spectral intensity scans for

Native DES, Variant DES_20 and Variant DES_50 are shown in Figures 4.17, 4.18, and

4.19 respectively. For each scan, the locations of the hotspots tell us that each design is

executing in approximately the same area of the device. If we compare these scans to the

47

logic cell placement found in the device view for each design (Figures 4.5, 4.6, and 4.7),

it is evident that the hotspots align with the placement of logic blocks on the device.

Figure 4.17 Spectral Intensity – Native DES.

48

Figure 4.18 Spectral Intensity – Variant DES_20.

Figure 4.19 Spectral Intensity – Variant DES_50.

49

For the trace collections and subsequent comparisons, the traces to be collected

were determined based on hotspots in the Native DES spectral intensity scan. Because we

are comparing the variants to the native implementation, it follows that we compare the

same locations while each device is executing. The sites on the scan we decided to collect

are site 84, site 89, and site 104 which all fall within or near the center of the hotspots for

Native DES. The location that produced the clearest traces was site 89 so this will be the

focus of our analysis.

The traces had a sample frequency of 250MHz and 55,000 samples. The raw trace

for Native DES at site 89 can be found in Figure 4.20. This trace has several peaks and

troughs approximately 7.5µs apart, but this width is too small for these to be the triggered

encryption on the device.

Figure 4.20 Emag: Native DES.

In addition to these peaks and troughs is a small section in the middle of the trace

that is about 8µs in length. A zoomed in view of this section of the trace can be seen in

Figure 4.21. At first glance it seems like this may be the encryption executing on the

device, but again the length of the section is too small for the execution time we

50

calculated for Native DES. However, it is possible that this small section represents only

a part of the execution, and the remainder lies within the noise on either side of the

highlighted area. Because the site this trace was gathered from lies right in the heart of

the device’s hotspot, we do believe that the encryption does lie within the trace, but

without several filters and analyses it is difficult to definitively make that assertion.

Figure 4.21 Emag: Native DES – Zoomed.

 To clear up some of the periodic peaks/troughs in the raw trace, a harmonics

filter was applied. The resulting trace is shown in Figure 4.22. In this trace we can see

that those peaks/troughs are no longer visible on the graph. Although cleaned up

considerably, the trace still needs some more maintenance, so spectrum analysis was

applied to the harmonics trace. This new spectrum analysis graph can be found in Figure

4.23.

 In Figure 4.23 we can see that we have a much clearer graph with one very

distinct peak around 100MHz. Because these are not power measurements that may be

impacted by the lingering power fluctuations across the device, we are more confident

that the peak in this graph signifies the DES implementation on the chip. It is important

51

to remember the electromagnetic side channel carries information about emanations in

the device when current flows and is based on changing logic states during device

execution.

 The traces from site 89 collected from Variant DES_20 and Variant DES_50 can

be found in Figure 4.24 and Figure 4.25 respectively. In these figures, the top graph is the

raw trace for site 89, the middle graph is an intermediate filtering stage as in Figure 4.22,

and the bottom graph is spectral analysis performed on the filtered graph.

Figure 4.22 Emag: Native DES – Harmonics.

Figure 4.23 Emag: Native DES – Spectrum.

52

Figure 4.24 Emag: Variant DES_20.

Figure 4.24 Emag: Variant DES_50.

53

 In analyzing these traces and their filtered and analyzed versions, like Native

DES they too have a large peak around 100MHz in the spectrum analysis graph that we

believe is the encryption. Although these traces are very similar to each other in this

respect, unlike the power traces, these traces (both raw and filtered/analyzed) when

compared one to another do have minor differences mainly in the ranges of the signals

and the amplitudes of the peaks present in the graphs. When analyzed by a competent

adversary, we believe these differences would be apparent and would compel one to

believe that each graph is representative of a functionally different circuit.

54

CHAPTER V

CONCLUSIONS

This chapter provides an overview of the results found in the experimentation

process. Section 5.1 provides a summary of our results while Section 5.2 offers an outline

of the future work proposed if this research were to be continued.

