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ABSTRACT 

 
 
 

Peterson, Matthew Alan, Ph.D., University of South Alabama, December 2022. Detecting 
Selfish Mining Attacks Against a Blockchain Using Machine Learning. Chair of 
Committee: Todd Andel, Ph.D.  
 

Selfish mining is an attack against a blockchain where miners hide newly 

discovered blocks instead of publishing them to the rest of the network. Selfish mining 

has been a potential issue for blockchains since it was first discovered by Eyal and Sirer. 

It can be used by malicious miners to earn a disproportionate share of the mining rewards 

or in conjunction with other attacks to steal money from network users. Several of these 

attacks were launched in 2018, 2019, and 2020 with the attackers stealing as much as $18 

Million. Developers made several different attempts to fix this issue, but the effectiveness 

of the fixes is currently unknown. Despite the known vulnerability, there is little 

researching into detecting these attacks either historically or in real-time. In this research, 

we build a program to gather data from known selfish mining attacks against the 

Ethereum Classic blockchain. We then use this data to train a machine-learning algorithm 

to discover the important features for detecting selfish mining. 
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CHAPTER 1 

INTRODUCTION 

 

Cybersecurity plays an important role in an increasingly connected world. In this 

modern age of connectedness, technology disrupts previously untouchable industries and 

drives society forward. The financial industry has felt the disruptive influence of 

technology with the introduction of blockchain technology. The first and most popular 

application of blockchain technology is cryptocurrency. Bitcoin was invented in 2008 by 

a person or group of people working under the pseudonym of Satoshi Nakamoto who 

published the original Bitcoin white paper to the metzdowd.com cryptography mailing 

group [1]. Bitcoin adoption started with crypto hobbyists interested in the technology and 

idealists who wanted a form of money outside of government control. Since its humble 

beginnings, Bitcoin has soared in value to possess a market cap greater than the GDP of 

many first-world countries [2], [3]. 

As blockchain adoption increases and the value stored in cryptocurrencies rises, 

attackers are incentivized to target them. There have been several high-profile attacks 

against various cryptocurrencies in the past decade and the first high-profile attack was 

against the MtGox cryptocurrency exchange. MtGox, once the biggest cryptocurrency 

exchange in the world, was attacked in 2011 and then again in 2014 [4]. The attackers 

stole what at the time was $460 Million worth of Bitcoin [5]. While these attacks were 
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not an attack against the blockchain technology itself, they showed the world how much 

value was stored in blockchains and the potential gain for the attackers.  

Many potential blockchain attacks exist, but one of the attacks becoming more 

common is the selfish mining attack which can be coupled with double-spending. 

Cryptocurrencies such as Monacoin, Ethereum Classic, Bitcoin Gold, Bitcoin Satoshi’s 

Vision, Litecoin Cash, Verge, and ZenCash have fallen victim to this attack and have lost 

over $18 million [6]–[8].  

 

1.1 Problem Statement 

The increasing adoption of blockchain technology makes it a larger target for 

criminals and the unique characteristics of blockchains opens them up to attacks not 

present in other systems. Since most blockchains are decentralized, any method that 

allows attackers to control the majority of the hashing power can devastate a blockchain 

by compromising its integrity. Controlling 51% of the hash rate allows the attacker to 

reverse transactions by rewriting the blockchain history or control which transactions are 

allowed onto the blockchain. The lack of a central authority means that successful attacks 

cannot be reversed once the blocks are part of the chain. Through an attack known as 

selfish mining, Eyal and Sirer proved that reversing transactions is possible for attackers 

controlling less than 51% of the blockchain [9].  

Selfish mining works by manipulating the way the Proof of Work (PoW) mining 

protocol works. The protocol states that when new blocks are discovered, they are to be 

released to the rest of the network participants. Miners engaged in selfish mining 

behavior keep the newly discovered blocks hidden instead of releasing them. The end 
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goal of selfish mining is to earn a disproportionate amount of mining rewards by making 

honest miners waste their mining power. Selfish mining can also be combined with other 

attacks to steal money from cryptocurrency exchanges or other network participants.  

As selfish mining attacks become more popular, blockchain users must have a 

way to detect them. Detecting selfish mining poses a difficult and unique problem as 

selfish mining attacks exist in three potential stages. The first stage is when a miner or 

group of miners first launches the attack. The miners will keep their newly discovered 

blocks hidden and only release them when the honest miners find a new block or the 

selfish miners decide the attack is ready. This is the most difficult stage to detect as it is 

impossible to tell if miners are keeping blocks secret or simply have not found a block 

yet. Detecting an attack at this stage is the most proactive solution as the network can 

stop the attack before it takes place. 

The second stage is when the selfish miners launch the attack by releasing their 

blocks on the network. Once the attacker releases their blocks, it will create a temporary 

fork in the network as the miners either accept the selfish miner’s blocks or stay with the 

honest blocks. The miners will choose the selfish block if the chain is longer or, in the 

case where both chains are the same height, accept whichever block they hear about first.  

There is some existing research on detecting attacks at this stage, but it is largely 

untouched. Detecting attacks at this stage is largely reactionary as the attacks have 

already been launched. 

The third stage is detecting attacks historically. Once an attack has succeeded, it is 

preserved in the blockchain data. The problem with the historical data is that it only 

preserves the final blocks, and the orphan blocks (which help signify an attack) are 
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discarded. Unfortunately, there is currently no heuristic to tell when these attacks have 

occurred. Detecting attacks historically can help developers verify the results of security 

patches designed to mitigate this threat or help model selfish mining with historical 

examples. 

Currently, there is no known way to proactively detect these attacks and there is 

limited research on detection after the attack is completed. To successfully defend against 

selfish mining, the network needs to detect the attack before the attacker’s blocks are 

released on the network. By the time the attacker releases their blocks, it is already too 

late. Adding to this difficulty is the fact that accurately detecting all network forks is very 

challenging. Unless a node connects to all the other nodes on the network, it will not be 

able to detect all forks.   

Limited research exists that discusses how to detect selfish mining. The existing 

research centers on how the fork rate can be used to detect an attack after the attacker 

releases the blocks onto the network [10]. The authors of this paper found that they could 

detect an ongoing attack by examining the block height of the forked chain. To date, this 

is the only paper that we know of that looks at how to detect a selfish mining attack. 

While this research is a step in the right direction, the total number of significant factors 

that indicate a selfish mining attack is unknown. Several additional factors such as 

relative revenue rate and timings between successive blocks have been suggested by 

different authors but remain largely unexamined [9], [11]. Research is needed to discover 

the significant factors that indicate a selfish mining attack.   
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1.2 Research Objective 

To fill the current research gaps in selfish mining, our research objective is to find 

the significant factors that identify an attack. We plan on looking not only at the already 

discovered factor of block height but also at other factors such as the ones suggested by 

other authors. Our research centers on analyzing known historical attacks. While there 

may be more value in detecting ongoing and unlaunched attacks, these phases pose a data 

source problem and would require simulation.   

Several authors attempted to prove that specific factors identify selfish mining by 

researching them individually. In our research, we let the data decide what the significant 

factors are gathering data from known attacks and then using machine learning to analyze 

the data. To date, we have not been able to find examples of anyone using machine 

learning to analyze selfish mining attacks. A few authors have discussed using Big Data 

techniques such as map/reduce to search through a blockchain’s transactions but attacks 

stay untouched [12], [13].  

To run the machine learning algorithm, a vast amount of data is needed. 

Generating data by attacking the live blockchain is generally frowned upon and 

monetarily prohibitive. To examine historical attacks, we used the Ethereum Classic 

blockchain. Criminals successfully used a selfish mining attack to steal money on the 

Ethereum Classic (ETC) blockchain in 2019 and then two more times in 2020 [8], [14], 

[15]. These attacks left examples of selfish mining in the blockchain and will allow us to 

examine historical data and verify detection methods.  

The layout of the rest of this paper is as follows: Chapter 2 presents the 

background of the Proof of Work blockchain while Chapter 3 discusses the existing 



6 
 

blockchain research into attacks and machine learning. Chapter 4 goes into more detail on 

our research objective and the factors we chose to research while Chapter 5 details our 

research methodology and data sources. Chapters 6-9 discuss the tests we ran while 

chapters 10-13 discuss our results, limitations, and future work.  
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CHAPTER 2 

BACKGROUND 

 

Blockchains are the result of many different technologies and concepts that were 

combined to create the current system and each piece is important to understand how 

blockchains work. Blockchains, at their core, are blocks of data that are chained together 

by including a reference to the previous block in each new block. This reference is a hash 

of the previous block which prevents someone from replacing a block as it would 

invalidate every block from that point forward. In this chapter, we will review the block 

data structure and how new blocks are created. 

 

2.1 The Blockchain Structure 

Each block in the blockchain has several required pieces of information and is 

created through a process called mining which will be covered in section 2.2. 

Blockchains start with a block known as the genesis block. The genesis block is the only 

block that does not contain a reference to a previous block and all future blocks are built 

on top of this one. Although the information in the following sections applies to Bitcoin, 

most PoW blockchains follow a similar structure with slight variations. The size of a 

Bitcoin block is limited to 1MB and contains a header section and a body that holds the 

transaction data. The header takes up the first 80 bytes of the block and contains the 
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version, previous block hash, Merkel Root, timestamp, difficulty target, and nonce [16]. 

These fields are summarized in Table 1 and Figure 1. 

 
 

Table 1. Block Header Fields. Shows the fields in the block header of the Bitcoin 
blockchain including their size in bytes and a description.  

 

Field Bytes Description 

Version 4 Version of the block. Defines what validation rules to 
apply to the block 

Previous block hash 32 Double SHA256 hash of the previous block’s header 
Merkel root 32 Double SHA256 hash of all the transactions in the 

current block 
Timestamp 4 Unix timestamp of when the miner started hashing the 

header 
Difficulty target 4 Numeric value that the block hash must be equal to or 

less than to be deemed valid 
Nonce 4 Random number used to change the hashed value of 

the block to make it conform to the difficulty target 
 
 
 

 
 
Figure 1. Block header block structure for Bitcoin. The number in brackets is the size in 
bytes. Each individual cell is 1 byte. Hence a field of 4 bytes occupies 4 cells. Fields from 
Version till Nonce form the block header (Total 80 bytes). [17] 
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2.1.1 Header Fields 

The version field in the header indicates what version the blockchain was on 

when the block was added. Since Bitcoin is actively being developed, the set of rules to 

validate the block can change. The version field lets the network participants know what 

set of rules to use to validate the block.  

The previous block hash field is a double SHA256 hash of the previous block’s 

header which links the blocks into a chain. Hashing the header creates a unique number 

that gets embedded in the next block. If someone tries to change the data in the previous 

block, the hash will no longer match, and all the descendant blocks would be invalidated. 

The Merkel Root is a common data structure used in many applications to track 

changes. The Bitcoin Merkel Root creates a bottom-up binary tree of hashes. All the 

transactions in the block are ordered and then hashed together two at a time. Each 

resulting hash pair are then hashed together again until you are left with one hash of all 

the hashes. The Merkel Root is used to verify that the transactions are valid.  

The timestamp is a Unix timestamp of when the miner started creating the block. 

This timestamp can vary between network participants and the only rule is that it must be 

greater than the median time of the last 11 blocks and less than two hours in the future.  

The difficulty target is a variable number that is shared by the network and 

changes every 2016 blocks. The difficulty target defines a number that the hash of the 

block header must be equal to or less than. According to the Bitcoin protocol, blocks are 

produced every 10 minutes. As more miners join the network, blocks get created faster. 

To keep the block rate at one every 10 minutes, the protocol will lower the value of the 

difficulty target, thereby making it harder to produce a block. If miners leave the 
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network, the protocol will increase this number to make it easier. The difficulty target is 

adjusted every 2 weeks (every 2016 blocks).   

