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ABSTRACT 

Herron, Johnathan, Ridley, M.S, University of South Alabama, May 2023. 
G(10, 30) : A Minor-Minimal Intrinsically Knotted Graph. Chair of Committee: Dr. 
Andrei Pavelescu 

In this paper, we shall lay the groundwork for a proof of the minor-minimal 

intrinsic knotting of the graph G(10, 30). We show that this graph is in fact minor 

minimal with respect to the property of intrinsic knotting, i.e that no minor of 

G(10, 30) is intrinsically knotted. Moreover, we discuss the procedure for showing 

that G(10, 30) itself is intrinsically knotted, and provide a collection of subgraphs 

that can be used to aid in a proof. In this way, we hope to contribute to the 

growing list of known minor-minimal intrinsically knotted graphs. 
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CHAPTER I 

INTRODUCTION 

One core component of mathematical research is to characterize given 

mathematical objects–sets, functions, etc.–in terms of their fundamental structure. 

This is observed, for example, in the characterization of continuous functions in 

analysis; continuity or discontinuity over a given domain is perhaps the most 

fundamental feature of a given function, and much e↵ort is spent providing ways to 

determine if a given function is continuous or not. An analogous e↵ort is being 

made in the field of graph theory, where such properties as planarity, knotting, and 

linking are used to characterize a given graph’s shape across its numerous 

embeddings. A graph, being defined by a vertex set and corresponding edge set, is 

inherently a set theoretic object. However, depictions of the graph can reveal a level 

of complexity in the graph’s shape that is obscured by the notation of set theory. 

This includes the existence of knots and links, special constructions within the 

graph that describe the presence and relationship of embeddings of the circle S1 

within the graph. Just as we are often interested in determining if a function is 

continuous across a domain, we are interested if a given graph expresses knotting or 

linking across all of its possible embeddings–properties referred to as intrinsic 

knotting or linking respectively. An intrinsically knotted or linked graph can be 

thought of as a “permanently knotted or linked” graph–the presence of a knot is a 

fundamental component of that graph’s structure, and cannot be removed without 

destroying the graph itself (much in the same way that a continuous function can 
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only be made noncontinuous through a change in the underlying topology of the 

relevant space). However, it should be pointed out that the knot in one embedding 

may not necessarily be the same knot in every other embedding. 

In mathematical research, we are also interested in the most basic examples 

of an object exhibiting a certain property. The motivating question is thus: What is 

the smallest or simplest object that has this property? Once that has been 

determined, it is often easier to characterize the more complicated objects in terms 

of these primitives. In graph theory, where the construction of graphs is so 

important to research, this question is exceedingly important. Minor-minimal 

intrinsically knotted (linked) graphs can be thought of as the most fundamental 

knotted (linked) graphs, from which all others can be generated. Such graphs lose 

their knotting (linking) immediately if any edge is deleted or contracted. And all 

intrinsically knotted (linked) graphs will, in turn, possess an intrinsically knotted 

(linked) graph as a minor. Thus, compiling a complete list of such minor-minimal 

intrinsically knotted (linked) graphs would make the characterization of more 

complicated knotted (linked) graphs significantly easier. For knotlessly (linklessly) 

embeddable graphs, such specimens could never be found as minors–they are the 

“forbidden minors”. This is observed with intrinsic linking, where its list of 

minor-minimal intrinsically linked graphs has been fully described [11]. This has not 

been done for intrinsic knotting. 

Intrinsic knotting (linking) in graphs is not only of interest to the researcher 

of pure mathematics. Graph theory and knot theory together are two fields of 

mathematics which can be applied directly to more practical endeavors. The best 

example would be applications to the field of chemistry, where the properties of a 

molecule are central to its study and use. A molecule can be described by the 

number of atoms and their various relationships through bonding. This can be 
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suppose that for each of its nine pairs of cycles there is a G(10, 15) graph in Table 1 

for which every cycle in that G(10, 15) pairs perfectly with a single cycle out of 

K 3,3,1. Even taking into account graph symmetry, we would Þnd a total number of 

thirty-six cases. For each of the six unique cycles of K 3,3,1, we would test six cycles 

out of one G(10, 15). 

We have identiÞed one more Petersen subgraph of G(10, 30) which might 

prove useful in the proof of G(10, 30)Õs intrinsic knotting. The graph shown in 

Figure 15 is a Petersen graph of seven vertices and Þfteen edges, produced from K 6 

through a single Y transformation. The only possible linkable pairs are made of 

a 3-cycle  linked  with a 4-cycle  (with the two cycles disjoint).  We Þnd that  the  

complete list of all possible linkable pairs is 

(9, 10, 7) ' (4, 8, 5, 6), (9, 5, 8) ' (4, 6, 7, 10), 

(8, 7, 9) ' (5, 10, 4, 6), (10, 9, 5) ' (4, 8, 7, 6), 

(8, 5, 10) ' (4, 9, 7, 6), (8, 7, 10) ' (4, 9, 5, 6), 

(4, 9, 8) ' (6, 5, 10, 7), (4, 8, 10) ' (6, 5, 9, 7), 

(4, 9, 10) ' (6, 5, 8, 7). 

Figure 15. A G(7, 15) subgraph of G(10, 30). 

