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HOMOLOGICAL TOPICS IN THE REPRESENTATION
THEORY OF RESTRICTED LIE ALGEBRAS

JORG FELDVOSS

We present some recent developments in the application of ho-
mological methods to the represention theory of finite dimensional restricted
Lie algebras.

§0. INTRODUCTION

In these notes, we give an account of some general features of restricted
Lie algebra cohomology and discuss their application to some problems in
representation theory. The concept of restrictedness that was introduced in
the theory of modular Lie algebras by N. Jacobson in 1937 turned out to
be fundamental. Restricted Lie algebras are much easier to deal with than
modular Lie algebras in general, because they allow the definition of tori and
a decomposition of elements into semisimple and nilpotent parts (Jordan-
Chevalley-Seligman decomposition, cf. §1). These properties are similar to
those of semisimple Lie algebras over algebraically closed fields of character-
istic zero, where they are very useful in the classification and representation
theory. With every finite dimensional restricted Lie algebra there is asso-
ciated a family of finite dimensional (associative) Frobenius algebras, the
so-called reduced universal enveloping algebras. These algebras play an im-
portant role in the representation theory of restricted Lie algebras since their
module categories approximate to a certain degree (to be made precise be-
low) the category of modules for the corresponding Lie algebra, and methods
from the theory of associative algebras can be used in this context.

In the first two sections, we provide the necessary prerequisites from the
theory of restricted Lie algebras and their representations. In particular, we
introduce the toral and p-nilpotent radical of a finite dimensional restricted
Lie algebra. In §2, we consider the category of all modules with a fixed
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character and indicate that it is equivalent to the module category of a fi-
nite dimensional Frobenius algebra. Since every simple module over a finite
dimensional restricted Lie algebra is finite dimensional, in the case of an alge-
braically closed ground field, every simple module belongs to such a category.
Moreover, we determine the simple modules for some three-dimensional re-
stricted Lie algebras over algebraically closed fields. These examples will be
used in the remaining sections to illustrate some of the results. Finally, we
give some evidence that not every module over a reduced universal envelop-
ing algebra is semisimple. Already at this early stage we use cohomological
methods to prove the relevant results of N. Jacobson and G.P. Hochschild as
efficiently as possible.

In 1954, G.P. Hochschild [Hol] initiated the study of a cohomology theory
for restricted Lie algebras. He established the usual elementary interpreta-
tions of low dimensional cohomology as extensions of modules or algebras
and, more surprisingly, a connection between restricted and ordinary Lie
algebra cohomology in form of a six-term exact sequence. Apart from a
few papers in the late sixties [Chwe, May, Par|, restricted cohomology has
received considerable attention only quite recently in connection with the co-
homology theory of algebraic groups [An, AJ, CPS, FP1, FP2, Hum3, Jan2,
Jan3, Jan4, LN1, LN2, Nab, Sull], associative algebras [Fa3, Fa4] and in
its own right [Chiu2, Fal, Fab, FaS, Fel, Fe2, Fe3, FeS1, FeS2, FP3, FP4,
FP5, Janl, Janb, Na3, Na4, Sul2]. In the third section we present some
vanishing and non-vanishing theorems for restricted Lie algebra cohomology,
and in particular give a partial answer to Problem 7 in [Hum3]. Since the
restricted universal enveloping algebra is a Frobenius algebra, it is possible
to introduce complete restricted cohomology spaces which parallel those of
the Tate cohomology of finite groups. Aside from a single occurence in [Par],
this natural concept has apparently not been used in connection with Lie
algebras. Our results especially yield structural characterizations of certain
classes of finite dimensional solvable restricted Lie algebras, as well as some
information about the block structure of their reduced universal enveloping
algebras (cf. §4). This also enables us to describe the structure of the pro-
jective indecomposable modules over reduced universal enveloping algebras
of a finite dimensional nilpotent restricted Lie algebra (cf. §5).

In §6, we define the complexity of a module over a reduced universal
enveloping algebra and derive some of its elementary properties. More gen-
erally, based on the work of E.M. Friedlander and B.J. Parshall [FP3, FP4,
FP5], we introduce the support variety of such a module and retrieve the
complexity as its dimension. Due to the main result of [Janl], support vari-
eties often can be used as a substitute for the transfer mapping which plays
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a very important role in modular group cohomology but in general does not
exist for restricted Lie algebra cohomology. We illustrate this by deriving
two results on projective modules, namely a projectivity criterion using the
vanishing of Ext-spaces of sufficiently high degree and the equivalence of pro-
jectivity and cohomological triviality for finite dimensional modules (for the
latter see also §3). Another application of the geometric methods introduced
in 86 is the classification of finite dimensional restricted Lie algebras with
finitely many isomorphism classes of finite dimensional indecomposable re-
stricted modules resp. with periodic cohomology. The solution of the first
problem over algebraically closed fields was announced by W. Pfautsch and
D. Voigt [PV] in the more general context of infinitesimal algebraic group
schemes and the solution of the second problem (implying also a solution
of the first one) over perfect fields was found by H. Strade and the author
[FeS1]. This result is contained in the last section, where we also define the
module type of an algebra and address the more general question of finding
for certain classes of finite dimensional restricted Lie algebras the charac-
ters such that the corresponding reduced universal enveloping algebras are
semisimple or of finite resp. tame module type (see also [Fal0]).