The nonce is a number that the miners will increase to create a new hash. When a 

miner hashes the block header and the resulting value is not less than or equal to the 

difficulty target, he must try again. To create a new hash, the miner increments the nonce 

value by one and tries again. The miner continues this process until an appropriate value 

is found. This algorithm is reviewed in section 2.2.2.  

2.1.2 Transactions 

After the header comes the blockchain transaction data. Transactions send money 

from one wallet address to another. Bitcoin uses elliptic curve cryptography to secure 

transactions and a wallet address is the public key of an ECDSA public/private key pair. 

When someone wants to start using Bitcoin, he must first create a new wallet address to 

receive money. Money is sent to the public key address which ensures that only the 

holder of the private key can access the money. 

 

2.2 Proof-of-Work   

The main problem that blockchains solve is achieving consensus in a distributed 

environment. As network participants send money back and forth, it is important that 

everyone agrees on the balance of the accounts and that no one tries to illegally modify 

them. In a network, it is difficult to make sure that all the nodes agree on a specific state 

and this difficulty is best represented by the Byzantine General’s Problem [18].  



11 
 

2.2.1 Byzantine General’s Problem 

The Byzantine General’s Problem is a fictional scenario where multiple generals 

are encamped around a fortress that they wish to attack. If the generals attack the fortress 

at the same time, they will win the battle but will lose if they attack separately. In this 

time before telephones, the generals coordinate their attack by sending messengers to 

confirm the attack time. If General A wishes to attack at 8 AM he will send a message 

with the attack time to General B. After General B reads the message, he will need to 

send a confirmation message back. Maybe, instead of agreeing to attack at 8 AM, 

General B thinks it would be better to wait, so he sends back a message telling General A 

to retreat. The problem is that the messengers might be captured by the enemy or one of 

the other generals might be a traitor and send the wrong response message to confuse the 

attack. What the generals need is a way to achieve consensus about the right time to 

attack in a distributed environment. 

Instead of exchanging messages that tell armies when to attack a fortress, imagine 

a system where the participants exchange messages that spend money. This system needs 

to make sure that everyone agrees on account balances and that no one tries to steal 

someone else’s money. In more succinct terms, the system needs a consensus 

mechanism. Bitcoin solves this problem and achieves consensus through a process called 

Proof-of-Work.   

Several consensus methods exist in modern blockchains including Proof-of-Stake, 

but the most widely used and successful one is Proof-of-Work (PoW). Proof-of-Work 

was incrementally developed and existed many years before Bitcoin was invented. PoW 

started as a way to throttle abuse of unmetered Internet systems such as email. Invented 
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in 1997 by Adam Back, the process was originally called Hashcash but was adopted by 

Satoshi Nakamoto as a way to achieve consensus in Bitcoin [19], [20].  

2.2.2 PoW Algorithm 

If a user on the Bitcoin network wants to purchase a cup of coffee from his local 

coffee shop, he will sign a transaction with his private key that sends $5 from his wallet 

to the wallet controlled by the coffee shop. This transaction is broadcast to the entire 

network and is picked up by special nodes called miners. The miners add the transaction 

to their transaction pool and bundle multiple transactions together and attempt to create a 

new block. Every time the miner hashes the block, he compares the resulting hash to the 

target value. If the hash is not less than or equal to the target, the miner changes the nonce 

value and rehashes the block. Incrementing the nonce value results in a completely 

different block hash. This process is repeated until a valid hash is found or another miner 

publishes a new block. The simplified version of this process is shown in Figure 2. 

 
  



13 
 

  
 
Figure 2. Pseudo code of the Proof-of-Work algorithm. 

 
 
 
This process of constantly rehashing the transactions is computationally 

expensive and can take a long time. On average, this process takes 10 minutes to create a 

new block in Bitcoin but varies for other blockchains. As miners join the network it 

shortens the time to mine blocks or when they leave, it takes longer. The protocol 

automatically adjusts the difficulty target to keep the average block rate at 10 minutes. 

Miners are financially incentivized with a reward for finding a new block and charging 

small fees for each transaction included in the block. Each block includes a special 

transaction known as a coinbase transaction that creates new cryptocurrency and sends it 

to whatever wallet address the miner chooses. 

After the miner finds the new block, he broadcasts it to the rest of the network. 

Each network participant will validate the block information and if the block height is 

Init: 

GetTransactionsFromPool() 

 

HashTransactions: 

 Hash = RunTransactionHash() 

 

IF NewBlockPublished 

 New block has published by the network 

 Accept the new block 

 GOTO Init 

 

IF Hash > TargetHash 

 Hash not in acceptable range 

 Increment nonce value  

 GOTO HashTransactions 

ELSE 

 This miner found a valid block 

 PublishBlock() 

 GOTO Init 
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greater than his last known block, he will add it to his blockchain. Miners who were 

working on finding a block will adopt the new block and start the mining process again 

with new transactions.  

2.2.3 Fork Resolution 

A situation can arise where two miners find a new block at the same time. In this 

case, each node participant will accept the block they hear about first and reject the other. 

A disagreement between the network nodes about the latest block is known as a fork. 

When the network is in a forked state, the miners carry on as if nothing is wrong and 

attempt to build the next block on whichever block is at the head of their blockchain. The 

fork is resolved by whichever miner mines the next block due to the principle of the 

longest chain. The Bitcoin protocol states that in the case of a network fork, a node will 

accept the longest chain it knows about. The longest chain is the one with the most blocks 

or, congruently, the most proof-of-work. A fork is resolved by the miner who creates the 

longest chain by finding the next block. Since this miner’s chain is now the longest, all 

the nodes will switch to his when they hear about it.  

Since a network fork can switch the latest accepted block, merchants generally do 

not trust a payment until two additional blocks have been added to the chain. 

Recalculating blocks becomes exponentially cost-prohibitive since one would need 

enough computing power to recalculate the target block and every block built on top of it 

to create a longer chain.  

This process of hashing transactions and adding them to the block allows Bitcoin 

to be Byzantine Fault Tolerant. Any disagreements in the state of the blockchain are 

resolved by the principle of the longest chain. The chain is safe from alteration since each 
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block contains a hash of the previous block. No miner or group of miners can replace 

blocks by creating a longer chain since PoW makes it computationally infeasible to create 

blocks faster than the rest of the network.  
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CHAPTER 3 

RELATED WORKS 

 

Any system that contains sensitive or costly information will eventually come 

under attack by individuals who wish to exploit them for personal gain. Blockchains are 

no outlier and many different types of attacks have been discovered. In this section, we 

will go over the attack vectors used to launch a selfish mining attack. Following the 

convention of Hasanova, Baek, Shin, Cho, and Kim, we categorize these attack vectors 

into General Risk and Private Forking and Pool Attacks [21].  

 

3.1 General Risk 

 

3.1.1 Double Spending Attacks 

One of the possible attacks against blockchains, and an important piece in the 

51% attack, is a double-spend attack. In a double-spend attack, a malicious user seeks to 

spend the same funds more than once. Whenever a participant in the peer-to-peer network 

wishes to spend money, he sends a transaction to all his connected peers. These peers 

forward this transaction to all their peers until the transaction has been propagated across 

the entire network. Each node on the network receives broadcasted transactions and 

miners will bundle multiple transactions together and mine them into a block that gets put 
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on the blockchain. On average, it takes 10 minutes for a batch of transactions to be mined 

and included on the Bitcoin blockchain. While it is impossible for duplicate transactions 

to be included in these mined blocks, a malicious user can take advantage of the slowness 

of the mining process to double-spend funds. 

While the Bitcoin protocol keeps the average block time at 10 minutes, many 

merchants need to process payments faster. For many service-oriented businesses, 

waiting 10 minutes is an unacceptable amount of time. Researchers defined Bitcoin 

transactions where the merchant does not wait for a block transaction as fast payment 

transactions [22]. In fast payments, the customer queues a transaction in the blockchain 

and then immediately receives the purchased product without waiting for a block 

confirmation. In their paper, Karame, Androulaki, and Capkun examined fast payments 

to see how vulnerable they are to double-spend attacks [22]. They researched how 

successful double-spend attacks were against vendors who had varying numbers of 

connected peers. The test involved a vendor node, an attacker node, and one or two 

helper nodes for the attacker. When the attacker node purchased an item from the vendor, 

he immediately broadcasted a double-spend transaction that routed the money back to 

himself.  The attacker would send this double-spend transaction to his helper nodes to 

propagate the malicious transaction faster than the vendor node could propagate the 

legitimate one. Since the Bitcoin protocol does not allow duplicate transactions, 

whichever transaction got propagated to the majority of the Bitcoin network would be the 

one included on the blockchain. By performing various tests, they were able to determine 

that a double-spend attack with two helper nodes had a high probability of succeeding (> 
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50%). These tests showed that the attack could succeed even when the attacker waited up 

to two seconds to send the malicious transaction.   

Research has been done to come up with ways to prevent double-spend attacks.  

Ruffing, Kate, and Schröder, suggested a solution that involved deposits and smart 

contracts to create what the authors called accountable assertions [23]. Two blockchain 

users would deposit funds into a channel governed by a smart contract. If the paying 

party attempts to double-spend any of the funds, a cryptographic function called an 

accountable assertion would transfer the funds to a beneficiary and penalize the attacker 

by taking away his deposited funds. This design fell apart if the attacker colluded with the 

beneficiary to get his money back and had the additional problem that the person attacked 

is not compensated for his loss [24]. To fix these flaws, additional research came up with 

a way to ensure the attacker was penalized while compensating the victim. The protocol 

proposed in this paper solves these two problems while adding the ability to handle more 

than one transaction with a deposit. A possible limitation of these solutions is the 

required time for creating a deposit on the blockchain and then processing a consumer-to-

vendor transaction.  

Another possible attack vector for double-spending is using selfish mining to 

launch an attack. In selfish mining, a miner, or a group of miners, withholds newly 

discovered blocks from the rest of the network.  These malicious miners try to mine a 

longer chain faster than the rest of the network can. Consensus is achieved in the Bitcoin 

network by accepting the longest chain as the correct chain. If the miners can forge a 

malicious chain that is longer than the honest one, the rest of the network will accept the 

malicious chain as the correct one when it is broadcast to the rest of the network. These 
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malicious miners can launch a double-spend attack by spending money on the honest 

chain while including a transaction in the secret chain that routes the money back to 

themselves [25]. Rosenfeld researched the probability of launching a successful selfish 

mining attack given a miner’s hashing power and the number of block confirmations the 

merchant waits. Rosenfeld also calculated how much money the attacks would end up 

spending to commit an attack by creating a matrix that showed how much money the 

attacker would have to double-spend the make the attack worth his time. The more 

economical the attack is, the more likely it is to be carried out [25]. We cover selfish 

mining in more depth in section 3.2.1.   

3.1.2 51% attack 

PoW blockchains work as intended if no one group controls more than 50% of the 

total computing power on the network. Once someone crosses this threshold, they 

completely control the network and can launch double-spend attacks at will or control 

which transactions are allowed in each block [6]. While it is extremely cost-prohibitive 

for any one person to control 51% of the total hashing power, it is theoretically possible 

for a mining pool to achieve this. While the honest network participants still have a 

chance to mine the next block, the attackers can control the network by choosing to mine 

on their blockchain instead of adopting the longer chain from the honest miners. Since 

they control more than 50% of the network’s hashing power, the attacker’s chain will 

eventually overtake the honest miners which allows them to have total control over which 

transactions are included in the blocks.  
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3.2 Private Forking and Pool Attacks 

 

3.2.1 Selfish Mining  

Selfish mining attacks manipulate the way PoW systems mine blocks onto the 

blockchain. Blocks are added to the global blockchain by computers running the Bitcoin 

client software that use their computing power (referred to as hash-rate) to solve a 

difficult mathematical problem. As discussed in section 2.2.2, a miner creates a new 

block by selecting transactions and hashing them until the result conforms to the target 

value. The miner broadcasts this new block to the rest of the nodes on the network and 

then restarts the process. If the transaction hash is not below the target difficulty, the 

nonce value is incremented and the cycle repeats. Table 2 shows an example of the target 

difficulty, nonce value, and resulting hash [26].  