5.1 Summary of Findings

In a world where technological advancements rise and fall and at an alarmingly

fast rate, system security and integrity are ever-growing fields. Because of these

advancements, reverse engineering techniques such as side channel analysis are also

advancing and growing into powerful threats to the security community. With dangers

like these on the horizon, protection methods such as moving target defense are becoming

a major research focus. This technique at its most basic level seeks to lessen the attack

surface available to an adversary in a variety of ways. This research, however, utilizes

circuit variance as a method of moving target defense to not only lessen the attack surface

but also to make it as incomprehensible as possible.

In this research, our main goal was to determine if side channel characterizations

of functionally equivalent native and variant circuits would manifest themselves

differently enough for the circuits to be distinguished as three separate circuits. To

55

accomplish this goal, native and variant implementations of DES were ascertained and

programmed onto an FPGA. The power and electromagnetic side channels of each circuit

were then collected and analyzed for any indication that the circuits, although

functionally equivalent, were three distinct implementations.

In concluding our experimentation, we found that while the goal was to collect

both power and electromagnetic side channels, the power side channels collected were

not effective. The power traces we gathered, though informative, did not yield conclusive

results as the traces were too noisy. This noise, we believe, is due to a combination of the

almost imperceptible changes in current flows throughout the device that may not be

detected by the analysis software, and the ARM processor running and creating excess

noise in the traces that unfortunately could not be filtered out. We did find, however, that

our electromagnetic traces did yield results. In these traces we saw that both our raw and

filtered traces there were differences in the native and side channel characterizations.

Although small, these differences could aid in lessening the attack surface for these

circuits as the analysis of three distinct circuits would require no less than three distinct

approaches for reverse engineering. Based on these findings, we can conclude that side

channel characterizations of functionally equivalent circuit variants can be used to

distinguish native from variant. Though more analyses should be completed, and more

traces taken, our preliminary findings allow us to state that the presence of circuit

variance does have an impact on side channel characterizations. We believe that these

findings do support the further analysis on the impact of circuit variation on side channel

representations.

56

5.2 Future Work

There are several areas of this research that have been defined as vectors for

continued study. The first of these is the DES implementation utilized in this research.

This implementation as we stated before could not be verified against other traditional

implementations of DES because of a byte ordering issue within the logic. Future work

on this vector would include rectifying this byte ordering issue and verifying the DES

implementation against traditional DES. Although the functionality of the circuits used in

this research are not what is tested, ensuring the desired circuit executes correctly would

add to the confidence of any results and conclusions reached.

In addition are the power traces collected in this research. Although these traces

did not yield the results expected, it would be beneficial to take more power

measurements. There are two approaches that we see could be taken for these

measurements. 1: The power traces could be taken again, and more filtering and cleanup

could be done on the individual traces to pinpoint areas for comparison; 2. New traces

could be taken on the same chip with the elimination of the excess noise (e.g., similar to a

pinata implementation of the ARM processor). Either of these approaches would aid in

giving concrete results of the power measurements of the executing device.

And lastly, in future work are the electromagnetic traces taken for this research. In

our approach, we only collected traces for 3-4 sites on the chip whereas the chip has 400

sites designated in the spectral intensity scan. Future work in this vector would include

taking traces of considerably more sites on the chip (at least 20%). While this was not a

timely option in our approach, the addition of more traces would strengthen the results

and make the subsequent conclusions more reliable.

57

REFERENCES

[1] “The Equifax Data Breach: What to Do,” Consumer Information, Sep. 08,

2017. https://www.consumer.ftc.gov/blog/2017/09/equifax-data-breach-what-

do (accessed Oct. 31, 2017).

[2] J. Dombrowski, T. R. Andel, and J. T. McDonald, “The Application of

Moving Target Defense to Field Programmable Gate Arrays,” in Proceedings

of the 11th Annual Cyber and Information Security Research Conference,

New York, NY, USA, 2016, p. 20:1-20:4. doi: 10.1145/2897795.2897820.

[3] R. Zhuang, S. A. DeLoach, and X. Ou, “Towards a Theory of Moving Target

Defense,” in Proceedings of the First ACM Workshop on Moving Target

Defense, New York, NY, USA, 2014, pp. 31–40. doi:

10.1145/2663474.2663479.