Acknowledgements. It is a pleasure for me to thank everybody at the
Mathematics Department of Seoul National University for their kindness
and hospitality during the conference and in particular, Seok-Jin Kang for
inviting me to Seoul. Moreover, I would like to thank Georgia Benkart for
inviting me in the spring of 1992 to present parts of these notes (except §5)
in the Lie Theory Seminar at the University of Wisconsin in Madison and
making my stay as enjoyable as possible. I also wish to thank Dan Nakano
for inviting me to give a talk on (a part of) §3 and §4 in the Algebra Seminar
at Northwestern University in Fall 1992.

Furthermore, I would like to thank Meinolf Geck and Klaus Lux for invit-
ing me to the RWTH Aachen in December 1994 and Jiirgen Miiller for com-
puting the Loewy structure of the projective indecomposable u(W5(F),0)-
modules in the case of a (finite) field F of characteristic 2. I am also very
grateful to Rolf Farnsteiner for reading a preliminary version of this paper
and for showing me his unpublished notes on Yoneda products and the com-
plexity of modules over arbitrary self-injective rings. In preparing a readable
form of this paper, I received a great deal of help from Joe Ferrar who
made many valuable suggestions concerning the presentation resp. the Eng-
lish (style) and from Gerd Briichert who typed parts of the manuscript while
Jon Corson helped me to finish its ApS-TEX-version during my visit at the
Department of Mathematics of the University of Alabama in Spring 1995.



Finally, I would like to express my deep gratitude to my teacher Helmut
Strade who stimulated my interest in the field of representations of finite
dimensional modular Lie algebras.

61. RESTRICTED LIE ALGEBRAS

Let L always denote a Lie algebra over a field I of prime characteristic p.
For our purposes we need an additional structure on L which was introduced
by N. Jacobson in 1937. He observed an interesting connection between the
Frobenius mapping a — aP of an associative F-algebra A and the commutator
[a,b] == a-b—b-a. In fact, he was interested in the ?P-closed Lie algebra of all
F-derivations, Derp(E), for a field extension E D F in order to establish for
purely inseparable field extensions of exponent one a Galois correspondence
by using derivations instead of automorphisms.

In the abstract setting, a restricted Lie algebra (or a Lie p-algebra) L
admits a mapping ?!?! : L — L such that

(RL1) (z + y)Pl = 2Pl 4 ylPl 4 J(z y) Va,yelL,
(RL2) (ax)lP! = aPalP] VaeF zelL,
(RL3) adp zP) = (adp z)? Vazel.

Here J(z,y) € (x,y)P, where (z,y)P is the p-th term of the descending central
series of the subalgebra of L generated by x and y. We refer to ?[P! as
the restriction mapping (or p-mapping) of L, and sometimes we denote the
corresponding pair by (L, ?[P]).

A subalgebra (resp. ideal) K of L is called a p-subalgebra (resp. p-ideal) if
KIPl C K. For any S C L we denote by (S) (resp. (S),) the subalgebra (resp.
p-subalgebra) generated by S in L. If we define restricted Lie algebra homo-
morphism, monomorphism, epimorphism, and isomorphism as usual, then
the well-known Isomorphism Theorems etc. hold for restricted Lie algebras.

Examples.

(i) Let L be an abelian Lie algebra and suppose that f is an arbitrary
mapping on L. Then (L, f) is restricted if and only if f is p-semilinear.
The p-ideals of L are just the f-invariant subspaces.

(ii) For any F-vector space V, the commutator algebra

gl(V) := Endp(V)™ := (Endr(V), [7,7],7P)



(iii)
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is a restricted Lie algebra. In particular, gl,(F) := Mat,,(F)~ is an
n2-dimensional restricted Lie algebra for any positive integer n. The
so-called Lie algebras of classical type are p-subalgebras of gl (F) for
some positive integer n satisfying certain conditions, e.g. sl,(F) :=
{z € gl,(F) | tr(x) = 0} is a restricted Lie algebra of type A,,_; for
any integer n > 2, where tr(x) denotes the trace of the matrix x.

Let P, (F) denote the n-th truncated polynomial algebra, i.e., the com-
mutative and associative F-algebra with n generators t1,...,t, sub-
ject to the relations t? =0 (1 <j < n). According to the Leib-
niz Rule, the derivations W, (F) := Derp(P,(F)) of P,(F) form a
p-subalgebra of gl(P,(F)) and thus a finite dimensional restricted
Lie algebra. The so-called restricted Lie algebras of Cartan type are
p-subalgebras of W,,(F) for some positive integer n satisfying cer-
tain conditions, e.g. the derived subalgebra S, (F) of {377, fjé% |

2?21 ?JTJE = 0} for any integer n > 3 is called special Lie algebra. It
should be mentioned that the Lie algebras of classical type (including
the exceptional types F, F, G resp. psl, () if char(F) divides n) and
the restricted Lie algebras of Cartan type exhaust all finite dimen-
sional restricted simple Lie algebras over algebraically closed fields of
characteristic p > 7 [BW].