 
 

Table 2. Example block. 
 

Target difficulty Nonce  Hash 
12973235968799.78 4152620663 000000000000000000142f9df821e08b2713775812efef61bacf440afdc3afca 

 
 
 
If two miners (A and B) find a block at the same time the network can split when 

some nodes adopt block A1 and some adopt block B1. Network participants will always 

adopt the first block they hear about and ignore any others. In Figure 3, miner C hears 

about block B1 first and subsequently adopts it. The network will resolve this split and 

merge back together as soon as the next block is found. If miner A finds block A2 before 

B or C finds a block, then blocks A1 and A2 will become part of the chain, and block B1 
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will be discarded. This works because the blockchain always accepts the longest chain as 

the valid one and discards all others. In Figure 4, both blockchains are valid but since 

miner A’s chain is longer than B’s, all the nodes on the network will adopt A’s chain and 

discard B’s.  

 
 

 

 
Figure 3. Blockchain fork. Miner C accepts block B1 since it was notified about it first. 
This creates two chains of equal length. 
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Figure 4. Blockchain fork resolution. When miner A mines and releases block A2, it 
causes block B1 to be orphaned for miners B and C because chain (A1 + A2) is longer 
than B1. 
 
 
 

In the foundational research paper on selfish mining, Eyal and Sirer detail how a 

miner can earn more than their fair share of mining rewards by keeping newly mined 

blocks hidden instead of sharing them with the rest of the network [9]. This paper 

challenged the thought that a blockchain was secure if honest miners owned at least 50% 

of the total hashing power on the network. To launch a selfish mining attack, a malicious 

node tries to outpace the honest miners by building a private chain. The malicious miner 

will continue to work off this private chain until the rest of the network starts to catch up. 

Once his lead is threatened, the malicious miner reveals his private chain to the rest of the 

network. This causes the rest of the nodes on the network to discard the blocks they 

mined and lets the selfish miner reap all the block rewards. Eyal and Sirer showed that 
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malicious users could launch a selfish mining attack with less than 25% of the network’s 

hashing power [9]. Furthermore, if a mining pool uses this strategy to obtain more than 

their fair share of the mining rewards, other miners will be incentivized to join the 

malicious miner, further increasing their mining power. The authors proposed a 

modification to the Bitcoin protocol that would change the way miners handle conflicts.  

Currently, when a node hears of a chain equal in length to the chain it is currently mining 

on, it discards the incoming chain. Their proposal would change this by having the miner 

randomly choose one of the two equal-length chains to mine on. This modification would 

require the attacker to obtain at least 25% of the hashing power to launch a selfish mining 

attack. The authors noted the difficulty of detecting selfish mining attacks due to 

inaccuracies in orphan block rates. 

Building on the original selfish mining paper, Sapirshtein, Sompolinsky, and 

Zohar developed an algorithm to find optimal selfish mining strategies [27]. Using this 

algorithm to analyze Eyal and Sirer’s proposed fix, they discovered that when a model 

takes propagation delay into account there is always a successful selfish mining strategy. 

If the selfish miner can propagate their block to half of the nodes on the network before 

the honest miner can, then they need as little as 15% of the hash rate to earn more 

rewards than they would from following the protocol. Since the Bitcoin network operates 

as a peer-to-peer network, it can naturally split when two miners broadcast a newly 

discovered block at the same time. This natural division of the hashing power of the 

network increases the probability of a selfish mining attack to the point that a profitable 

selfish mining attack is possible for a miner with any amount of hashing power [27]. 
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Contrary to the established research on selfish mining, Gobel, Keeler, Krzesinski, and 

Taylor published research that suggested that selfish mining, as defined by Eyal and 

Sirer, was not optimal in the presence of network delays [11]. By using a Markov chain 

model, they show that strategies such as selfish mining increases the rate of orphan 

blocks and then run a simulation of the network with active selfish mining.  

 

3.3 Simulation of the Bitcoin Network 

Blockchain research has shown the need to simulate blockchain workings outside 

of the production network. Researchers need a way to create specific network conditions 

quickly and reliably without harming normal operation. We initially wanted to simulate 

selfish mining attacks and reviewed the current literature for a simulator. Although 

several simulation programs exist, most are too complicated or have fallen into disrepair. 

Shadow-Bitcoin was a program that built the Bitcoin client on top of a parallel discrete-

event network simulator known as Shadow [28]. Despite its potential, support for 

Shadow-Bitcoin was dropped in February 2020. Gervais et al. created a simulator to 

examine the security and performance of blockchains but did not open-source the code 

[29]. They modeled the geographical download latencies and miner distributions from 

Verizon and bitnodes.21.co respectively [30]. They compared the results of their 

simulator to the Bitcoin network and found that it produced comparable results. Two 

other simulators were released in 2019 with similar names of BlockSim and SimBlock 

[31], [32]. The creators of BlockSim saw the limitations of Shadow-Bitcoin and wanted 

to create a simulator that had the flexibility to simulate many different blockchain 

protocols and consensus mechanisms. BlockSim was written in Python and the program 
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was validated using block and transaction measurements taken from the Ethereum 

network [31]. The creators of SimBlock also noted the difficulties in properly simulating 

a blockchain network and used Java to create their simulator. To validate the program 

output, the authors compared the simulator to measurements taken from the Bitcoin 

network along with measurements by Gervais et al. [29].  

 

3.4 Bitcoin Network Topology 

Any extension to a simulator will require validation to ensure the generated data 

matches the results from the real network. Several published papers have already made 

significant progress in measuring the way the Bitcoin network performs. Decker and 

Wattenhofer wrote the foundational paper on how the Bitcoin network propagates blocks 

and transactions. The authors performed their measurements by connecting a research 

node to a large sample of network nodes and captured transaction and block messages 

over 70 days [33]. Their research allowed them to measure the time between block 

discoveries and the network fork rate. Another frequently-cited Bitcoin network paper 

examined the network topology and how nodes are connected [34]. Miller et al. 

discovered that rather than behaving as a random graph, the network is filled with super 

influential nodes and 2% of the nodes are responsible for 75% of the total network 

mining power [34]. Attackers that use network information to obtain a broadcast 

advantage have more opportunities to cheat the system.   
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CHAPTER 4 

RESEARCH OBJECTIVE 

 

The object of this research is to discover what the important factors are for 

detecting a selfish mining attack. As mentioned in Chapter 1, there are three different 

phases of a selfish mining attack. The three phases are the initialization of the attack, the 

launching of the attack, and the aftermath of the attack. We wanted to find the significant 

factors for each phase of the attack. 

 

4.1 Feature Selection 

To find the significant factors, we started by reviewing several features that are 

available from the blockchain data or that have been suggested as factors by previous 

authors. Table 3 at the end of this section shows a summarization of the analyzed features 

that are presented below. 

4.1.1 Fork Height 

As shown by Chicarion, Albuquerque, Jesus, and Rocha, the block height of a fork 

can be used to detect a launched selfish mining attack [10]. They based their detection 

algorithm on observations from the data gathered from selfish mining simulations. If a 

blockchain fork had a block height greater than or equal to two, they classified it as an 

attack. Unfortunately, this resulted in some false negatives from forks that only had one 
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block and it cannot detect historical or unlaunched selfish mining attacks. Additionally, 

Decker and Wattenhofer noted the difficulty in detecting all blockchain forks [33]. While 

this feature does have some limitations, the authors showed that it is worthwhile to 

include in research into selfish mining.  

Finding block heights is only possible by accessing a network node. In Bitcoin, 

one must host a network node, or have access to a long-running node and run the 

getchaintips command. Getchaintips returns a list of all the network forks that the node 

has seen since it joined the network. Getchaintips has the inherent limitation that the node 

needs to have been notified about a fork in the network. As noted by Decker and 

Wattenhofer, only nodes on the edges of a fork will know the fork exists. This makes it 

difficult to accurately capture all forks in the network.  

In the Ethereum blockchain, miners are incentivized to include information about 

blockchain forks in a mined block. These orphaned blocks (called “uncles’ in Ethereum) 

grant miners a reward for producing the block even if it is not accepted in the final 

blockchain. While this does make it possible to find information on honest blockchain 

forks, there is no guarantee that a selfish miner will include uncle blocks.   

4.1.2 Fork Rate 

Multiple papers have discussed the importance of the fork rate in the detection of 

selfish mining. The original selfish mining paper by Eyal and Sirer noted that an increase 

in the orphaned blocks (caused by a fork) could indicate selfish mining [9]. Likewise, 

Göbel et al. noted that the fork rate could potentially be used to detect selfish mining 

[11]. Decker and Wattenhofer did extensive research into the way blockchains 

communicate and observed that detecting all forks is easier said than done [33]. Forks 
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create a natural rift in the network where only the nodes on the edge of this rift know 

about the fork. To detect all network forks, one would need to connect to all the nodes on 

the network. Decker and Wattenhofer also observed that the fork rate would increase as 

the network grew and the size of the blocks increased. Most research that references the 

fork rate uses Decker and Wattenhofer’s 1.69% fork rate, but this has a potential 

problem. The problem lies in the fact that the fork rate is an average over 70 days of data. 

Some days had higher spikes in the number of forks and some days had hardly any. A 

high number of forks in a single day is expected and not necessarily an indication that 

selfish mining is taking place. The average fork rate will not be properly calculated until 

well after the attack has taken place.  

Implementation of this feature shares the same difficulty as the fork height. It is 

difficult to measure this feature and no known historical records exist.   

4.1.3 Timings between blocks 

Block announcements in the Bitcoin blockchain are spread using a gossip 

protocol in which each node tells its neighbors about the new block it just heard about 

[35]. The Bitcoin consensus algorithm keeps block production at the rate of one block 

every 10 minutes which it does by adjusting the mining difficulty every 2016 blocks. The 

discovery of new blocks is Poisson distributed which means that the time it takes to 

discover a new block is independent of when the last block was found. A miner is just as 

likely to discover a new block at time=0 as they are at time=20 minutes [33]. Although 

the act of finding a new block is an independent variable, the average time it takes is kept 

at 10 minutes per block. This exponential distribution makes it difficult to tell if two 

blocks released back-to-back were selfishly mined or just part of the normal mining 
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process. This problem is complicated by the fact that the block timestamp is not always 

correct since the nodes do not synchronize their clocks. A block with a height of h + 1 

can have an earlier timestamp than the earlier block with a height of h.  

Many PoW blockchains implement slightly different difficulty adjustments but 

the underlying principle stays the same. The Ethereum blockchain mines a block every 13 

seconds on average and adjusts the difficulty every block instead of waiting for a set 

number of blocks.  

Blockchain timestamps are stored in a UNIX format, and we measured this 

feature by taking the timestamp of a block and subtracting the previous timestamp. While 

no previous literature has suggested that the block time could indicate an attack, we 

decided to capture it and how much of a role it plays. We hypothesize that selfish mining 

could briefly shift the Poisson distribution due to the extra hashing power held by the 

attacker.  

