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Existence of Solutions of the Classical

Yang-Baxter Equation for a Real Lie Algebra

Jörg Feldvoss∗

Department of Mathematics
University of New Orleans

New Orleans, LA 70148, U.S.A.

Abstract

We characterize finite-dimensional Lie algebras over the real numbers for which the classical
Yang-Baxter equation has a non-trivial skew-symmetric solution (resp. a non-trivial solution
with invariant symmetric part). Equivalently, we obtain a characterization of those finite-
dimensional real Lie algebras which admit a non-trivial (quasi-) triangular Lie bialgebra struc-
ture.

1 Introduction

Solutions of the classical Yang-Baxter equation (CYBE) play a role in many different areas of math-
ematics and physics. Very often their usefulness comes from the fact that solutions with invariant
symmetric part give rise to quasi-triangular Lie bialgebra structures. In particular, solutions of the
CYBE for Lie algebras over the real numbers are a main tool in solving and constructing completely
integrable classical Hamiltonian systems.

In general, a classification of all solutions of the CYBE is very difficult. Nevertheless, Belavin and
Drinfel’d succeeded in [1] to obtain for any finite-dimensional simple Lie algebra over the complex
numbers a complete description of those solutions of the CYBE which have a non-zero symmetric
part. The aim of this paper is much more modest in asking when there exist solutions of the CYBE
which give rise to non-trivial Lie bialgebra structures on the underlying Lie algebra. Since in [5] we
previously solved this problem over the complex numbers, here we restrict ourselves to the case of
finite-dimensional Lie algebras over the real numbers. As in [5], it turns out that with the exception
of a few cases occurring in dimension three, for every finite-dimensional non-abelian Lie algebra the
CYBE has a non-trivial skew-symmetric solution.

Since in this paper we are only interested in solutions of the CYBE which give rise to Lie bialgebra
structures, we will re-phrase our main result (see Theorem 1) in those terms and only need to prove
the latter (see Theorem 2). All the necessary notation for this will be introduced in the next section.
The proof of Theorem 2 which uses the methods of [3] in conjunction with those of [5] will be given
in the last section. Elsewhere we will come back to discuss the existence of those solutions of the
CYBE which do not give rise to Lie bialgebra structures. In the light of our main result, this shall
have to be done only for the three exceptional cases.

∗Current Address: Fachbereich Mathematik, Universität Hamburg, Bundesstrasse 55, D-20146 Hamburg, Germany
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2 Main Results

Let F be an arbitrary field and let a be a Lie algebra over F. For r =
∑n

j=1 rj ⊗ r′j ∈ a ⊗ a set

r12 :=
n∑

j=1

rj ⊗ r′j ⊗ 1, r13 :=
n∑

j=1

rj ⊗ 1 ⊗ r′j, r23 :=
n∑

j=1

1 ⊗ rj ⊗ r′j,

where 1 denotes the identity element of the universal enveloping algebra U (a) of a. Note that the
elements r12, r13, r23 are considered as elements of the associative algebra U (a) ⊗ U (a) ⊗ U (a) via
the canonical embedding a ↪→ U (a). Therefore one can form the commutators given by

[r12, r13] =
n∑

i,j=1

[ri, rj] ⊗ r′i ⊗ r′j,

[r12, r23] =
n∑

i,j=1

ri ⊗ [r′i, rj]⊗ r′j,

[r13, r23] =
n∑

i,j=1

ri ⊗ rj ⊗ [r′i, r
′
j].

Then the mapping
CYB : a ⊗ a −→ a ⊗ a ⊗ a

defined via
r 7−→ [r12, r13] + [r12, r23] + [r13, r23]

is called the classical Yang-Baxter operator for a. The equation CYB(r) = 0 is the classical Yang-
Baxter equation (CYBE) for a, and a solution of the CYBE is called a classical r-matrix for a (cf. [2,
Section 2.1B]).

Assume for the moment that the characteristic of the ground field F is zero. For any vector space
V over F and every natural number n the symmetric group Sn of degree n acts on the n-fold tensor
power V ⊗n of V via

σ · (v1 ⊗ · · · ⊗ vn) := vσ(1) ⊗ · · · ⊗ vσ(n) ∀ σ ∈ Sn; v1, . . . , vn ∈ V.