Let A, (F) denote the n-th truncated Weyl algebra, i.e., the asso-
ciative F-algebra with 2n generators x1,..., 2y, y1,...,yn subject to
the relations [x;,x;] = [yi,y;] = a8 =y = 0 and [z;,y;] = ;5 - 1
(1 < 4,57 < n). Then A,(F) is a p*"-dimensional central simple
F-algebra (cf. [Str4, p. 73]). The (2n + 1)-dimensional nilpotent p-
subalgebra

H,(F):=Fz1®--- @ Fz, dFl1 & Fy; & --- & Fy,
of A,,(IF)~ is the so-called n-th Heisenberg algebra.
Let L := Ft & Fe be the non-abelian two-dimensional Lie algebra,
where [t,e] = e. Since every derivation of L is inner and the center
of L is zero (cf. (RL3)), L possesses a unique p-mapping defined via
(0t 4+ ne)lPl .= 6Pt + o1,

ie., tlPl =t and el?! = 0.
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Remark. An arbitrary finite dimensional modular Lie algebra L can always
be embedded into a finite dimensional restricted Lie algebra F, a so-called
p-envelope of L (i.e., (L), = E), such that C(L)IP) = 0 = C(E)P!(see [Dzhu2,
Strb, Str6, SF]).

An element z € L is called semisimple if x € (xIPl), and p-nilpotent if
zlPl" = 0 for some positive integer n. Examples (i) and (v) suggest the
so-called Jordan-Chevalley-Seligman decomposition:

Theorem 1.1. Let L be a finite dimensional restricted Lie algebra over a
perfect field F. Every element x € L decomposes uniquely into x = x5 + =,
such that x, is semisimple, x,, is p-nilpotent and [zs,z,] = 0. O

A restricted Lie algebra L is called a torus if L is abelian and every element
is semisimple. (Note that the first condition is superfluous if the ground
field F is algebraically closed.) L is called p-nilpotent if every element is
p-nilpotent. Maximal tori are useful to produce Cartan subalgebras. Indeed,
the centralizer Cr(T) of any maximal torus 7" of L is a Cartan subalgebra of
L (and vice versa) (cf. [SF, Theorem II.4.1]).

Examples.

(vi) Consider the abelian restricted Lie algebra (L, f) over a perfect field.
The Fitting-0-space (resp. Fitting-1-space) of L with respect to f is
equal to the set of f-nilpotent (resp. f-semisimple) elements of L. In
particular, the Fitting-1-space is a maximal torus of L.

(vii) A matrix x € gl,(F) is semisimple if and only if = is diagonalizable
after some field extension. A matrix x € gl,,(F) is p-nilpotent if and
only if z is nilpotent. The subalgebra of all diagonal matrices is a
maximal torus of gl,, (F).

Note that an application of Example (vi) to L := (x), yields Theorem 1.1.
Let C(L) denote the center of L. In fact, C'(L) is a p-ideal of L. Since
every toral p-ideal is central, we obtain

Proposition 1.2. Let L be a finite dimensional restricted Lie algebra. Then
Tor,(L) := {x € C(L) | = is semisimple} is the largest toral p-ideal of L and
the following statements hold:

(a) Tor,(Tor,(L)) = Tory(L).

(b) Tor,(L/ Tor,(L)) = 0.

(c) For any restricted Lie algebra homomorphism ¢ we have

p(Tory(L)) € Tory(p(L)). O
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Analogous to Proposition 1.2, we have (cf. [SF, pp. 67-69]):

Proposition 1.3. Every finite dimensional restricted Lie algebra L pos-
sesses a largest p-nilpotent p-ideal Rad,(L) and the following statements
hold:

(a) Radp,(Rad,(L)) = Rad,(L).

(b) Rad,(L/Rad,(L)) = 0.

(c) For any restricted Lie algebra homomorphism ¢ we have

p(Rad, (L)) € Rad,(p(L)). O

(a), (b) and (c) in Proposition 1.2 resp. Proposition 1.3 are so-called radical
properties. Note that Tor,(L) and Rad,(L) are “orthogonal” to each other,
i.e., Rad,(Tor,(L)) = 0 = Tor,(Rad,(L)).

Examples.

(viii) Rad,(H,(F)) = 0 and the maximal torus of H,(F) is just the one-
dimensional center which therefore coincides with Tor, (H, (F)).
(ix) Let L := Ft @ Fe be the non-abelian two-dimensional Lie algebra.
Then Ft is a maximal torus of L, Tor,(L) = 0 and Rad,(L) = Fe.

§2. REPRESENTATION THEORETIC BACKGROUND

Let L be a restricted Lie algebra over F. One is particularly interested in
the relationship between L and those Lie algebras that occur “naturally” in
the sense of linear algebra. A (restricted) Lie algebra homomorphism p : L —
gl(M), where M is an F-vector space, is called a (restricted) representation
of L in M, and M is then called a (restricted) L-module.