4.1.4 Miner Revenue-per-Hour 

As stated in Chapter 2, miners earn cryptocurrency for finding a new block and 

including transactions in a block. As miners conduct mining operations, they can 

calculate how much money they expect to earn over a given period. Göbel et al. 

calculated the revenue-per-hour as (block rewards/percentage of the network hashing 

power). As selfish mining increases and the attackers earn more than their fair share of 

the block rewards, the honest nodes’ revenue-per-hour will drop. As implied by the name, 

using the revenue per hour is a slow detection process because it works on the hourly 

average. There is an added difficulty to this since the network hashing power is 

calculated from the current difficulty [36], [37]. The total, real network mining power can 
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fluctuate but the difficulty itself is only adjusted once every two weeks. This makes it 

difficult to know how much mining power there is on a network at any given point.  

Although it is possible to measure this feature, we chose not to include this 

feature as the detection interval of one hour was outside of the time frame we wanted to 

examine.  

4.1.5 Transaction Count/Block Size 

To the best of our knowledge, the transaction count has not been studied by 

anyone as it relates to selfish mining. Decker and Wattenhofer measured the effects of 

block size on propagation speed and noticed a strong correlation between the two [33]. 

Smaller blocks propagate through the network faster than larger ones. The selfish miner’s 

goal is to propagate their blocks as fast as they can to ensure that most of the nodes build 

on top of theirs. Honest nodes, on the other hand, want to include as many transactions as 

possible to gain more money from transaction fees. This could result in a large disparity 

between the transaction counts in honestly mined blocks and the selfishly mined blocks.  

An added difficulty for selfish miners is that transactions are broadcast to all 

nodes and stored in the transaction pool but would be based on the honest miner’s 

blockchain. Unless the selfish miners and honest miners chose to include the same 

transactions, selfish miners could spend too much time trying to find valid transactions 

that do not depend on previous transactions that were included in the honest miner’s 

chain and not the selfish one.  

4.1.6 Receiving Wallet Address/Coinbase Wallet Address 

A launched selfish mining attack could double-spend cryptocurrency if the miners 

so choose. When the attackers double-spend money, they will send it back to a wallet 
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address that they control. While it is best practice to create a new wallet address for every 

new transaction, it is not required. A selfish miner could continue to selfishly mine and 

send transactions to the same wallet address. Reusing a wallet address is not unique to 

selfish mining but it could help identify an attack when combined with other factors.  

The coinbase transaction sends the reward for mining a new block to the miner-

specified wallet address. This is typically the address that identifies a miner or mining 

pool. Regardless of if the attackers double-spend money, they want to receive the 

financial reward for mining a new block. Just like in the other transactions, the miner can 

supply a new wallet address for every new coinbase transaction. However, in some 

observed selfish mining attacks, the attacker repeatedly sent the coinbase transaction to 

the same wallet address [38]. Reuse of the coinbase wallet address could help identify 

selfish mining when combined with other factors. 

The difficulty in implementing these features is that they could lead to an 

artificially high detection rate due to our selfish mining algorithm thinking that a specific 

address always indicates an attack. While this may be true, it does not lead to the 

discovery of new attacks. A possible way to implement this feature would be to keep 

track of all known addresses and just flag an address as new or previously known. As this 

would require a database of all previously used addresses, we decided not to implement 

this feature.  

4.1.7 Current Difficulty 

An increasing mining difficulty means that more miners are working to solve the 

PoW algorithm in hope of earning the block rewards. If the price of Bitcoin falls, it 

becomes financially unfeasible for some miners to continue operating. This results in 
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some miners going offline leaving their computing power dormant. This change in 

mining power will result in a drop in the mining difficulty and this lower mining 

difficulty represents an opportunity for selfish miners to use their current mining power 

more effectively or buy up the dormant mining power. The correlation between the 

mining difficulty and selfish mining is currently unresearched and there may be ranges of 

mining difficulties that present better opportunities for selfish miners.  

4.1.8 Difficulty Delta 

A late addition to our feature set was the difficulty delta which tracks the changes 

in difficulty between blocks. A positive number means that the difficulty increased 

between blocks while a negative number means that the difficulty decreased. We 

hypothesized that selfish mining would result in an increase in difficulty due to more 

hash power entering the system.  

4.1.9 Hash Price 

Blockchains have given rise to several new businesses, one of which is the rental 

of hash power. When it first started, mining Bitcoin was as simple as downloading the 

client software and running it on a desktop computer. The total mining power of the 

network was low enough that consumer CPUs could mine competitively. As the network 

grew, mining companies sprung up whose sole purpose was to mine Bitcoin. They 

developed application-specific integrated circuits (ASIC) designed specifically to run the 

Bitcoin hashing algorithm. The hash power arms race led to miners banding together into 

pools that share the new block rewards according to how much hashing power the 

individual contributed. Furthermore, businesses sprang up that allow people to sell their 

hashing power instead of using themselves which allows anyone to buy hashing power 
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online without the overhead of purchasing hardware. The company NiceHash is one such 

online retailer of hashing power [39]. This online marketplace also lowers the entry cost 

for attackers who wish to launch a selfish mining attack. NiceHash provides pricing 

history for most of the popular mining algorithms beginning in July of 2019 and attackers 

may have used NiceHash to purchase hashing power. A spike in the price of a mining 

algorithm may indicate an attack.   

4.1.10 Hash Price Delta 

Another late addition to our feature set was the hash price delta. Like the 

difficulty delta, it captured the changed in the hash price as opposed to the actual price. 

We hypothesized that a malicious miner could launch an attack using rented hash power 

and so the hash price would increase when an attack was launched.  
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Table 3. Feature selection summary. 
 

Feature Significance 

Fork height The difference in block height between chains in a fork 
may indicate an attack 

Fork rate A higher rate of forks may indicate selfish mining 

Timings between blocks Blocks mined by selfish miners may be closer together 
than the normal blocks 

Miner revenue per hour A decrease in a miner’s revenue per hour may indicate 
an attack 

Transaction count / Block 
size 

The number of transactions included in a block/size of 
the block may indicate an attack. Smaller blocks 
propagate more quickly so they are more likely to be 
selfish 

Receiving address / 
Coinbase address 

The receiving wallet address of the transactions in the 
block may indicate an attack 

Current difficulty The current difficulty may reveal optimal times to 
engage in selfish mining 

Difficulty delta A change in the difficulty may suggest that a group of 
miners started mining selfishly 

Hash price A higher hash price may indicate an attack due to the 
attackers renting hashing power 

Hash price delta Spikes in the hash price could mean the attacker rented a 
large amount of hashing power 

 
 
 

4.2 Research Objectives 

This research consisted of two major phases. The first phase was the analysis and 

selection of factors and the gathering of data. We evaluated several data sources before 

settling on the GetBlock API.  

For the second phase, we worked on choosing the most appropriate machine-

learning algorithm for our problem. After the selection of an algorithm, we fed the newly 

gathered data into it to find the significant factors. We then verified the classifier against 

test data that was benign or selfish. At this point, we will identify which factors as the 

most important for identifying an attack.  



35 
 

 

 

CHAPTER 5 

METHODOLOGY 

 

As we were unsure what factors would prove significant to detecting a selfish 

mining attack, we gathered data from known attacks and fed it into a machine learning 

algorithm and let it choose which factors were significant.  

We briefly looked at simulating selfish mining attacks to generate data on real-

time attacks [40]. We modified the SimBlock blockchain simulator by adding the ability 

to model selfish mining attacks. SimBlock is written in Java and is easily extensible due 

to its open-source nature [32]. Ultimately, using a simulator is not as accurate as using 

real-world blockchain data, and since we did not have data to verify the simulated attack 

against, we chose not to go this route.  

In the following sections, we will discuss our methodology which contains the 

data selection process, the transformation of that data into a format usable by our 

machine learning algorithm, and our selection of a machine learning algorithm.  

 

5.1 Data Source Selection 

Gathering selfish mining data is a difficult proposition as there are a limited 

number of known attacks. Most attacks are poorly documented without any concrete 

indication of which blocks belong to the attacker and which blocks are benign. For our 
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purposes, we came up with four criteria for selecting blockchain data and then examined 

five known selfish mining attacks. We evaluated each cryptocurrency with the following 

criteria: 

1. The cryptocurrency must use a PoW algorithm. Our research concentrates on 

PoW and other mining algorithms may have different significant factors. 

2. Well-documented attacks. We need a verified source of known selfish blocks 

to train our machine-learning algorithm. We do not want to train it with 

incorrectly labeled blocks.  

3. Public API for gathering block data. We need a way to download the data and 

transform it for use in our machine-learning algorithm.  

4. Hash price history on NiceHash for the same time frame as the attack. 

NiceHash started publishing hash price history in July 2019. The blockchain 

needs to contain data from an attack that happened after July 2019. 

The first blockchain we examined was Bitcoin Gold. Bitcoin Gold (BTG) was 

attacked from 05/16/2018-05/19/2018 at block heights 528651-529048 [41]. The attacker 

blocks were not contiguous but were mixed with ranges of benign blocks. In total, the 

attacker mined roughly 114 blocks that were included in the final blockchain.  

It appears that the attacker mined blocks until the difficulty rose significantly and 

then released the selfish chain [42]. As a result of the attack, the difficulty would rise for 

the honest miners who would then have to spend more CPU cycles mining harder blocks. 

Since the BTG difficulty adjustment happens every 30 blocks, the attacker was able to 

attack again as soon as the difficulty fell to an acceptable range [43].  
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BTG looked like a good candidate for harvesting data as it is a PoW blockchain, 

has a well-documented attack, and has a public API for gathering data. Unfortunately, the 

documented attack happened a year before NiceHash started publishing the price history 

and we decided not to use this data. To further limit the usability of the BTG data, the 

developers changed their PoW algorithm two months later in July 2019 to reduce the risk 

of attack [44].  

The second PoW cryptocurrency we examined was Verge. Instead of using a 

single PoW algorithm, Verge uses five different algorithms to mine blocks. Attackers 

replaced around 12,000 blocks during an attack in 2018 and another 560,000 during an 

attack in 2021 [45], [46]. This attack was unique because it only targeted a single PoW 

algorithm out of the five that Verge uses. Verge round-robins the PoW algorithm and no 

two consecutive blocks are allowed to have identical PoW algorithms. The attackers 

controlled a large amount of Scrypt hashing power and exploited a timestamp bug to fool 

the network into thinking that attack blocks were mined in the past. By shifting the 

timestamp on newly mined blocks, the attacker would make the network think these 

blocks were mined in the past and that the next block was allowed to use the Scrypt PoW 

algorithm multiple times in a row [45]. Although hash price information is available for 

the 2021 attack, the unique nature of this attack made it very specific to the Verge 

cryptocurrency and not generalizable to other blockchains. Ultimately, we decided not to 

use this data.  

 ZenCash (now called Horizon) is a privacy-focused cryptocurrency and was 

attacked in June 2018 with the attacker stealing more than $500,000 [47]. This attack has 
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very poor documentation and does not meet our requirements, so we did not consider this 

data for use in our research.  

The fourth cryptocurrency we examined was Bitcoin Satoshi’s Vision (BSV). 

BSV is a fork of Bitcoin Cash which, in turn, was a fork of Bitcoin. BSV was attacked in 

August of 2021 with the attackers reversing at least 100 blocks [48]. While BSV has the 

desirable characteristics of being the same PoW algorithm as Bitcoin and having an 

attack that takes place in the same timeframe as our hash price data, it is poorly 

documented. To accurately train our machine learning algorithm, we need classified data 

as selfish and benign from the same blockchain. Since we could not find any authoritative 

sources that categorized the blocks, we ultimately decided not to use BSV.   