[4] S. Jajodia, A. K. Ghosh, V. Swarup, C. Wang, and X. S. Wang, Moving

Target Defense: Creating Asymmetric Uncertainty for Cyber Threats.

Springer Science & Business Media, 2011.

[5] M. Carvalho et al., “Command and Control Requirements for Moving-Target

Defense,” IEEE Intell. Syst., vol. 27, no. 3, pp. 79–85, May 2012, doi:

10.1109/MIS.2012.45.

[6] S. Garg, C. Gentry, S. Halevi, M. Raykova, A. Sahai, and B. Waters,

“Candidate Indistinguishability Obfuscation and Functional Encryption for

All Circuits,” SIAM J. Comput., vol. 45, no. 3, pp. 882–929, Jan. 2016, doi:

10.1137/14095772X.

[7] J. T. McDonald, Y. Kim, and D. Koranek, “Deterministic Circuit Variation

for Anti-tamper Applications,” in Proceedings of the Seventh Annual

Workshop on Cyber Security and Information Intelligence Research, New

York, NY, USA, 2011, p. 68:1-68:1. doi: 10.1145/2179298.2179376.

[8] C. S. Collberg and C. Thomborson, “Watermarking, tamper-proofing, and

obfuscation - tools for software protection,” IEEE Trans. Softw. Eng., vol. 28,

no. 8, pp. 735–746, Aug. 2002, doi: 10.1109/TSE.2002.1027797.

[9] T. R. Andel, L. N. Whitehurst, and J. T. McDonald, “Software Security and

Randomization Through Program Partitioning and Circuit Variation,” in

Proceedings of the First ACM Workshop on Moving Target Defense, New

York, NY, USA, 2014, pp. 79–86. doi: 10.1145/2663474.2663484.

58

[10] I. Kuon and J. Rose, “Measuring the Gap Between FPGAs and ASICs,” IEEE

Trans. Comput.-Aided Des. Integr. Circuits Syst., vol. 26, no. 2, pp. 203–215,

Feb. 2007, doi: 10.1109/TCAD.2006.884574.

[11] P. Marchal, “Field-programmable Gate Arrays,” Commun ACM, vol. 42, no.

4, pp. 57–59, Apr. 1999, doi: 10.1145/299157.299594.

[12] L. N. Whitehurst, “Enhanced software security through program

partitioning,” 2015.

[13] C. Bolchini, A. Miele, and M. D. Santambrogio, “TMR and Partial Dynamic

Reconfiguration to mitigate SEU faults in FPGAs,” in 22nd IEEE

International Symposium on Defect and Fault-Tolerance in VLSI Systems

(DFT 2007), Sep. 2007, pp. 87–95. doi: 10.1109/DFT.2007.25.

[14] E. J. McDonald, “Runtime FPGA Partial Reconfiguration,” in 2008 IEEE

Aerospace Conference, Mar. 2008, pp. 1–7. doi:

10.1109/AERO.2008.4526368.

[15] G. Stitt, R. Lysecky, and F. Vahid, “Dynamic Hardware/Software

Partitioning: A First Approach,” in Proceedings of the 40th Annual Design

Automation Conference, New York, NY, USA, 2003, pp. 250–255. doi:

10.1145/775832.775896.

[16] R. Frankland, D. Demirel, J. Budurushi, and M. Volkamer, “Side-channels

and eVoting machine security: Identifying vulnerabilities and defining

requirements,” in 2011 International Workshop on Requirements Engineering

for Electronic Voting Systems, Aug. 2011, pp. 37–46. doi:

10.1109/REVOTE.2011.6045914.

[17] C. Clavier, J.-S. Coron, and N. Dabbous, “Differential Power Analysis in the

Presence of Hardware Countermeasures,” in Cryptographic Hardware and

Embedded Systems — CHES 2000, vol. 1965, Ç. K. Koç and C. Paar, Eds.

Berlin, Heidelberg: Springer Berlin Heidelberg, 2000, pp. 252–263. doi:

10.1007/3-540-44499-8_20.