One of the early observations in the representation theory of modular Lie
algebras is that Weyl’s Theorem is never true in prime characteristic:

Theorem 2.1. [Jacl| For every non-zero finite dimensional restricted Lie
algebra there exists a finite dimensional module that is not semisimple. [

In preparation for our subsequent arguments we give a cohomological proof
of Theorem 2.1. If every finite dimensional L-module is semisimple, then ev-
ery short exact sequence of finite dimensional L-modules splits, i.e., in par-
ticular, the first ordinary cohomology space H*(L, M) := Extllj(L)(IF, M) of
L with coefficients in an arbitrary finite dimensional L-module M vanishes.
(Since the (ordinary) universal enveloping algebra U(L) of L is a Hopf al-
gebra, these conditions are in fact equivalent.) Consequently, it is enough
to show the following cohomological non-vanishing result (see also [Dzhu4,
Corollary 2 in §1] or [FaS, Corollary 2.2] for a more general result conjectured
by G.B. Seligman):
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Theorem 2.2. For every non-zero finite dimensional restricted Lie algebra
L there exists a finite dimensional module M such that H'(L, M) # 0. O

Remark. By virtue of the long exact cohomology sequence and Theorem 3.1
(a), the module in Theorem 2.2 (but in general not in Theorem 2.1) can be
chosen to be simple and restricted. Moreover, both results are also true for
non-restricted modular Lie algebras. It is enough to give only a proof for a
non-restricted version of Theorem 2.2. This can be done by using a result of
R. Farnsteiner [Fa7, Corollary 2.4(2)], namely that for every simple restricted
E-module S there is an isomorphism H*(E,S) = H'(L,S)® (E/L®pSt). If
there is a non-trivial simple restricted E-module S with H!(E,S) # 0, then
HY(L,S) # 0. Otherwise E is nilpotent (see Theorem 3.6 and its proof).
Hence L is also nilpotent and H'(L,TF) # 0.

For an abelian Lie algebra L we obtain by virtue of the standard resolu-
tion of the one-dimensional trivial L-module F that H!(L,F) = L. In the
remaining case of a non-abelian (restricted) Lie algebra, Theorem 2.2 will
follow immediately from Theorem 2.5 (or the first part of its proof) and
Hochschild’s five-term exact sequence (2) below.

Theorem 2.1 shows that it is not enough (even for the study of finite di-
mensional modules) to consider only simple modules. The next result shows
that in contrast to the zero characteristic case there are no infinite dimen-
sional simple modules over finite dimensional modular Lie algebras (cf. the
Remark before Theorem 1.1). The proof has a strong ring theoretical flavour
and shows that the “large” center C'(U(L)) of the (ordinary) universal en-
veloping algebra U(L) of L in the prime characteristic case is responsible
for this difference. In fact, the dimensions of simple L-modules are bounded
above, and there has been considerable interest in determining a least upper
bound for some classes of Lie algebras, especially for simple Lie algebras of
classical type [Rul, VK, FP7]! and Cartan type [Mill, Mil2, Kryl] (cf. also
[Pan, Kry2] and [Hum3, Problem 4]). Much more important for our purposes
will be Corollary 2.4.

Theorem 2.3. [Cul| Every simple module over a finite dimensional re-
stricted Lie algebra is finite dimensional.

Proof. Consider the unitary subalgebra O(L) of U(L) generated by {zP—z[P! |
x € L}. (RL3) implies O(L) € C(U(L)). Let S be a (non-zero) simple

IRecently, A. Premet [Pre2] has made considerable progress by proving the Kac-
Weisfeiler conjecture.
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L-module. According to N. Jacobson’s refinement of the Poincaré-Birkhoff-
Witt-Theorem, U(L) is a finitely generated O(L)-module and therefore the
same holds for S. Then by the Generalized Nakayama Lemma (or some
considerations on integral ring extensions) M := Anny)(S) NO(L) is a
maximal ideal of O(L). Since O(L) is a finitely generated F-algebra, Hilbert’s
Nullstellensatz implies that O(L)/M 2O T is a finite field extension, i.e.,
dimp S = dimO(L)/M S - dimp O(L)/M is finite. O

Then Schur’s Lemma immediately yields

Corollary 2.4. [VK] Let L be a finite dimensional restricted Lie algebra
over an algebraically closed field. Then for every simple L-module S there
exists a linear form y € L* such that

(1) ()% — (2PN)g = x(x)P -ids VxeL O

Remark. Note that y corresponds uniquely to the restriction of a central
character of U(L) to O(L).

An arbitrary L-module M is said to have the character x if and only if
(1) holds for M instead of S. In the following we are going to investigate
the category Mod(L, x) of all L-modules with a fixed character x. By virtue
of Corollary 2.4, every simple L-module belongs to such a category. But
according to Theorem 2.1, not every finite dimensional L-module is semisim-
ple. Moreover, (the isomorphism classes of) simple L-modules have been
classified (as far as known to the author) only for

e nilpotent (restricted) Lie algebras (due to H. Zassenhaus [Zasl]),

e the p-dimensional Witt algebra W; (due to H.-J. Chang [Chang], see
also [Str2] and [Dzhu2]),

e the three-dimensional simple Lie algebra sly (due to N. Jacobson
[Jac2] for the restricted case x = 0 and R.E. Block [Blo] for the
non-restricted case y # 0),

e the (p? — 2)-dimensional Hamiltonian algebra Hs (due to N.A. Kore-
shkov [Kol], see also [Strl]),

e the 2p?-dimensional Jacobson-Witt algebra Wy (due to N.A. Kore-
shkov [Ko2], see also [Wi]).
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One reason to consider only Mod(L, x) is that this category is equivalent to
the category of (unitary left) modules over a (finite dimensional associative)
Frobenius algebra

u(L,x) = U(L)/U(L){a? — 2 — x(x)? - 1 | w € L},

the so called x-reduced universal enveloping algebra of L (cf. [SF, Corol-
lary V.4.3] or [FP5, Proposition 1.2]). This allows a remarkable application
of the representation theory of finite dimensional associative algebras to the
study of u(L, x)-modules and indicates the similarity of many properties of
Mod(L, x) to the modular representation theory of finite groups. In particu-
lar, we are interested in decomposing u(L, x) into indecomposable two-sided
ideals, the so-called block ideals, to reduce the problem of determining the
structure of u(L, x)-modules further (cf. §4). Moreover, the group Aut,(L)
of restricted Lie algebra automorphisms of L acts on the coadjoint module
L* via
g-x:=xog ! V g€ Aut,(L),x € L*.