The last cryptocurrency we examined is Ethereum Classic which is a fork of the 

Ethereum blockchain. ETC split from Ethereum in 2016 due to a disagreement about how 

to handle the fallout of a hack that stole funds from a smart contract that was set up to 

fund the development of Ethereum. ETC uses a variant of the Dagger-Hashimoto PoW 

algorithm and was the victim of a selfish mining attack once in 2019 and twice in 2020 

[8], [14], [15]. The 2019 attack saw 928 selfishly mined blocks added to the blockchain 

with the 2020 attacks adding another 3,615 in the first and 4,236 in the second. Due to a 

bug in their software, the company Bitquery was able to capture the contents of the ETC 

blockchain before and after the attack. Normally the chain reorganization would have 

deleted the benign blocks, but the bug allowed them to preserve the original contents. 

This allowed them to positively identify which blocks were the attacker blocks and which 

ones were benign. ETC satisfies all our requirements for selecting blockchain data to 

train our machine learning.  
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1. ETC is a PoW blockchain that used the Dagger-Hashimoto algorithm at the 

time of the attacks.  

2. ETC has a well-documented attack and even preserved the blocks that the 

attack orphaned. 

3. ETC has several public APIs for gathering block data. 

4. The 2020 attacks occurred during a period that we have the hash price history 

for. 

 

5.2 Data Gathering 

After selecting a blockchain, the next step was to gather the selfish and benign 

blocks to use in training and validating our machine learning algorithm. Blockchains 

store block data in binary format and are often quite large and prohibitive to download. 

The ETC blockchain that we selected for our analysis is over 14GB and it required 

custom software to search for blocks. To make blockchain analysis easier, developers 

host blockchain explorers that allow anyone with a web browser to access blockchain 

data. The ETC block explorer allowed us to spot-check blocks for initial analysis, but we 

still required a way to download blocks and format them for use in machine learning.  

We evaluated downloading the entire ETC blockchain or using a public API 

service to download individual blocks. We ended up finding a company called GetBlock 

that provides a public API that allows users to access nodes connected to various 

blockchains [49]. We set up an account with GetBlock and obtained an API key which 

allowed us to make API calls to download individual ETC blocks without needing to 

download the entire blockchain.  
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To download this data, we wrote a program called Block Scraper to download 

blocks and transform them into a JSON-formatted data file. The program is written in C# 

and allows the user to select a blockchain and define which blocks to download by 

inputting the block heights. Block Scraper has an internal list of the block heights that 

were selfishly mined and automatically classifies the blocks as selfish or benign. A 

screenshot of the program is shown in Figure 5 and the program is available for 

download on our GitHub page [50].   

 
 

 
 
Figure 5. Screenshot of the block scraper program. The user defines block heights to 
download which are automatically labeled via the internal list of selfish block ranges. 
Output is a JSON file.  

 
 
 
One piece of data that is unavailable from GetBlock is the hash power price 

history. As previously mentioned, the company NiceHash sells hash power for many 

different mining algorithms. While NiceHash has been in operation since 2014, it only 
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started publishing price history in 2019 and hosts a public API that allows a user to 

download the price history for a selected mining algorithm [51]. The hash price data is a 

JSON file that has price measurements every 15 minutes in the format of timestamp 

(Unix formatted), speed (terahashes per second), and price (Satoshi’s per hash per 

second). After we download each block, we match the timestamp of the block to the 

closest hash price timestamp and use that value to populate the hash price at the time the 

block was mined. Figures 6 and 7 show sample data from these data sources. 

 
 

 
 
Figure 6. Example hash price data from NiceHash. Each JSON array represents a 15-
minute reading of the hash price. The three values in order are, the UNIX timestamp, 
hash speed, and cost in Satoshi’s per hash, per second. 
 
 

[ 

   1562913900, 

   168674245389.6009, 

   0.000159474398433901 

], 

[ 

   1562914800, 

   175022500689.58502, 

   0.00015961565659483 

], 
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Figure 7. Sample GetBlock data. In some instances, values were transformed from 
hexadecimal before being output to JSON. Hash price was added in from NiceHash data. 
 
 
 

After creating our block scraper, we downloaded selfish and benign blocks from 

the three different ETC attacks. We named our datasets ETC_2019_Attack.json, 

ETC_2020_A_Attack.json, and ETC_2020_B_Attack.json. The contents of these datasets 

are summarized in Table 4. We started by gathering blocks from a large time frame 

around the attacks. These initial datasets were unbalanced and contained more benign 

rows than selfish rows. We then created three additional, balanced datasets to train and 

test our model. 

 Our first dataset is from the 2019 attack for which we downloaded blocks 

7247400-7261800 for a total of 14,401 blocks of which 920 were selfish and 13,481 were 

{ 

   "isSelfish": 1, 

   "height": 10939858, 

   "size": 542, 

   "timeDelta": 13, 

   "target": "66303180309088", 

   "txCount": 0, 

   "difficulty": "66303180309088", 

   "difficultyDelta": "0", 

   "hashPrice": "0.00042832392583834900", 

   "hashPriceDelta": "0.00000000000000000000" 

}, 

{ 

   "isSelfish": 0, 

   "height": 10939859, 

   "size": 542, 

   "timeDelta": 13, 

   "target": "66303180309088", 

   "txCount": 0, 

   "difficulty": "66303180309088", 

   "difficultyDelta": "0", 

   "hashPrice": "0.00042832392583834900", 

   "hashPriceDelta": "0.00000000000000000000" 

}, 
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benign. We sampled the 2019 dataset to create a balanced dataset that contained 920 

selfish rows and 920 benign rows.  

For the first 2020 attack, we gathered blocks 10901000-10908682 for a total of 

7,683 blocks of which 3,615 were selfish and 4,069 were benign. When then sampled this 

data to create a balanced dataset of 3,615 selfish rows and 3,615 benign rows for a total 

of 7,230 rows.  

Our last dataset was the second 2020 attack which contained 4 rows of which 23 

were selfish and 12 were benign. As we did with the others, we sampled this data to 

create a balanced dataset of 23 selfish and 12 benign for a total of 12 blocks.  

 
 
Table 4. Summary of block ranges downloaded for each dataset for use in machine 
learning.  
 

Label Block ranges Selfish blocks Benign blocks Total 
blocks 

2019 Attack 7247400-7261800 920 13,481 14,401 
2019 
Balanced 

Sampled subset of 
2019 

920 920 1,840 

2020 Attack A 10901000-10908682 3,615 4,069 7,683 
2020 A 
Balanced 

Sampled subset of 
2020A 

3,615 3,615 7,230 

2020 Attack B 10933000-10943000 4,236 5,765 10,001 
2020 B 
Balanced 

Sampled subset of 
2020B 

4,236 4,236 8,472 

 
 
 

5.3 Data Figures 

Figures 8-16 show the shape of the data we gathered from each period. Due to 

formatting issues, we keep the blocks in order by block height but display the data using 

the index of the block in the list. Since we sampled the block in the attack period instead 
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of taking all the contiguous blocks, it was causing display issues in the graphs. Each 

figure shows a feature we identified in Chapter 4 plotted to the x-axis which is the block 

index and the red marks on the line identify the selfish blocks.  

 
 

5.3.1 2019 Data Figures 

 
 

 
 
Figure 8. 2019 attack time deltas. This graph shows the time difference in seconds 
between blocks during the 2019 attack. Selfishly-mined blocks are shown in red. Block 
heights are non-contiguous but deltas are calculated off the previous contiguous block. 
 
 
 

 
 
Figure 9. 2019 attack block size. Block size is measured in bytes and red marks indicate 
an attack block.   
  



45 
 

 

 
Figure 10. 2019 attack difficulty. Value reduced to decimal for readability. Significant 
spikes and dips show where the block sampling took place and do not show a sudden dip 
in difficulty. Red marks indicate attack blocks. 
 
 
 

5.3.2 2020A Data Figures 

 
 

 
 
Figure 11. 2020A time delta. This graph shows the time difference in seconds between 
blocks during the 2020A attack. Selfishly mined blocks are shown in red. Block heights 
are non-contiguous but deltas are calculated off the previous contiguous block. 
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Figure 12. 2020A block size. Block size is measured in bytes and red marks indicate an 
attack block. 
 
 
 

 
 
Figure 13. 2020A difficulty. Difficulty reduced to decimal for readability and red marks 
indicate attack blocks.  
 

  



47 
 

5.3.3 2020B Data Figures 

 
 

 
 
Figure 14. 2020B time delta. Time deltas between blocks are shown in seconds. Red 
marks indicate an attack block.  
 
 
 

 
 
Figure 15. 2020B block size. Block sizes are shown in bytes and red marks indicate an 
attack block.  
 
  



48 
 

 
 
Figure 16. 2020B difficulty. Difficulty reduced to decimal for readability and red marks 
indicate attack blocks.  
 
 
 

5.4 Machine Learning 

The problem of finding selfish mining attacks is a classic classification problem 

and as we are unsure which feature will prove significant, we selected a Random Forest 

machine learning algorithm. We used Anaconda version 2.3.0 to download and install the 

RandomForestClassifier package from scikit learn version 1.0.2 [52]. We used Spyder 

version 5.2.2 to code our machine learning classifier and the default setting of 100 

estimators for training our model. We made predictions using the test data and then 

outputted the accuracy, recall, and precision metrics. The following paragraphs detail the 

metrics and they are summarized in Table 5.  
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Table 5. Summary of machine learning metrics. 
 

Metric Description 

Accuracy The ability of the classifier to correctly label the block as selfish or 
benign 

Precision How accurate a selfish prediction is 
Recall The ability of the classifier to find all the selfish blocks  
F1 Score How accurate the classifier is at finding selfish blocks and correctly 

labeling selfish blocks 
 
 
 

The accuracy metric is simply the number of correct predictions made by the 

classifier divided by the total number of predictions. This gives a measure of how 

accurate the classifier is but requires a balanced test dataset to give accurate results. An 

unbalanced dataset may correctly classify all the benign samples but miss all the selfish 

and still have an 80% accuracy rating.  

The precision metric assigns a score to the proportion of positive identifications 

that were correct. A precision score of 0.80 would mean that 80% of the blocks that the 

classifier predicted as selfish were selfish.  

The recall metric assigns a score to the proportion of true positives that were 

accurately identified. A recall score of 0.75 means that the classifier found 75% of the 

selfish blocks and missed 25%.  

The F1 score combines precision and recall into a single score. This score 

measures both how many of the selfish blocks the classifier found and how accurate a 

selfish prediction was.  

We measured the importance of features by using the Mean Decrease in Impurity 

(MDI), also known as the Gini importance. The MDI calculates feature importance by 

how many times this feature is used in a split in the decision tree. The higher the MDI 
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score for a feature, the more that feature is used to classify a sample across all the 

decision trees in the random forest [53]. The black bars on the MDI graphs are error bars 

that represent the feature’s inner-tree variability [54].   
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CHAPTER 6  

TRAINING APPROACHES AND RESULTS 

 

We split our balanced datasets into a 70/30 division of training and test data. Our 

initial feature set in each dataset was the time delta between blocks, block size, current 

difficulty, and hash price for the datasets where this feature was available.  

 

6.1 2019 Training and Prediction 

We started with training on the 2019 training data and then made predictions on the 2019 

test data. The three features used were block size, time delta, and difficulty. Hash price 

was not used as it was unavailable for the 2019 dataset. The results showed our classifier 

had an accuracy of 85.6% with the block size being the most important factor in detecting 

selfish mining attacks. The precision and recall for both benign and selfish data we about 

the same at roughly 85%. Figure 17 shows the feature importance and Tables 6 and 7 

show the classifier metrics. 
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Figure 17. 2019 feature importance measured by mean decrease in impurity. 
 
 
 
Table 6. 2019 classifier accuracy, precision, and recall. 
 

Accuracy Precision Recall 

0.856 0.852 0.878 
 
 
 

Table 7. 2019 classifier metrics by block classification. 
 