Thus, it would correspond to nine cases in the proof. 
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With these subgraphs in mind, let us now consider a few examples of how the 

casework in the proof would go. Let us take K3,3,1 as the central graph in the proof; 

label it subgraph A. The goal would be to find for  each  of  its  six  unique  cases  a  

subgraph, the linkable pairs of which would form a doubly-linked D4 graph. Let us 

take the first pair given, (4, 6, 8) [ (5, 10, 7, 9), and label it A1. Let  us  test  

G(10, 15) 5 against  this first case,  and so consider  six subcases  for each pair in  

G(10, 15) 5–for ease, let us label G(10, 15) 5 as  subgraph  B, and  its  six cycles  

B1-B6. 

Case A1. Assume that (4, 6, 8) [ (5, 10, 7, 9) is a pair of linked cycles, and 

consider the six linkable pairs of cycles in subgraph B1-B6. We  shall  consider  

six subcases–each a pairing of A1 with a pair of cycles from B. 

Subcase A1-B1. Suppose that (5, 9, 7, 6, 8) [ (1, 2, 4, 10, 3) is a pair of 

linked cycles in subgraph B, and  so in  G(10, 30). Consider Figure 16 

Figure 16. A1 and B1. 

If we contract the edges {6, 8} , {5, 9} , {9, 7} , {4, 2} , {2, 1} , and {1, 3} in such 

a way as to leave double edges,  we will produce a doubly-linked  D4 graph (two 
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pairs of linked cycles on opposing sides of a D4). Thus, by Foisy’s Lemma, we 

find that any embedding with A1 and B1 linked is knotted. 

Subcase A1-B2. Suppose that (4, 9, 5, 8, 10) [ (1, 2, 6, 7, 3) is a pair of linked 

cycles in B. Note that {4, 8} exists in G(10, 30). Thus, by Lemma 2, we find 

that if (1, 2, 6, 7, 3) links with (4, 9, 5, 8, 10), it must link with either (4, 8, 10) 

or (4, 8, 5, 9) (possibly both). Consider Figure 17. We find that we obtain a 

doubly-linked D4 graph in either case, and conclude that if A1 and B2 are 

linked simultaneously, then by Foisy’s Lemma that embedding of G(10, 30) is 

knotted. 

Figure 17. A1 and B2. The  green  edge  corresponds  to  {4, 8}; splitting the cycle 
(4, 9, 5, 8, 10) into (4, 8, 10) and (4, 8, 9, 5) along this diagonal produces two ways of 
obtaining the doubly-linked D4. To  the  left,  we  have  the  case  for  (4, 8, 10), and to 
the right we have (4, 8, 9, 5). 

Subcase A1-B3. Suppose that (3, 10, 8, 6, 7) [ (1, 5, 9, 4, 2) is the linked pair 

of cycles in B. Consider  that  the  edge  {3, 6} is present in G(10, 30). By 
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Lemma 2, since (1, 5, 9, 4, 2) is linked with (3, 10, 8, 6, 7), we find that it must 

link with either (3, 6, 7) or (3, 6, 8, 10). Consider Figure 18. We find that in 

either case we have the desired D4 graph. Thus, if A1 and B3 are the two 

linked pairs of cycles, G(10, 30) is knotted. 

Figure 18. A1 and B3. The  green  edge  corresponds  to  {3, 6}; splitting the cycle 
(3, 10, 8, 6, 7) into (3, 6, 7) and (3, 6, 8, 10) along this diagonal produces two ways of 
obtaining the doubly-linked D4. To  the  left,  we  have  the  case  for  (3, 6, 7), and to the 
right we have (3, 6, 8, 10). 

Subcase A1-B4. This case requires some further attention. 

Subcase A1-B5. Suppose that (2, 4, 9, 7, 6) [ (1, 5, 8, 10, 3) is the linked pair 

of cycles in B. We  find  that  the  edges  {2, 7} and {5, 10} exist in G(10, 30). We 

apply Lemma 2 to both cycles, and so must consider four distinct origins for 

the D4 graph. Consider Figure 19. 

Subcase A1-B6. Suppose that (2, 4, 10, 8, 6) [ (1, 5, 9, 7, 3) is the linked pair 

of cycles in B. We  recognize  that  the  edge  {2, 10} exists in G(10, 30), and 

apply Lemma 2 across this diagonal. Consider Figure 20. 
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Figure 19. A1 and B5. As with the prior figures, the green edges mark diagonals 
over which we apply Lemma 2. We are cutting apart (2, 4, 9, 7, 6) into (2, 6, 7) and 
(2, 4, 9, 7), and (1, 5, 8, 10, 3) into (1, 5, 10, 3) and (5, 8, 10). The top left considers 
(5, 8, 10) and (6, 2, 7), the top right considers (1, 5, 10, 3) and (6, 2, 7) , the bottom 
left considers (5, 8, 10) and (4, 2, 7, 9), and the bottom right considers (1, 5, 10, 3) and 
(6, 2, 7, 9). In the two right cases, we must follow the work up with an edge contraction 
on {1, 4} and {1, 6} . In all cases the result is a doubly-linked D4 graph. 

Preferably, every case would yield the desired doubly-linked D4 graph. We 

would have shown that every embedding of G(10, 30) where (4, 6, 8) [ (5, 10, 7, 9) 

forms a nontrivial link, there is another nontrivial link found somewhere in 
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