It is not difficult to see that if two characters x and x’ of L belong to the same
orbit under the action of Aut, (L), then u(L, x) and u(L, ') are isomorphic
(as unitary associative F-algebras). Therefore it is enough to consider only
one (suitable chosen) character for each Aut,(L)-orbit.

In order to have some explicit examples at hand, we determine the isomor-
phism classes of the simple modules for some three-dimensional restricted Lie
algebras over an algebraically closed ground field.

Examples.

(i) Consider the three-dimensional Heisenberg algebra
L:=H,(F) =Fe; ®Fz ® Fe_,
ey, e—] =z, e[ﬁ] =0, zIPl = 2.

Put I := Fz ® Fe_ and let w € I*. Then L* has two different
Aut,(L)-orbits, namely

X(z) = 0: Since I is abelian, an application of [SF, Corollary
V.7.6(2)] yields

(L, x) = {Fy} U{Ind7 (F, x) | 0 # w(z) € Fpw(e-) = x(e-)},

ie, |Irr(L,x)| = p.
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X(z) # 0: By the same argument as in the first case, we obtain
that every simple module is (properly) induced, i.e.,

Lrr(L, x) = {Ind (Fl, ) | w(2)” — w(z) = x(2)7,w(e=) = x(e-)}.

In particular, | Irr(L, x)| = p and by a dimension counting argument
(see the proof of Theorem 5.2) we conclude that u(L, x) is semisimple.
(ii) Consider the three-dimensional supersolvable restricted Lie algebra

L :=TFt @ FedFz,

t,e] =e+z, tPl =t elPl =0, 2Pl = 2

Then L has two different Aut,(L)-orbits so that the corresponding
isomorphism classes of simple L-modules can be described by using
the abelian p-ideal I := Fe ® Fz as follows:

x(e + z)? = x(e) : Similarly to (i), [SF, Corollary V.7.6(2)] yields

Irr(L,x) ={Fr | T € L*,I'(t) € F,,I'(e) = x(e),T'(e + z) =0}
U{Ind7 (Fy, x) | 7(e) = x(€),7(2) = 7(2) = x(2)?,7(e + 2) # 0},

ie, |Irr(L,x)| =2p— 1.
x(e + z)P # x(e) : Then every simple object in Mod(L, x) is (prop-
erly) induced by I, i.e.,

Irr(L, x) = {Ind7 (Fy, x) [ 7(e) = x(e),7(2)" = 7(2) = x(2)"}.

Hence as in (i) we see that u(L, x) is semisimple.
(iii) Consider the three-dimensional (restricted) simple Lie algebra

L := sly(F) = Fe, ® Fh & Fe_,

[hyer] = +2-ex, [er,e_] =h, WPV =h, ¥ =o0.

Assume that char(F) > 2. (Note that otherwise sly(FF) is a three-
dimensional Heisenberg algebra.) Let B := Fh @ Fe_ denote a (stan-
dard) Borel subalgebra and ¢ := % -h? +eye_ + e_ey the Casimir
element of L. Most of the following is due to A.N. Rudakov and I.R.
Shafarevic [RS] (see also [SF, pp. 208/209] and [FP5, §2]). There
are three different coadjoint orbits of characters for L, namely the
restricted orbit containing only the zero character and the so-called
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reqular nilpotent resp. reqular semisimple orbits for which a(ny) ex-
tension of the corresponding character of O(L) to a central character
of U(L) annihilates resp. does not annihilate the Casimir element.
The corresponding (isomorphism classes of) simple L-modules can
be described as follows.

x = 0: This case resembles in some respect the non-modular case.
There are p isomorphism classes of simple objects in Mod(L,0) dis-
tinguished by their highest weights A € F,. They can be represented
as the unique simple quotient S(\) of the restricted Verma modules
V (X, 0) :=Ind5(Fy,0), where h (resp. e_) act by multiplication with
A (resp. trivially) on the one-dimensional B-module F}.

If x # 0, conjugation by a suitable p-automorphism of L (see
[SF, p. 208]) shows that we can always assume x(e_) = 0. If y
denotes a(ny) central character of U(L) extending the character of
O(L) corresponding to x, we obtain:

X # 0 and x(c) = 0: There are pTH isomorphism classes of sim-
ple objects in Mod(L, x) represented by x-reduced Verma modules
V(N x) = Indé(FA,X), where A is a root of the separable polyno-
mial 2P — x — x(h)? - 1. Note that V(X,x) = V(A, x) if and only if
N+A=p-—2.

x(c) # 0: There are p isomorphism classes of simple objects in
Mod(L, x) represented by reduced Verma modules as for regular nil-
potent characters.

Most important for the structure of L are the restricted L-modules (i.e.,
L-modules with character 0), e.g. since the (co)adjoint module is restricted.
Note that semisimple elements of L act semisimply on every u(L, x)-module
(see Lemma 3.2), but p-nilpotent elements of L act in general only nilpotently
on restricted L-modules (see Examples (i)—(iii) above).