[18] H. Gamaarachchi and H. Ganegoda, “Power Analysis Based Side Channel

Attack,” ArXiv180100932 Cs, Jan. 2018, Accessed: Mar. 13, 2022. [Online].

Available: http://arxiv.org/abs/1801.00932

[19] P. Kocher, J. Jaffe, and B. Jun, “Differential Power Analysis,” in Advances in

Cryptology — CRYPTO’ 99, Berlin, Heidelberg, 1999, pp. 388–397. doi:

10.1007/3-540-48405-1_25.

[20] D. Agrawal, B. Archambeault, J. R. Rao, and P. Rohatgi, “The EM Side—

Channel(s),” in Cryptographic Hardware and Embedded Systems - CHES

2002, Berlin, Heidelberg, 2003, pp. 29–45. doi: 10.1007/3-540-36400-5_4.

[21] M. E. Smid and D. K. Branstad, “Data Encryption Standard: past and future,”

Proc. IEEE, vol. 76, no. 5, pp. 550–559, May 1988, doi: 10.1109/5.4441.

[22] R. Morris, “The data encryption standard–Retrospective and prospects,”

IEEE Commun. Soc. Mag., vol. 16, no. 6, pp. 11–14, Nov. 1978, doi:

10.1109/MCOM.1978.1089783.

59

[23] “Data encryption standard (DES) | Set 1,” GeeksforGeeks, Aug. 17, 2018.

https://www.geeksforgeeks.org/data-encryption-standard-des-set-1/ (accessed

Feb. 22, 2021).

[24] S. Oukili and S. Bri, “FPGA implementation of Data Encryption Standard

using time variable permutations,” in 2015 27th International Conference on

Microelectronics (ICM), Dec. 2015, pp. 126–129. doi:

10.1109/ICM.2015.7438004.

[25] R. Davis, “The data encryption standard in perspective,” IEEE Commun. Soc.

Mag., vol. 16, no. 6, pp. 5–9, Nov. 1978, doi:

10.1109/MCOM.1978.1089771.

[26] “Fig. 5. Data Encryption Standard (DES) Algorithm.,” ResearchGate.

https://www.researchgate.net/figure/Data-Encryption-Standard-DES-

Algorithm_fig4_321494910 (accessed Feb. 22, 2021).

[27] B. Schneier, “Algorithm Types and Modes,” in Applied Cryptography,

Second Edition, John Wiley & Sons, Ltd, 2015, pp. 189–211. doi:

10.1002/9781119183471.ch9.

[28] M. Madou, B. Anckaert, P. Moseley, S. Debray, B. D. Sutter, and K. D.

Bosschere, “Software Protection Through Dynamic Code Mutation,” in

Information Security Applications, Aug. 2005, pp. 194–206. doi:

10.1007/11604938_15.

[29] M. A. Forbes, “Digital Logic Protection Using Functional Polymorphism and

Topology Hiding,” M.S., University of South Alabama, United States --

Alabama, 2017. Accessed: May 25, 2020. [Online]. Available:

http://search.proquest.com/docview/1891353067/abstract/FFA3A7079EB048

1EPQ/1

[30] J. McDonald T., “Program Encryption Toolkit User Guide | Release 1.0,”

University of South Alabama.

[31] “ZedBoard | Zedboard.” http://zedboard.org/product/zedboard (accessed Mar.

26, 2020).

[32] “Vivado Design Suite.” https://www.xilinx.com/products/design-

tools/vivado.html (accessed Mar. 26, 2020).

[33] “Xilinx Software Development Kit (XSDK).”

https://www.xilinx.com/products/design-tools/embedded-software/sdk.html

(accessed Mar. 26, 2020).

[34] “Slices on an FPGA Chip.” https://www.ni.com/en-

us/support/documentation/supplemental/18/slices-on-an-fpga-chip.html

(accessed Mar. 08, 2022).

[35] “Spectral graphs.” https://jdemetradocumentation.github.io/JDemetra-

documentation/pages/case-studies/spectralgraphs.html (accessed Mar. 13,

2022).