The F-linear mapping Sn : V ⊗n → V ⊗n defined by t 7→
∑

σ∈Sn
σ · t is called the symmetrization

mapping . The elements of the image Im(Sn) of Sn are just the symmetric n-tensors, i.e., elements
t ∈ V ⊗n such that σ · t = t for every σ ∈ Sn. Moreover, Im(Sn) is canonically isomorphic to
the n-th symmetric power SnV of V . The F-linear mapping An : V ⊗n → V ⊗n defined by t 7→∑

σ∈Sn
sign(σ)(σ · t) is called the skew-symmetrization (or alternation) mapping . The elements of

the image Im(An) of An are just the skew-symmetric n-tensors, i.e., elements t ∈ V ⊗n such that
σ · t = sign(σ)t for every σ ∈ Sn. Since Im(An) is canonically isomorphic to the n-th exterior power∧n

V of V , we identify skew-symmetric n-tensors with elements of
∧n

V ; e.g., we write

v1 ∧ v2 = (1 − τ )(v1 ⊗ v2)

in the case n = 2, where τ : V ⊗2 → V ⊗2 is given by v1 ⊗ v2 7→ v2 ⊗ v1, and

v1 ∧ v2 ∧ v3 =
∑

σ∈S3

sign(σ)vσ(1) ⊗ vσ(2) ⊗ vσ(3)
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in the case n = 3. As a direct consequence of our identifications, we also have that V ⊗2 = S2V ⊕∧2
V .
If a is a Lie algebra and M is an a-module, then the set of a-invariant elements of M is defined

by
Ma := {m ∈ M | a · m = 0 ∀ a ∈ a}.

It follows from the remark after [5, Proposition 2] that every a-invariant skew-symmetric 2-tensor
is a solution of the CYBE. Therefore a skew-symmetric classical r-matrix for a is called trivial if
it is a-invariant. But note that not every a-invariant symmetric 2-tensor satisfies the CYBE (see
[5, Example 1]). Nevertheless, we say that an arbitrary classical r-matrix for a is trivial if it is a-
invariant. In particular, every classical r-matrix with a-invariant symmetric part is trivial if and only
if its skew-symmetric part is a-invariant (and thus trivial). We will see below that trivial classical
r-matrices for a are exactly those which give rise to a trivial Lie bialgebra structure on a.

In what follows let R denote the field of real numbers. We now describe (up to isomorphism)
those Lie algebras which turn out to have no non-trivial skew-symmetric classical r-matrix. First,
there is a simple Lie algebra, namely the non-split three-dimensional simple Lie algebra over R which
is denoted by su(2) and can be realized as the cross product algebra on three-dimensional Euclidean
space, i.e.,

su(2) = Re1 ⊕ Re2 ⊕ Re3; [e1, e2] = e3, [e2, e3] = e1, [e3, e1] = e2.

Next, there is the (non-abelian) nilpotent three-dimensional Heisenberg algebra

h1(R) = Rp ⊕ Rq ⊕ R~

determined by the so-called Heisenberg commutation relation

[p, q] = ~.

Finally, there is the three-dimensional (non-nilpotent) solvable Lie algebra

sΛ(R) = Rh ⊕ Rf1 ⊕ Rf2;

[h, f1] = λ11f1 + λ12f2, [h, f2] = λ21f1 + λ22f2, [f1, f2] = 0,

where Λ := (λij)1≤i,j≤2 is an element of GL2(R).

Remark. Let Λ ∈ Mat2(R) be singular . If Λ 6= 0, then sΛ(R) is isomorphic either to the three-
dimensional Heisenberg algebra or to the (trivial) one-dimensional central extension of the two-
dimensional non-abelian Lie algebra. If Λ = 0, then, of course, sΛ(R) is abelian. It is elementary
to show that therefore every non-simple three-dimensional real Lie algebra is isomorphic to sΛ(R)
for a suitable choice of Λ ∈ Mat2(R). Moreover, every simple three-dimensional real Lie algebra is
isomorphic either to the Lie algebra sl2(R) of traceless real 2-by-2 matrices or to su(2).