In order to finish the proof of Theorem 2.2, we introduce the so-called
restricted cohomology. Since the one-dimensional trivial L-module F is re-
stricted, we can define the restricted cohomology spaces of L with coefficients
in a restricted L-module M by means of

HI(L, M) == Ext?} o) (F,M) ¥ n>0.

G.P. Hochschild [Hol] showed that there is a five-term exact sequence relating
ordinary and restricted cohomology (see also Theorem 3.1(c)):

(2) 0 — HYL,M) — HY(L,M) — Hom(L, M%)
— H*(L,M) — H*(L, M).
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The proof of the next result was inspired by ideas in [Fal, Fel, Fe2] (see also
[Fab]).

Theorem 2.5. [Ho2] If every finite dimensional restricted L-module is semi-
simple, then L is a torus.

Proof. As in the discussion after the proof of Theorem 2.1 for the ordinary co-
homology, we see that H! (L, M) = 0 vanishes for every finite dimensional re-
stricted L-module M. Let 0 — K — P — [F — 0 be a finite dimensional pro-
jective presentation of F over u(L,0). If we apply the long exact cohomology
sequence to the corresponding dual short exact sequence, we obtain the iso-
morphism H2(L,F) = H}(L, K*). The vanishing of the latter space follows
from our assumption. Consider now (2) for M := F. We obtain the exactness
of 0 - L/[L,L] — Hom(L,F) — 0, i.e., [L,L] = 0 and L is abelian. Let x
be an arbitrary element of L and put X := (x),. From Shapiro’s Lemma for
restricted cohomology, we deduce H!(X,F) = H!(L,Homx (u(L,0),F)) =0,
because u(L,0) is finite dimensional. But H!(X,F) = X/(X[P) i.e.,

e (x pr[p (z[P]y,),

n>1

and z is semisimple. [

Remark. In fact, the converse of Theorem 2.5 is also true (cf. [Ho2]), which
will be shown in Lemma 3.2.

In §6 and §7 we will generalize Theorem 2.5 considerably. In order to do
this, we will replace vanishing conditions by statements about the growth of
the graded vector space Exty, ; \ (M, N) (cf. §6). Our main goal in §7 will
be to decide under which conditions on L and/or x a classification of all
(isomorphism classes of) finite dimensional indecomposable u(L, x)-modules
is possible.

§3. COMPLETE RESTRICTED COHOMOLOGY
For every restricted Lie algebra L and every restricted L-module M there
is a spectral sequence

Homp (A (L), HI (L, M)) = H"(L, M)

(cf. [FP5, §5] or [Fab, Theorem 4.1]) which implies the second half of the
next result. In the special case n = 1, this is just Hochschild’s five-term
exact sequence (2) in §2.
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Theorem 3.1. Let L be a restricted Lie algebra and M be an arbitrary
L-module. Then the following statements hold:

(a) [Fa2] If M is finite dimensional and does not contain a non-zero re-
stricted submodule, then H™ (L, M) = 0 for every integer n > 0.
(b) If M is restricted, then we have for every integer n > 0:

HI(L,M)=0 Vj<nifandonlyif H(L,M)=0 Vj<n.

(c) IfFH/(L,M)=0 Vj<n-—2, then H*"*(L,M) = H* (L, M) and
the following sequence is exact:

0— H:}(LvM) - Hn(LvM) - HOHI(L,H:}_I(L,M))
— H"YY (L, M) — H"TY(L, M).

Proof. In order to prove (a), we consider the (non-unitary) subalgebra C' of

C(gl(M)) generated by {(x)%, — (x)g\p) | © € L}. Note that C is just the
image of O(L) — {1} (cf. the proof of Theorem 2.3) under the corresponding
representation (7)ps of M. Since M is finite dimensional, there is a Fitting
decomposition M = My(C') @ M;(C') with respect to C. By assumption, the
largest restricted L-submodule M¢ :={m e M |c-m=0 VceC}of M
is zero and thus My(C)¢ = 0. Then Engel’s Theorem implies My(C) = 0,
and we conclude M = M;(C). Hence M = CM,(C)=CM = C(U(L)*)M,
where U(L)T denotes the augmentation ideal of the (ordinary) universal
enveloping algebra U(L) of L, and the assertion follows from a general coho-
mological vanishing result of R. Farnsteiner [Fa2, Corollary 5.2(1)]. Finally,
(b) and (c) are special cases of the spectral sequence mentioned above. [

By virtue of Theorem 3.1, it is in many cases sufficient to consider re-
stricted cohomology. Since the restricted universal enveloping algebra u(L, 0)
of a finite dimensional restricted Lie algebra L is a Frobenius algebra, it is
possible (and indeed more natural) to introduce the so-called complete re-
stricted cohomology (cf. [Par, Fel, Fe2]). By the same token, one can intro-
duce complete extension functors for reduced universal enveloping algebras,
from which the complete restricted cohomology can be derived as usual (see
§2).