Label Precision Recall F1 

Benign 0.86 0.83 0.85 
Selfish 0.85 0.88 0.87 
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6.2 2020A and 2020B Training and Prediction 

We repeated this training on the 2020A and 2020B datasets but included the hash 

price as it was available for these two datasets. Our features included the block size, 

difficulty, hash price, and time delta. For each dataset, we split it into 70% training data 

and 30% test data.  

The results were very good, and the accuracy of each prediction hovered around 

the 99% range. In the 2020A dataset, the hash price was chosen as the most important 

factor followed by the difficulty and in the 2020B dataset, the difficulty was chosen as 

the most important factor followed by the hash price. Both results were different from the 

block size favored by the 2019 dataset. Figure 18 shows the 2020A feature importance by 

MDI score and Figure 19 shows the 2020B feature importance while Tables 8-11 show 

the classifier metrics. The precision and recall for both these datasets sat close to 100% 

which was suspicious. We discuss this further in section 6.5.  
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Figure 18. 2020A feature importance measured by mean decrease in impurity. 
 
 
 
Table 8. 2020A classifier accuracy, precision, and recall. 
 

Accuracy Precision Recall 

0.997 1.0 0.995 
 
 
 

Table 9. 2020A classifier metrics by block classification. 
 

Label Precision Recall F1 

Benign 1.0 1.0 1.0 
Selfish 1.0 1.0 1.0 
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Figure 19. 2020B feature importance measured by mean decrease in impurity. 
 
 
 
Table 10. 2020B classifier accuracy, precision, and recall. 
 

Accuracy Precision Recall 

0.999 1.0 0.999 
 
 
 

Table 11. 2020B classifier metrics by block classification. 
 

Label Precision Recall F1 

Benign 1.0 1.0 1.0 
Selfish 1.0 1.0 1.0 
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6.3 2019 Training and 2020A and 2020B Predictions  

Next, we trained the classifier on the 2019 attack and used it to predict the 2020A 

and 2020B attacks. Although the 2020A and 2020B attacks contained the hash price, we 

did not include it since we trained the classifier with the 2019 dataset which did not have 

it. We used the block size, time delta, and difficulty in our training. Unfortunately, we did 

not achieve the results we were looking for as the accuracy hovered around 50% for 

predicting both datasets. The block size was once again the most important factor, but the 

prediction was no more accurate than a coin flip. The MDI chart for the 2020A prediction 

and the 2020B prediction is shown in Figure 20. Tables 12 and 13 show the classifier 

metrics for the 2020A prediction while Tables 14 and 15 show the metrics for 2020B. 
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Figure 20. 2020A and 2020B feature importance measured by MDI for original training 
data. The classifier was trained on the 2019 dataset and the MDI chart was the same for 
the 2020A prediction and 2020B prediction. 
 
 
 
Table 12. 2020A classifier accuracy, precision, and recall for original training data. 
 

Accuracy Precision Recall 

0.537 0.564 0.330 
 
 
 

Table 13. 2020A classifier metrics by block classification for original training data. 
 

Label Precision Recall F1 

Benign 0.53 0.74 0.62 
Selfish 0.56 0.33 0.42 
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Table 14. 2020B classifier accuracy, precision, and recall for original training data. 
 

Accuracy Precision Recall 

0.527 0.542 0.359 
 
 
 

Table 15. 2020B classifier metrics by block classification for original training data. 
 

Label Precision Recall F1 

Benign 0.52 0.70 0.60 
Selfish 0.54 0.36 0.43 
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6.4 2020A Training, 2020B Prediction 

We wanted to see if the hash price was a significant factor for predicting an 

attack, so we trained the classifier on the 2020A attack and used it to predict the 2020B 

attack. We included the hash price, difficulty, block size, and time delta. Although the 

hash price was chosen as the most significant factory, the accuracy ended up being less 

than 50% so it was immediately apparent that we needed to improve the way we 

formatted the data. Figure 21 shows the MDI score for the features while Tables 16 and 

17 show the classifier metrics.  

 
 

 
 
Figure 21. 2020B feature importance measured by MDI for original training data. The 
classifier was trained on the 2020A dataset and predicted the 2020B. 
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Table 16. 2020B classifier accuracy, precision, and recall for original training data. 
Classifier trained on 2020A and predicted 2020B. 
 

Accuracy Precision Recall 

0.396 0.359 0.266 
 
 
 

Table 17. 2020B classifier metrics by block classification for original training data. 
Classifier trained on 2020A and predicted 2020B. 

 

Label Precision Recall F1 

Benign 0.42 0.53 0.47 
Selfish 0.36 0.27 0.31 

 
 
 

6.5 Discussion 

It was apparent that we had a fundamental flaw in our datasets as 50% accuracy 

was less than desirable. We discovered three things from our initial training.  

1. Visual inspection of the data indicated that the hash price showed promise as a 

significant factor but was not providing accurate results 

2. The classifier favored the block size, but block size alone was not sufficient to 

predict an attack 

3. The difficulty was being used incorrectly 

One of the problems we discovered is that our difficulty factor was being used 

incorrectly. The classifier was choosing specific difficulty values as selfish or benign. 

The difficulty rises and falls naturally as miner join or leave the network, so a specific 

difficulty value is not an indicator of an attack. What we needed was the change in 

difficulty as opposed to a specific value.    
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CHAPTER 7 

DIFFICULTY DELTA TRAINING AND RESULTS 

 

To solve the issue of the difficulty, we decided to drop the difficulty and replace it 

with the delta between two blocks. This allowed us to track how the difficulty changed 

over time instead of tracking specific difficulty values. Our theory is that significant 

changes to the difficulty would indicate a selfish miner joined the network and added a 

large amount of hashing power. We also theorize that this should track with a rise in the 

rental cost of hash power. Although the hash price is not present for the 2019 attack, the 

difficulty should rise due to an increase in hash power and provide a latent indicator. The 

total number of records is the same as each of the original datasets.  

 

7.1 Data Figures 

Figures 22-24 plot the new difficulty delta feature for each dataset. A closer 

examination revealed that significant dips in the difficulty correlate with significant 

spikes in the time delta. This is to be expected as the difficulty drops when it takes too 

long to find a block. Red marks indicate a selfishly mined block.  
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Figure 22. 2019 difficulty delta. Selfishly mined blocks are shown with red marks.  

 
 
 

 
 
Figure 23. 2020A difficulty delta. Selfishly mined blocks are shown with red marks. 
 
 
 

 
 
Figure 24. 2020B difficulty delta. Selfishly mined blocks are shown with red marks. 
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7.2 Training with Difficulty Delta 

We swapped the difficulty for the difficulty delta and retrained the classifier on 

the 2019 dataset and then used it to predict the 2020A and 2020B datasets. Rather than 

the predicted increase in accuracy, we once again achieved a 50% accuracy rating from 

the classifier. Figure 25 shows the MDI chart for both the 2020A prediction and the 

2020B prediction as they were identical.  

 
 

 
 
Figure 25. 2020A and 2020B feature importance measured by MDI with difficulty delta. 
The MDI charts were identical for both predictions. 
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Table 18.2020A classifier accuracy, precision, and recall for difficulty delta. 
 

Accuracy Precision Recall 

0.517 0.532 0.290 
 
 
 

Table 19. 2020A classifier metrics by block classification for difficulty delta. 
 

Label Precision Recall F1 

Benign 0.51 0.74 0.61 
Selfish 0.53 0.29 0.38 

 
 
 

Table 20. 2020B classifier accuracy, precision, and recall for difficulty delta. 
 

Accuracy Precision Recall 

0.500 0.501 0.305 
 
 
 

Table 21. 2020B classifier metrics by block classification for difficulty delta. 
 

Label Precision Recall F1 

Benign 0.50 0.70 0.58 
Selfish 0.50 0.31 0.38 

 
 
 

7.3 Training with Difficulty Delta and Hash Price 

After our experiments with training on the 2019 dataset, we tried training the 

classifier on the 2020A dataset and predicting the 2020B. Hash price was a very highly 

rated feature in the previous training, so we wanted to see if the combination of difficulty 

delta and hash price yielded better results. The hash price once again proved to be an 

important feature by MDI score and the accuracy did improve, but the overall accuracy 

was still only 53%. Figure 26 shows the feature importance by MDI score while Tables 

22 and 23 show the classifier metrics.  
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Figure 26. 2020B feature importance measured by MDI with difficulty delta and hash 
price. Trained on 2020A dataset. 
 
 
 
Table 22. 2020B classifier accuracy, precision, and recall for difficulty delta and hash 
price. Classifier was trained on 2020A dataset. 

 

Accuracy Precision Recall 

0.535 0.536 0.509 
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Table 23. 2020B classifier metrics by block classification for difficulty delta and hash 
price. Classifier was trained on 2020A dataset. 

 

Label Precision Recall F1 

Benign 0.53 0.56 0.55 
Selfish 0.54 0.51 0.52 

 
 
 

7.4 Discussion 

Contrary to our predictions, the difficulty delta did little to improve the classifier 

accuracy. There could be two reasons for this. Either the difficulty does not have any 

indication of an attack, or we are measuring in too granular of a timeframe. The difficulty 

adjustment happens in Ethereum Classic on every block so the difficulty may not show 

significant trends. For the same reasons stated in the previous discussion, we still believe 

that the difficulty could detect an attack, but we needed to bin the data in a way that made 

the difficulty adjustment more apparent.  

Once again, we saw the hash price selected as a significant factor without adding 

anything to the accuracy. We predicted that this has to do with the granularity of our hash 

price measurements. The data from NiceHash only changes every 15 minutes so the hash 

price associated with a block will not change that often. We could see from our graphs 

that the hash price does rise during an attack and levels off after the attack.  
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CHAPTER 8 

BINNED DATA TRAINING AND RESULTS 

 

We wanted to capture both the hash price delta and the meaningful changes in the 

difficulty, so we decided to create new datasets for each attack period. We generated 

these datasets from the data files that contained the entire attack data for all three 

instances as opposed to the balanced datasets.  

The first datasets captured the hash price deltas and were binned every 15 

minutes. The creation of the 2020A and 2020B datasets was relatively easy as we already 

had the hash price associated with each block. We compressed our other features into 15-

minute aggregates to make them match the hash price change interval. The difficulty 

became the average difficulty during the interval and the difficulty delta became the delta 

between the 15-minute averages. The block size became the average number of 

transactions in the interval and the time delta became the average time delta. Since there 

was a possibility of mixing selfish blocks with benign blocks, we classified a binned 

block as selfish if there was even one block in the interval that was selfish.  

Creating the binned dataset for the 2019 attack was a little different as we did not 

have the hash price data. In the interest of keeping the data in the same format as the 

2020 attacks, we binned the data every 69 blocks. Since the block interval for ETC is 10-
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15 seconds, 69-block aggregations are equivalent to 15-minutes. We followed the same 

heuristics for creating the binned blocks as we did with the 2020 attacks.  

The new, binned datasets had fewer records in them than our balanced training 

data and were not perfectly balanced. We ended up removing a few records from the 

2019 dataset as it was severely unbalanced. To ensure accurate prediction results, we 

balanced the 2020 datasets by sampling them. The newly created datasets are 

summarized in Table 24.   

 
 
Table 24. Summary of block ranges after binning for each dataset. 2020A and 2020B 
datasets were manually balanced after binning. 
 

Label Selfish blocks Benign blocks Total blocks 

2019 Binned 23 71 94 
2020 A Binned 51 51 102 
2020 B Binned 62 62 124 

 
 
 

8.1 2019 Data Figures  

Binning the data into 15-minute blocks slightly changed the format of the blocks. 

Figures 27-29 show the shape of the data for the binned training data. Instead of charting 

on the block height, we switched to charting on the index to make the charts more 

readable. The following data figures show the binned data before sampling. Red marks 

indicated a selfishly mined block.  
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Figure 27. 2019 difficulty deltas for 69-block bins. This is calculated as the average 
difficulty of the current 69-block range minus the average difficulty of the previous 69-
block range. 
 