We can now state the first version of the main result of this paper.

Theorem 1 Let a be a finite-dimensional Lie algebra over R. Then the following conditions are
equivalent:

(a) The classical Yang-Baxter equation for a has a non-trivial skew-symmetric solution.

(b) The classical Yang-Baxter equation for a has a non-trivial solution with a-invariant symmetric
part.
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(c) a is non-abelian and not isomorphic to su(2), to h1(R) or to sΛ(R) where tr(Λ) = 0 and
det(Λ) > 0.

As an immediate consequence we obtain the following existence result:

Corollary 1 If a is a finite-dimensional non-abelian Lie algebra over R with dimR a 6= 3, then the
classical Yang-Baxter equation for a has a non-trivial skew-symmetric solution.

Before giving a proof of Theorem 1 we re-formulate its statement in terms of the existence of
non-trivial (quasi-) triangular Lie bialgebra structures. For this purpose we first recall the relevant
definitions.

A Lie coalgebra over an arbitrary field F is a vector space c over F together with a linear mapping

δ : c −→ c ⊗ c,

such that

(1) Im(δ) ⊆ Im(1 − τ ),

and

(2) (1 + ξ + ξ2) ◦ (1 ⊗ δ) ◦ δ = 0,

where 1 denotes the identity mapping on c, τ : c ⊗ c → c ⊗ c denotes the switch mapping sending
x ⊗ y to y ⊗ x for every x, y ∈ c, and ξ : c ⊗ c ⊗ c → c ⊗ c ⊗ c denotes the cycle mapping sending
x ⊗ y ⊗ z to y ⊗ z ⊗ x for every x, y, z ∈ c. The mapping δ is called the cobracket of c, (1) is called
co-anticommutativity , and (2) is called the co-Jacobi identity . Note that any cobracket on a one-
dimensional Lie coalgebra is the zero mapping since Im(1−τ ) = 0. This is dual to the statement that
every bracket on a one-dimensional Lie algebra is zero. For further information on Lie coalgebras
we refer the reader to [6] and the references given there.

A Lie bialgebra over F is a vector space a over F together with linear mappings [·, ·] : a ⊗ a → a
and δ : a → a ⊗ a such that (a, [·, ·]) is a Lie algebra, (a, δ) is a Lie coalgebra, and δ is a derivation
from the Lie algebra a into the a-module a ⊗ a, i.e.,

δ([x, y]) = x · δ(y) − y · δ(x) ∀ x, y ∈ a,

where the tensor product a ⊗ a is an a-module via the adjoint diagonal action defined by

x ·




n∑

j=1

aj ⊗ bj


 :=

n∑

j=1

([x, aj] ⊗ bj + aj ⊗ [x, bj]) ∀ x, aj, bj ∈ a

(cf. [2, Section 1.3A]). A Lie bialgebra structure (a, δ) on a Lie algebra a is called trivial if δ = 0.
A coboundary Lie bialgebra over F is a Lie bialgebra a such that the cobracket δ is an inner

derivation, i.e., there exists an element r ∈ a ⊗ a such that

δ(x) = x · r ∀ x ∈ a

(cf. [2, Section 2.1A]). Let r ∈ a⊗a and define δr(x) := x·r for every x ∈ a. Obviously, a coboundary
Lie bialgebra structure (a, δr) on a is trivial if and only if r ∈ (a⊗a)a. Moreover, Drinfel’d observed
that δr defines a Lie bialgebra structure on a if and only if r+τ (r) ∈ (a⊗a)a and CYB(r) ∈ (a⊗a⊗a)a
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(see [4, Section 4, p. 804] or [2, Proposition 2.1.2]). In particular, every solution r of the CYBE
satisfying r + τ (r) ∈ (a ⊗ a)a gives rise to a coboundary Lie bialgebra structure on a. Following
Drinfel’d such Lie bialgebra structures are called quasi-triangular, and quasi-triangular Lie bialgebra
structures arising from skew-symmetric classical r-matrices are called triangular .

Now we are able to formulate a second version of our main result.