Let X be an arbitrary u(L, x)-module. Since the y-reduced universal
enveloping algebra u(L,x) is Frobenius, every member I of an injective
resolution

0—x L0 pd o



RESTRICTED COHOMOLOGY AND REPRESENTATION THEORY 15

of X over u(L, x) is projective. Let
PP PSS X 0

be a projective resolution of X over u(L,x) and put P_, := I""! d_, =
d"~! for every integer n > 1 and set dy := 1 o e. Splicing the two resolu-
tions together, one obtains the following acyclic chain complex of projective
u(L, x)-modules:

P p . p N p, Lup,l2pL
€\ i
X
/ N\
0 0

This diagram is referred to as a complete projective resolution of X over
u(L, x). Applying Homy,(?,Y") for any u(L, x)-module Y and taking homol-
ogy of the corresponding chain complex yields the complete extension func-
tors E;(tZ(L’X)(X, Y') with coefficients in X and Y. Since the one-dimensional
trivial L-module F has character 0, one can introduce the complete restricted
cohomology with coefficients in a restricted L-module M by

HML,M) = Ext,, ,(F,M) VneL

This resembles the well-known Tate cohomology for finite groups and con-
tains the more familiar Hochschild cohomology (cf. §2) for positive integers
(cf. [Par, Fel, Fe2]), but note that in contrast to the group algebra, u(L,0)
is in general not symmetric (see [Schuel, Hum2)):

( H!(L,M) for n>0

M"Y /Im(s)py for n=0
Ker(s)a /vy (Ker(e))M  for n=—1
Toru(L’O)(IE‘,VZ1 M) for n< -1

—n—1

HM(L,M) =

\

Here € denotes the augmentation map of u(L,0), s the so-called trace element
(defined by € = s- A, where \ is the image of the identity element 1 € u(L,0)
under the Frobenius isomorphism wu(L,0) = w(L,0)*), vy the Nakayama
automorphism of u(L,0) induced by =z — x — tr(adpz) -1 (x € L) and
vy M the u(L,0)-module with twisted action u ol M= vt (u) - m for
u € u(L,0) and m € M.

For later applications, we state two important features of complete re-

stricted cohomology without proof (cf. [Fe2, Theorem 2.4 and Theorem 2.5)):
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Reduction Theorem. Let L be a finite dimensional restricted Lie algebra.
Then for arbitrary u(L, x)-modules M, N we have natural isomorphisms

Exty,; (M, N) = H?(L,Homg(M,N))  VneZ O

Degree Shifting. Let L be a finite dimensional restricted Lie algebra. Then
for every integer r there exists a restricted L-module M") such that

HY(L,M) = H' "(L,M™)  VneZ O

As a first consequence we obtain the converse of Theorem 2.5:

Lemma 3.2. Let L be a finite dimensional torus. Then H"(L, M) vanishes
for every restricted L-module M and every integer n. In particular, u(L,x)
is semisimple for any x € L*.

Proof. By degree shifting, it is enough to show the assertion only for one inte-
ger, e.g. n = 0. Since u(L,0) is finite dimensional, we can moreover assume
(by virtue of the long exact sequence for complete restricted cohomology)
that M is simple. If M 2 F, we obtain HO(L, M) = 0 because M~ = 0. Ac-
cording to an old result of N. Jacobson (cf. [SF, Theorem I1.3.6(1)]), L has a
toral basis {t1,...,t.} (i.e., t?] =t; V1 <i < r) over the algebraic closure F
of F. In this case we can easily compute the trace element s = [];_, (¢/ o)
and therefore conclude that £(s) = —1 # 0. Hence

HY(L,F) o F =~ H)(L @5 F,F) = F/(s - F) = 0.
The second statement follows immediately from the first statement and the
Reduction Theorem. [

Remark. In fact, the above proof is a homological adaptation of Hochschild’s
original proof for the restricted case in [Ho2].

A restrictegl L-module M is called cohomologically trivial if the complete
cohomology H]'(K, M) vanishes for every integer n and every p-subalgebra
K of L.
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Lemma 3.3. [Fe2] Let L be a finite dimensional p-nilpotent restricted Lie
algebra and M be an arbitrary restricted L-module. Then the following
statements are equivalent:

(a) There is an integer ng such that H™ (L, M) vanishes.
(b) M is cohomologically trivial.

(c) M is projective.

(d) M is free.

Proof. 1t is clear that the implications (d)=-(c¢) =(b)==-(a) hold. Note
that the augmentation ideal of the restricted universal enveloping algebra
u(L,0) of a finite dimensional p-nilpotent restricted Lie algebra L is nilpo-
tent, i.e., u(L,0) is a local algebra. By a standard argument (cf. Step 1
in the proof of [Fe2, Proposition 5.1]), it is therefore possible to show that
Tor*“O(F, M) = 0 implies the freeness of M2

Recall that H;2(L, M) and Torlf(L’O)(IF, M) can be identified in a natural
way because u(L,0) is symmetric (i.e., vy, = idy(z,0)). In order to show the
implication (a)==(d), it is therefore enough to show that H™ (L, M) = 0
implies H-2(L, M) = 0. By degree shifting there exists a restricted L-module
My such that

(3)  H™(L,My) = H"™™*2(L M) VnelZ

Hence our hypothesis yields the vanishing of H_2(L, My). Then the above
argument shows that My is free. Consequently, we obtain H$ (L, My) = 0
and thus the vanishing of H_2(L, M) follows directly from (3). O

Remark. Using Lemma 3.3 we will prove in Theorem 6.12 that statements
(b) and (c) are equivalent for every finite dimensional restricted module over
any finite dimensional restricted Lie algebra. Therefore it is possible to show
that the equivalence of statements (c) and (d) (even for finite dimensional
modules) characterizes finite dimensional p-nilpotent restricted Lie algebras
(cf. [Fe2, Proposition 5.4]).