 
 

 
 
Figure 28. 2019 time deltas for 69-block bins. This is calculated as the average time delta 
of the current 69-block range minus the average time delta of the previous 69-block 
range. 
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Figure 29. 2019 block sizes for 69-block bins. This is calculated as the average block size 
of the current 69-block range minus the average block size of the previous 69-block 
range. 
 
 
 

8.2 2020A and 2020B Data Figures 

For the 2020A and 2020B datasets, the 15-minute bin was easy to calculate as we 

could just bin the data every time the hash price value changed. Figures 30-37 show the 

data for the 2020 datasets in 15-minute bins. Red marks indicate selfishly mined blocks. 

 
 

 
 
Figure 30. 2020A difficulty deltas for 15-minute bins. This is calculated as the average 
difficulty of the current 15-minute range minus the average difficulty of the previous 15-
minute range. 
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Figure 31. 2020A block sizes for 15-minute bins. This is calculated as the average block 
size of the current 15-minute range minus the average block size of the previous 15-
minute range. 
 
 
 

 
 
Figure 32. 2020A time deltas for 15-minute bins. This is calculated as the average time 
delta of the current 15-minute range minus the average time delta of the previous 15-
minute range. 
 
 
 

 
 

Figure 33. 2020A hash prices for 15-minute bins. The feature changes every 15 minutes 
so no binning was required. 
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Figure 34. 2020B difficulty deltas for 15-minute bins. This is calculated as the average 
difficulty of the current 15-minute range minus the average difficulty of the previous 15-
minute range. 
 
 
 

 
 
Figure 35. 2020B block sizes for 15-minute bins. This is calculated as the average block 
size of the current 15-minute range minus the average block size of the previous 15-
minute range. 
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Figure 36. 2020B time deltas for 15-minute bins. This is calculated as the average time 
delta of the current 15-minute range minus the average time delta of the previous 15-
minute range. 

 
 
 

 
 
Figure 37. 2020B hash prices for 15-minute bins. The feature changes every 15 minutes 
so no binning was required. 
 
 
 

8.3 2019 Training and 2020A and 2020B Predictions 

Once we had the binned datasets, we repeated the same training and prediction 

that we did on the original datasets. We used the entire 2019 dataset to train the classifier 

and then predicted the 2020A and 2020B datasets. The binned datasets performed much 

better than the original dataset and offered a 10%-20% increase in accuracy. This was a 

significant increase as the classifier now had the potential to detect attacks without being 
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specifically trained on the dataset. Figure 38 shows the MDI scores for the features of 

both datasets. Tables 25-28 show the classifier metrics.  

 
 

 
 
Figure 38. 2020A and 2020B feature importance measured by MDI for binned data. 
Classifier was trained on 2019 dataset. 
 
 
 
Table 25. 2020A classifier accuracy, precision, and recall for binned data. 
 

Accuracy Precision Recall 

0.730 0.672 0.764 
 
 
 

Table 26. 2020A classifier metrics by block classification for binned data. 
 

Label Precision Recall F1 

Benign 0.79 0.70 0.74 
Selfish 0.67 0.76 0.72 
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Table 27. 2020B classifier accuracy, precision, and recall for binned data. 
 

Accuracy Precision Recall 

0.612 0.532 0.919 
 
 
 

Table 28. 2020B classifier metrics by block classification for binned data. 
 

Label Precision Recall F1 

Benign 0.86 0.38 0.52 
Selfish 0.53 0.92 0.67 

 
 
 

8.4 2020A Training, 2020B Prediction 

After training the classifier on the 2019 data, we wanted to see what accuracy 

gain we could get out of the hash price delta, so we trained on the 2020A dataset and then 

predicted the 2020B dataset. Our feature set included the block size, time delta, difficulty 

delta, and hash price delta. While the accuracy did increase (up 20% from the 2019 

dataset) when the classifier was trained on the 2020A dataset, the hash price delta did not 

prove to be a significant factor. Figure 39 shows the MDI scores for the features while 

Tables 29 and 30 show the classifier metrics.  
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Figure 39. 2020B feature importance measured by MDI for binned data with hash price. 
 
 
 
Table 29. 2020B classifier accuracy, precision, and recall for binned data with hash price. 

 

Accuracy Precision Recall 

0.873 0.789 0.967 
 
 
 

Table 30. 2020B classifier metrics by block classification binned data with hash price. 
 

Label Precision Recall F1 

Benign 0.97 0.80 0.88 
Selfish 0.79 0.97 0.87 

 
 
 

8.5 Discussion  

While binning the data into 15-minute blocks did increase the accuracy, it had the 

limitation of mixing selfish data with benign data. In the 2019 attack, the attacks were 
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much smaller so the binned blocks could contain mostly benign data. In one instance, the 

attacker only published eight blocks so the worst-case is where 61 out of 69 blocks were 

benign, but the block is still classified as selfish.  

Binning blocks in less than 69 bocks has an inherent problem with the hash price 

delta. It is only measuring every 15 minutes so binning in a more granular way could 

cause this factor to become irrelevant as multiple blocks record a hash price delta of zero.  
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CHAPTER 9 

FIVE-MINUTE BIN-TIME TRAINING AND RESULTS 

 

The last data transformation we tried on our datasets was to bin the data every 

five blocks. Since the average block time in ETC is 13 seconds, this works out to binning 

the blocks in one-minute increments. As noted in the previous chapter, we still have a 

limitation on how we classify blocks that contain benign and selfish data. Since the bin 

size is only five blocks, we settled on a simple majority vote to decide if the block was 

selfish or benign. If the binned block contained three or more selfish blocks, we classified 

it as selfish and classified all other blocks as benign.   

An additional problem we faced with binning the data every five minutes was a 

lowered accuracy from the hash price delta. Since the hash price delta only changes every 

15 minutes, the binned blocks would only provide a non-zero number for the changes to 

the hash price once every 15 blocks. This essentially made the hash price delta irrelevant 

as a factor. To get around this issue, we repeated the non-zero hash delta for each binned 

block until we detected another change to the hash price.   
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Table 31. Summary of datasets after binning every five blocks. 2020A and 2020B 
datasets were manually balanced after binning. 

 

Label Selfish blocks Benign blocks Total blocks 

2019 Binned 184 298 482 
2020 A Binned 723 723 1446 
2020 B Binned 848 848 1696 

 
 
 

9.1 2019 Data Figures 

Figures 40-50 show the shape of the data after binning the original datasets into 

five-block bins. Blocks were labeled as selfish if three out of the five were selfish blocks 

and red marks indicate selfish blocks.  

 
 

 
 
Figure 40. 2019 difficulty delta for five-block bins. This is calculated as the average 
difficulty of the current five-block range minus the average difficulty of the previous 
five-block range. 
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Figure 41. 2019 block size for five-block bins. This is calculated as the average block 
size of the current five-block range minus the average block size of the previous five-
block range. 
 
 
 

 
 

Figure 42. 2019 time delta for five-block bins. This is calculated as the average time delta 
of the current five-block range minus the average time delta of the previous five-block 
range. 

 
 
 

  



81 
 

9.2 2020A and 2020B Data Figures 

 
 

 
 
Figure 43. 2020A difficulty delta for five-block bins. This is calculated as the average 
difficulty of the current five-block range minus the average difficulty of the previous 
five-block range. 
 
 
 

 
 

Figure 44. 2020A block size for five-block bins. This is calculated as the average block 
size of the current five-block range minus the average block size of the previous five-
block range. 
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Figure 45. 2020A time delta for five-block bins. This is calculated as the average time 
delta of the current five-block range minus the average time delta of the previous five-
block range. 
 
 
 

 
 
Figure 46. 2020A hash price five-block bins. This is calculated as the current hash price 
minus the previous hash price. If the hash price has not changed, the previous delta is 
repeated.  
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Figure 47. 2020B difficulty delta for five-block bins. This is calculated as the average 
difficulty of the current five-block range minus the average difficulty of the previous 
five-block range. 
 
 
 

 
 
Figure 48. 2020B block size for five-block bins. This is calculated as the average block 
size of the current five-block range minus the average block size of the previous five-
block range. 
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Figure 49. 2020B time delta for five-block bins. This is calculated as the average time 
delta of the current five-block range minus the average time delta of the previous five-
block range. 
 
 
 

 
 
Figure 50. 2020B hash price for five-block bins. This is calculated as the current hash 
price minus the previous hash price. If the hash price has not changed, the previous delta 
is repeated. 

 
 
 

9.3 2019 Training and 2020A and 2020B Predictions 

Following the pattern defined in the previous chapters, we trained the classifier on 

the 2019 dataset and then used it to predict the 2020A and 2020B datasets. We used the 

difficulty delta, time delta, and block size features. This dataset offered us the best results 

of the four we tried. Figure 51 shows the MDI scores for both the 2020A prediction and 

the 2020B prediction.  
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Figure 51. 2020A and 2020B feature importance measured by MDI for five-block bins. 
 
 
 

Table 32. 2020A classifier accuracy, precision, and recall for five-block bins. 
 

Accuracy Precision Recall 

0.792 0.786 0.767 
 
 
 

Table 33. 2020A classifier metrics by block classification for five-block bins. 
 

Label Precision Recall F1 

Benign 0.80 0.81 0.81 
Selfish 0.79 0.77 0.78 

 
 
 

Table 34. 2020B classifier accuracy, precision, and recall for five-block bins. 
 

Accuracy Precision Recall 

0. 673 0.580 0.825 
 



86 
 

Table 35. 2020B classifier metrics by block classification for five-block bins. 
 

Label Precision Recall F1 

Benign 0.81 0.56 0.66 
Selfish 0.58 0.83 0.68 

 
 
 

9.4 2020A Training and 2020B Prediction 

Training with the 2020A dataset and predicting the 2020B dataset followed the 

same pattern but added the hash price delta as it was available. The feature set included 

the difficulty delta, time delta, block size, and hash price delta. Figure 51 shows the MDI 

score for predicting the 2020B dataset while Tables 36 and 37 show the classifier metrics. 

 
 

 
 
Figure 52. 2020B feature importance measured by MDI for five-block bins with hash 
price. Trained on 2020A dataset. 
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Table 36. 2020B classifier accuracy, precision, and recall for five-block bins with hash 
price. Trained on 2020A dataset. 
 

Accuracy Precision Recall 

0.946 0.895 0.988 
 
 
 
Table 37. 2020B classifier metrics by block classification for five-block bins with hash 
price. Trained on 2020A dataset. 

 

Label Precision Recall F1 

Benign 0.99 0.92 0.95 
Selfish 0.90 0.99 0.94 

 
 
 

9.5 Discussion 

Binning the data every five blocks provided the best classifier results. This more 

granular binning of data allowed the classifier to discover the more nuanced differences 

in the data while providing a bigger picture of the data. The approach also had the benefit 

of evaluating blocks in a time frame that is usable by a real-time detection system.  

Another benefit of binning the data every five blocks is the increased precision. 

The shorter error bars in the MDI graph show this increase in precision. The five-block 

bins made the classifier more accurate when it said that a block was selfish. Put another 

way, the classifier is more trustworthy when it says a block is selfish. The results from 

training on the 2020A dataset and predicting the 2020B dataset had very high precision 

and recall.  
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CHAPTER 10 

DISCUSSION 

 

Our classifier showed promise in being able to identify selfish mining attacks. 