Theorem 2 Let a be a finite-dimensional Lie algebra over R. Then the following conditions are
equivalent:

(a) a admits a non-trivial triangular Lie bialgebra structure.

(b) a admits a non-trivial quasi-triangular Lie bialgebra structure.

(c) a is non-abelian and not isomorphic to su(2), to h1(R) or to sΛ(R) where tr(Λ) = 0 and
det(Λ) > 0.

As above we also obtain the following existence result (which, of course, is just a re-formulation
of Corollary 1):

Corollary 2 If a is a finite-dimensional non-abelian Lie algebra over R with dimR a 6= 3, then a
admits a non-trivial triangular Lie bialgebra structure.

Remark. There are only two (isomorphism classes of) three-dimensional Lie algebras which are not
excluded in Theorem 2, namely the (trivial) one-dimensional central extension of the two-dimensional
non-abelian Lie algebra and sl2(R) (cf. also the remark before Theorem 1). But it is an immediate
consequence of [7, Theorem 3.2] that these Lie algebras admit non-trivial triangular Lie bialgebra
structures (see also the proof of [5, Theorem 1]).

3 Proof of Theorem 2

Before we give a proof of Theorem 2 we recall two results obtained in [5] and [3], respectively. The
first lemma follows from [5, Theorem 2 and the argument in the proof of Theorem 3].

Lemma 1 Let a be a finite-dimensional non-abelian Lie algebra over an arbitrary field F with non-
zero center. If a is not isomorphic to the three-dimensional Heisenberg algebra, then a admits a
non-trivial triangular Lie bialgebra structure.

The second lemma is an immediate consequence of the proofs of [3, Lemma 4.2 and Lemma 4.1].

Lemma 2 (de Smedt) Let a be a finite-dimensional solvable Lie algebra over R with trivial center. If
[a, a] is non-abelian or dimR[a, a] ≥ 3, then a admits a non-trivial triangular Lie bialgebra structure.

We now prove Theorem 2. Since the implication (a)=⇒(b) is trivial, it is enough to show the
implications (b)=⇒(c) and (c)=⇒(a).

(b)=⇒(c): Since it is clear that every coboundary Lie bialgebra structure on an abelian Lie
algebra is trivial, it suffices to prove that su(2), h1(R), and sΛ(R) (where tr(Λ) = 0 and det(Λ) > 0)
do not admit any non-trivial quasi-triangular Lie bialgebra structure. For su(2) and h1(R) this was
already done in [5, Examples 1 and 2]. Let us now consider s := sΛ(R) where det(Λ) 6= 0. Then a
straightforward computation yields

(s ⊗ s)s =
{

R(f1 ∧ f2) ⊕ R[λ21(f1 ⊗ f1) − λ11(f1 ⊗ f2 + f2 ⊗ f1) ⊕ λ12(f2 ⊗ f2)] if tr(Λ) = 0
0 if tr(Λ) 6= 0
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Consider now a 2-tensor r = r0 + r∗ with s-invariant symmetric part r0 and skew-symmetric part
r∗. Because of [f1, f2] = 0, we conclude from [2, Remark 2 after the proof of Lemma 2.1.3] that

CYB(r) = CYB(r0) + CYB(r∗) = CYB(r∗)

and
δr(x) = x · r = x · r0 + x · r∗ = x · r∗ = δr∗ (x)

for every x ∈ s. Consequently, s admits a non-trivial quasi-triangular Lie bialgebra structure if and
only if it admits a non-trivial triangular Lie bialgebra structure. Hence it will follow directly from
the argument below that s does not admit any non-trivial quasi-triangular Lie bialgebra structure
unless tr(Λ) 6= 0 or tr(Λ) = 0 and det(Λ) < 0.

(c)=⇒(a): Suppose a does not admit any non-trivial triangular Lie bialgebra structure. If a is
not solvable, then it was shown in [3, Lemmas 1 and 2] – by using the Levi decomposition theorem in
conjunction with the classification of finite-dimensional simple Lie algebras over the complex numbers
and the classification of three-dimensional simple Lie algebras over R – that a is isomorphic to su(2).

If a is solvable, then by virtue of Lemmas 1 and 2, we can assume for the rest of the proof that
the center C(a) of a is zero and [a, a] is abelian of dimension at most 2.