60

APPENDICES

Appendix A: Vivado SDK HelloWorld.c (Encryption)

#include <stdio.h>

#include "platform.h"

#include "xil_printf.h"

#include "xil_types.h"

#include "xparameters.h"

#include "xil_io.h"

#include "sleep.h"

#include "xgpio.h"

static XGpio Trigger;

int main() {

 init_platform();

 int gpio_status;

 uint32_t key_upper = 0xfeedfeed;

 uint32_t key_lower = 0xfeedfeed;

 uint32_t plaintext_upper = 0xdeadbeef;

 uint32_t plaintext_lower = 0xdeadbeef;

xil_printf("Running Native DES: \r\n");

 /*************************

 * GPIO initialization *

 *************************/

 gpio_status = XGpio_Initialize(&Trigger, XPAR_AXI_GPIO_0_DEVICE_ID);

 if (gpio_status != XST_SUCCESS) {

 printf("GPIO Initialization Failed\r\n");

 return XST_FAILURE;

 }

 XGpio_SetDataDirection(&Trigger, 1, 0); //Set Trigger as output

 xil_printf("Plaintext: %x%x\r\n", plaintext_upper, plaintext_lower);

 while(1) //Encryption loop

 {

61

 usleep(10000);

 usleep(10000);

 usleep(10000);

 usleep(10000);

 usleep(10000);

 usleep(10000);

XGpio_DiscreteWrite(&Trigger, 1, 1); //set trigger high

// encrypt

 Xil_Out32(XPAR_DES_IP_0_S00_AXI_BASEADDR, key_upper);

 Xil_Out32(XPAR_DES_IP_0_S00_AXI_BASEADDR + 4, key_lower);

 Xil_Out32(XPAR_DES_IP_0_S00_AXI_BASEADDR + 8, plaintext_upper);

 Xil_Out32(XPAR_DES_IP_0_S00_AXI_BASEADDR + 12, plaintext_lower);

 usleep(100);

uint32_t ciphertext_upper = Xil_In32(XPAR_DES_IP_0_S00_AXI_BASEADDR + 16);

uint32_t ciphertext_lower = Xil_In32(XPAR_DES_IP_0_S00_AXI_BASEADDR + 20);

 xil_printf("Ciphertext: %x%x\r\n", ciphertext_upper, ciphertext_lower);

 }

 XGpio_DiscreteWrite(&Trigger, 1, 0); //trigger low

 cleanup_platform();

 return 0;

}

62

Appendix B: “Dont_Touch” Script

import re

#DES20 files

DES20path = "\sydne\OneDrive\Documents\Research\CircuitsinVivado\DES20\DES1.vhdl"

DES20 = open(DES20path, 'r')

DES20editspath = "\sydne\OneDrive\Documents\Research\CircuitsinVivado\DES20\DES20edits.txt"

DES20edits = open (DES20editspath, 'w')

#DES50 files

DES50path = "\sydne\OneDrive\Documents\Research\CircuitsinVivado\DES50\DES50.vhdl"

DES50 = open(DES50path, 'r')

DES50editspath = "\sydne\OneDrive\Documents\Research\CircuitsinVivado\DES50\DES50edits.txt"

DES50edits = open (DES50editspath, 'w')

#DES20 dont_touch

for line in DES20:

 match = re.search(r'wire[0-9]+' , line)

 string = " attribute dont_touch of " + match.group() + " : signal is \"true\";"

 DES20edits.write("\n")

 DES20edits.write(string)

#DES50 dont_touch

for line in DES50:

 match = re.search(r'wire[0-9]+' , line)

 string = " attribute dont_touch of " + match.group() + " : signal is \"true\";"

 DES50edits.write("\n")

 DES50edits.write(string)

#flush files

DES20edits.flush()

DES50edits.flush()

 #close files

DES20edits.close()

DES50edits.close()

DES20.close()

DES50.close()

63

BIOGRAPHICAL SKETCH

Name of Author: Sydney L. Davis

Graduate and Undergraduate Schools Attended:

University of South Alabama, Mobile, Alabama.

Degrees Awarded:

B.S. in Computer Engineering, May 2020.

M.S. in Computer and Information Sciences, May 2022.

	Enhancing System Security Using Dynamic Hardware
	Recommended Citation

	THE UNIVERSITY OF SOUTH ALABAMA