Although the accuracy started quite low, each change we made to the dataset increased 

the accuracy, precision, and recall. In all cases, training on the 2019 dataset and 

predicting the 2020B dataset had the worst results. Similarly, training on the 2020A 

dataset and predicting the 2020B dataset always had the best results. There are a few 

possibilities as to why this. First, it is probable that the 2019 and 2020 attacks were 

launched by different people. The reasons behind the attacks or implementation of the 

attacks may be different. Since we do not have the hash price for the 2019 attack, it is 

possible that the attack was not implemented with rented hash power. Despite this, our 

classifier was still accurate at detecting the attacks. Due to the timeframe and similarity 

of attack lengths, it is probable that the 2020 attacks were launched by the same person or 

group of people. This would explain why the 2020A attack was such a good predictor of 

the 2020B attack. A summary of the accuracy, precision, and recall for each variation of 

the training data is shown in Table 38. 
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Table 38. Summary of classifier metrics for each variation of the training data. 
 

Label Training 
dataset 

Prediction 
dataset 

Accuracy Precision Recall 

Original data 2019 2020A 0.537 0.564 0.330 
 2019 2020B 0.527 0.542 0.359 
 2020A 2020B 0.396 0.359 0.266 
      
Original data with 
difficulty delta 

2019 2020A 0.517 0.532 0.290 

 2019 2020B 0.500 0.501 0.305 
 2020A 2020B 0.535 0.536 0.509 
      
Binned 15 minutes 2019 2020A 0.730 0.672 0.764 
 2019 2020B 0.612 0.532 0.919 
 2020A 2020B 0.873 0.789 0.967 
      
Binned five minutes 2019 2020A 0.792 0.786 0.767 
 2019 2020B 0.673 0.580 0.825 
 2020A 2020B 0.946 0.895 0.988 

 
 
 

10.1 Differences in 2019 and 2020 Attacks 

Our next question was how are the 2019 and 2020 attacks different? Our first 

observation is that during the 2019 attack ranges, the network difficulty trended 

downward. The average delta across all 2019 attack ranges was -4378453935. A decrease 

in mining difficulty means that it is too hard to mine a block, so the algorithm decreases 

the difficulty. Usually, this means that the hash power of the network decreased. In the 

context of the 2019 attack, is it possible that existing network hashing power was used to 

launch the attack. The attacker was likely behaving as an honest network participant for a 

long period before the attack. The fact that they were able to outpace the rest of the 

network for several extended periods implies that this attacker controlled a significant 

amount of hash power.  
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The average difficulty delta across the 2020A and 2020B attacks were 

4771128476 and 1708641515 respectively. A rise in difficulty such as this implies that 

mining power was added to the network and so the PoW algorithm increased the 

difficulty of mining a block. This correlates with the spike in hash price from our 

NiceHash data and implies that the attack rented hash power instead of using existing 

honest hashing power.  

The other way that the attacks were different was the length of the attacks. The 

2019 attack was much shorter than the 2020 attacks. In total, the 2019 attack had 920, 

non-contiguous blocks whereas the 2020 attacks had contiguous selfish ranges of 3,615 

and 4,236 blocks.  

 

10.2 Feature Importance  

The initial set of features we set out to examine was the fork height, fork rate, 

timings between blocks, miner revenue-per-hour, transaction count/block size, miner 

wallet address/coinbase wallet address, current difficulty, difficulty delta, hash price, and 

hash price delta. Of these features, we measured the timing between blocks, block size, 

current difficulty, hash price, and hash price delta. While we initially thought that certain 

difficulty ranges could be more susceptible to attacks, the network difficulty fluctuated 

too much to provide any real insight and so we dropped this feature. The same was true 

for the hash price which we also dropped. We replaced the difficulty and hash price with 

the delta which measured the changes in these features.  

We found that the feature of block size ended up being the most reliable predictor 

of an attack. We were even to detect attacks using this feature alone. This makes sense as 
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honest miners would wish to maximize revenue by including as many transactions in a 

block as possible. Due to the possible conflicts, selfish miners have far fewer incentives 

to include transactions. Smaller block sizes can help selfish miners propagate their blocks 

faster which further incentivizes them to keep the blocks small. On less-used blockchains, 

it is probable that honest miners will mine zero-transaction blocks as it depends on users 

submitting transactions. Despite this, multiple zero-transaction blocks still tend to be rare. 

Ultimately, the detection accuracy can be increased by adding other features. To the best 

of our knowledge, this is the only research that has examined how the block size can 

indicate a selfish mining attack. 

When available, the hash price delta was the second most important feature. 

Initially, we thought that this would be the most important factor. A casual observation of 

the hash price history shows a spike in the price at the same time as the attacks. While the 

hash price was not available for the 2019 attack, it is possible that the attack came from 

existing hash power, and no power was rented. In this case, the hash price history would 

not add any accuracy. A more interesting application of the hash price history is for the 

detection of unlaunched attacks. In an anomaly detection context, a spike outside of 

normal operating ranges could help find an attack before it happens.  

The difficulty delta added the second most accuracy when the hash price delta 

was not present. This is probably due to extra hash power entering the system and 

causing a difficulty adjustment. It is interesting that the difficult delta added accuracy 

when the classifier trained on the 2019 dataset as the difficulty delta seemed different for 

the 2020 attacks. We would have expected the difficulty not to add any accuracy since 

the difficulty adjustment appeared to behave differently during the 2019 and 2020 
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attacks. We also would have expected the difficulty adjustment to be a significant factor 

in the 2020 attacks as a lot of hashing power was added to the system.    

The third most important feature was the time delta. The time delta did not add 

very much accuracy and was consistently the most insignificant feature. It is worth noting 

that it was still used in some of the decision trees. This is expected since the time delta is 

related to the difficulty delta. When the time delta is larger than 19 seconds, the difficulty 

is lower and increased when the time delta is less than 10 seconds.  
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CHAPTER 11 

LIMITATIONS 

 

Reaching selfish mining is a difficult proposition due to the lack of data. While 

selfish mining attacks do happen and have devastating effects, they are somewhat 

uncommon. This is to be expected as financial systems that fall victim to repeated attacks 

do not last long. This lack of data makes it difficult to build the large datasets needed for 

rigorous analysis. The available data is dependent on blog posts and developer comments 

to correctly label the datasets. Our main limitation is how well these articles identify 

selfishly-mined blocks. We hope that this classifier can solve this problem by finding 

selfishly mined blocks in existing blockchains or at least provide a secondary verification 

source for other researchers.  

Another data-related limitation of this study is the lack of real-time data. While 

this research does explore the factors that identify historical and launched selfish mining 

attacks, it does not detect an unlaunched attack. Simulation of data for studying 

unlaunched attacks suffers from built-in assumptions on how selfish mining attacks 

operate. Capturing a real-time attack and being able to replay it is necessary for analysis. 

It is possible that this research can be used to verify the results of a simulated selfish 

mining attack and we will explore this possibility in Chapter 12.  
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While the purpose of this research was to build a generalizable solution for 

detecting selfish mining, it ended up being a very ETC-specific classifier. At its best, this 

research can be used for any cryptocurrency that uses the Dagger-Hashimoto algorithm, 

and at its worst, it can only be used for ETC. To use this research with other blockchains, 

the block size, difficulty, block times, and hash price would have to be standardized.   

Many times, a cryptocurrency that is successfully attacked will switch its PoW 

algorithm to foil the attackers. Smaller cryptocurrencies that share an algorithm with 

large ones tend to be attacked more and cryptocurrencies that share a PoW algorithm with 

Bitcoin are more likely to be attacked. A portion of the hashing power that may not be 

much to the Bitcoin network could be more than 51% of the hash power used by the 

smaller currency. The constant switching of PoW algorithms to avoid selfish mining 

attacks makes it difficult to gather blockchain data for extended periods.  
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CHAPTER 12 

FUTURE WORK 

 

While this research uncovered some significant factors that identify selfish mining 

attacks, there is much work still to be done. There are several features that we did not 

analyze such as the miner-revenue-per-hour and the fork height and rate. In Bitcoin-based 

blockchains, the fork height is partially accessible through the getchaintips command. 

This command keeps a history of all the forks that the network node encounters. We even 

found a data source for this, but we ultimately did not use it since there are no known 

selfish mining attacks against Bitcoin. In Ethereum-based blockchains, data about 

orphaned blocks can be included in the blocks to increase miner rewards. Each time an 

orphan block is included in a valid block, there is an implied network fork. Although it is 

unclear if selfish miners include orphans in their blocks, this is an opportunity for 

research.  

The most beneficial area for future work is in the detection of unlaunched attacks. 

Detecting in-progress and historical attacks is a step in the right direction but the true 

value lies in stopping an attack before it harms the system. We made modifications to a 

network simulator to simulate selfish mining attacks, but it needed verification to 

correctly replay an attack. Our research can be used to verify the output of a simulator so 



96 
 

that no bias is built into it. With the verified simulator, one could generate enough data to 

analyze a real-time attack or further study the factors that identify an attack.  

Another area for future work is changing the problem from one of classification to 

one of anomaly detection. We used a random forest to classify the data as selfish or 

benign, but the spikes seen in the hash price data and difficulty adjustment lend 

themselves more to anomaly detection. By researching this problem from an anomaly 

detection standpoint, one could detect an attack before it is launched. In a related context, 

one could examine different classification algorithms and see if they are any better at 

detecting attacks. Algorithms such as k-nearest neighbor or support vector machines 

could be used, and the results compared against the random forest.  

 Finding and adding additional factors supplies another area for future research. 

While this research does identify a few factors, uncovering additional external data 

sources could add more factors to analyze. One such data source is the transaction pool. 

When users issue transactions, they are broadcast to the network and added to each 

miner’s transaction pool. After a selfish mining attack reorganizes the blockchain and 

removes all the work done by the honest miners, the network users may resubmit their 

transactions and cause a spike in the number of transactions in the transaction pool. 

Additional factors such as this that are available from external data sources could 

increase the accuracy of the classifier.  

As stated in Chapter 11, the classifier is not generalizable to multiple blockchains. 

We know of at least six cryptocurrencies that have fallen victim to selfish mining attacks 

but only evaluated one. If someone came up with an algorithm for generalizing the data 

from the different blockchains, they could create a larger dataset and further investigate 
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the classifier accuracy. The creation of this general-purpose classifier for selfish mining 

attacks would be a valuable tool for the industry.  
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CHAPTER 13 

CONCLUSIONS  

 

Detection of selfish mining is a difficult problem to solve. Although selfish 

mining was discovered in 2013 and the first selfish mining attack was recorded in 2018, 

this is the first paper we know of that looks at a large number of detection factors. The 

infrequency of these attacks and the lack of labeled data make it difficult to analyze them.  

Despite these difficulties, we were able to successfully classify known examples 

of selfish mining. We found documented examples of selfish mining attacks from the 

Ethereum Classic blockchain and created a program to download these blocks from a 

public API and transform them into a format that was useable by a random forest 

classifier. We identified a data source for the hash rental power and used it to augment 

the existing factors in our dataset. We then went through several rounds of training and 

feature engineering until we found the most successful combination of features and 

binning timeframes. We found that binning the data every five blocks not only gave the 

best accuracy but also formatted the data in a way that made it conducive to a real-time 

detection system. Binning the data every 15 minutes was too short for real-time detection 

but could be useful for forensic tools. We would describe our classifier as more useful for 

forensic analysis, but it has the potential for real-time detection. Ultimately, this research 

lays the groundwork for building a successful selfish mining classifier.   
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The success of this classifier does not completely solve the detection problem and 

there is room for improvement. Much work is needed before this classifier can be used in 

a real-time environment. This classifier moves the body of work forward and shows that 

it is possible to classify these attacks in historical data while identifying important 

indicators. The ability to detect historical selfish mining should help blockchain 

developers verify the efficacy of patches intended to mitigate selfish mining attacks.   

An additional benefit of this research is that researchers now have access to a 

labeled dataset of selfish mining. To the best of our knowledge, labeled selfish mining 

data did not exist before this research.  
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