Suppose that dimR[a, a] = 1. Since C(a) = 0, for any non-zero element e ∈ [a, a] there exists an
element a ∈ a such that [a, e] 6= 0. (Note that this means in particular that a and e are linearly
independent over R.) But because dimR[a, a] = 1, we have [a, e] = λe for some 0 6= λ ∈ R. Set
r := a ⊗ e − e ⊗ a ∈ Im(1 − τ ). Then it follows from [7, Theorem 3.2] that r is a solution of the
CYBE and

δr(a) = [a, a]⊗ e + a ⊗ [a, e]− [a, e]⊗ a − e ⊗ [a, a] = λ · (a ⊗ e − e ⊗ a) 6= 0

implies that δr defines a non-trivial triangular Lie bialgebra structure on a.
Hence we can assume from now on that C(a) = 0 and that [a, a] is two-dimensional abelian.

Since dimR[a, a] = 2, there exist f1, f2 ∈ a such that

[a, a] = Rf1 ⊕ Rf2.

Next, we show that dimR a/[a, a] = 1. Suppose to the contrary that dimR a/[a, a] ≥ 2. Because
C(a) = 0, there is an element a ∈ a such that [a, f1] 6= 0. In particular, a 6∈ Rf1⊕Rf2, i.e., a, f1, and
f2 are linearly independent over R. It follows from dimR a/[a, a] ≥ 2 that there also is an element
a′ ∈ a such that a, a′, f1, and f2 are linearly independent over R. Moreover, for every 1 ≤ i, j ≤ 2,
there exist elements αij, α

′
ij ∈ R such that

[a, f1] = α11f1 + α12f2, [a, f2] = α21f1 + α22f2,

[a′, f1] = α′
11f1 + α′

12f2, [a′, f2] = α′
21f1 + α′

22f2.

If α12 = 0, we have [a, f1] = α11f1 6= 0, and we can argue as above (for the case dimR[a, a] = 1) that
a admits a non-trivial triangular Lie bialgebra structure. On the other hand, if α12 6= 0, we may set
h := α′

12a−α12a
′ and λ := α′

12α11−α12α
′
11. Then we obtain that h 6∈ [a, a] and that [h, f1] = λf1. If

we now put r := h⊗f1−f1⊗h ∈ Im(1− τ ), we see as before that r is a solution of the CYBE. Since
h 6∈ [a, a], and moreover, we may assume that f1 and [a, f1] are linearly independent, we conclude
that

δr(a) = [a, h]⊗ f1 + h ⊗ [a, f1] − [a, f1]⊗ h − f1 ⊗ [a, h] 6= 0.

Hence δr defines a non-trivial triangular Lie bialgebra structure on a.
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Finally, we can assume that a is three-dimensional and [a, a] is two-dimensional abelian. It then
follows that a ∼= sΛ(R) where det(Λ) 6= 0. (The latter condition holds because dimR[a, a] = 2.) If we
identify skew-symmetric tensors with the corresponding elements in the appropriate exterior power,
we obtain for an arbitrary skew-symmetric 2-tensor

r = ωf1 ∧ f2 + ξ1h ∧ f1 + ξ2h ∧ f2

with ω, ξ1, ξ2 ∈ R that

CYB(r) = [λ12ξ
2
1 − (λ11 − λ22)ξ1ξ2 − λ21ξ

2
2 ] · h ∧ f1 ∧ f2.

If tr(Λ) 6= 0, then – as already established in the proof of the implication (b)=⇒(c) – there is no
non-zero sΛ(R)-invariant 2-tensor. Consequently, r := f1 ∧ f2 defines a non-trivial triangular Lie
bialgebra structure on sΛ(R). On the other hand, if tr(Λ) = 0, then the discriminant of the relevant
homogeneous quadratic equation

λ12X
2
1 − (λ11 − λ22)X1X2 − λ21X

2
2 = 0

is the negative of det(Λ). Hence sΛ(R) admits a non-trivial triangular Lie bialgebra structure if and
only if det(Λ) < 0. This finishes the proof of Theorem 2.
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