The main vanishing result for complete restricted cohomology of nilpotent
restricted Lie algebras can be formulated as follows:

2Note that this is the finite dimensional version of a classical result of I. Kaplansky
which says that every projective module over a local algebra is free.
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Theorem 3.4. [Fe2] Let L be a finite dimensional nilpotent restricted Lie
algebra and M be an arbitrary restricted L-module. Suppose there is an
integer ng such that H" (L, M) vanishes, then the complete restricted coho-
mology H (L, M) vanishes for every integer n.

Proof. Note that Ty := Tor,(L) = {z € L | x is semisimple} is the unique
maximal torus of L. Then L/Ty is p-nilpotent. By virtue of Lemma 3.2
and the Hochschild-Serre spectral sequence (cf. [Fe2, Proposition 3.9] for
an elementary inductive argument), there is an isomorphism H”(L, M) =
ﬁf(L /Ty, MT0) for every integer n, and thus the assertion is an immediate
consequence of Lemma 3.3. [

In particular, ﬁf(L, S) vanishes for every simple restricted L-module
S 2 F and every integer n. Compare this with Lemma 3.2 which says that
for a torus L the complete cohomology ﬁf(L, S) vanishes for every simple
restricted L-module S and every integer n. Theorem 3.4 in conjunction with
the long exact cohomology sequence and (the proof of) Theorem 2.5 yields
the following non-vanishing result for nilpotent restricted Lie algebras:

Corollary 3.5. [Fab, Fe2| Let L be a finite dimensional nilpotent restricted
Lie algebra and suppose L is not a torus. Then HI'(L,F) # 0 for every
integer n. [J

Remark. Corollary 3.5 can be used to show that every finite dimensional
non-toral nilpotent restricted Lie algebra has a restricted outer derivation.

Next, we give a cohomological characterization of nilpotent restricted Lie
algebras that involves complete restricted cohomology with simple modules
as coefficients.

Theorem 3.6. [Fe2] Let L be a finite dimensional restricted Lie algebra.
Then L is nilpotent if and only if H}(L, S) vanishes for every simple restricted
L-module S # F.

Proof. By virtue of Theorem 3.4, it is enough to prove that the condition is
sufficient for the nilpotency of L. From ML = H!(L, M) = 0 for every non-
trivial simple restricted L-module M one deduces on account of Hochschild’s
five-term exact sequence (see (2) in §2 or Theorem 3.1(c)) and Theorem 3.1(a)
the vanishing of H!(L, M) for every non-trivial simple L-module M. Then an
analogous cohomological characterization for ordinary modular nilpotent Lie
algebras (cf. [Dzhu4, Theorem in §4]) concludes the proof of the theorem. [
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Remark. In the non-modular case a classical cohomological vanishing the-
orem of J.H.C. Whitehead (cf. also [Fa3, Theorem 3.1]) implies that these
conditions are equivalent to L being the direct product of a semisimple and
a nilpotent Lie algebra. (Look at the proof of [Ba2, Theorem 3]|!)

A Lie algebra is called supersolvable if there is a (descending) chain of
ideals such that all factors are one-dimensional. One readily verifies that
every subalgebra and every factor algebra of a supersolvable Lie algebra is
supersolvable. A finite dimensional Lie algebra L over an algebraically closed
field is supersolvable if and only if the derived subalgebra [L, L] is nilpotent
(cf. [Dzhu2, Theorem 3)). In fact, L is isomorphic to T'@ Nil(L), where T is a
torus in L and Nil(L) denotes the largest nilpotent ideal of L. The following
theorem is a slight generalization of a restricted analogue of a result due to
D.W. Barnes [Bal]:

Theorem 3.7. Let L be a finite dimensional supersolvable restricted Lie
algebra and M be a finite dimensional® restricted L-module. If M does not
contain a one-dimensional submodule, then the complete restricted cohomol-
ogy H™(L, M) vanishes for every integer n.

Proof. Since the hypothesis and the conclusion are independent of the ground
field F, we can assume that F is algebraically closed. Set N := Nil(L).
Because N is an ideal in L we have Tor,(/N) = Tor,(L) =: Ty which is
the unique maximal torus of N. Hence we obtain from the decomposition
L =T & N that L/Ty is strongly solvable (i.e., a semidirect product of a
torus and a p-nilpotent ideal).

By virtue of Lemma 3.2 and the Hochschild-Serre spectral sequence (or
an elementary inductive argument as in [Fe2, Proposition 3.9]), there are
isomorphisms

H™(L,M) = H'(L/Ty, M™)  VneZ

Since every simple restricted module of a strongly solvable restricted Lie
algebra is one-dimensional, our hypothesis yields

SOCL/TO(MTO) = 0, i.e., MTO = 0,

and thus the assertion. [

In particular, ﬁf(L, S) vanishes for every simple restricted L-module S
that is not one-dimensional. In order to prove a non-vanishing result for

3Tt would be enough to assume that M is artinian.
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supersolvable restricted Lie algebras which is analogous to Corollary 3.5, we
introduce the following subgroup of (the additive group of) L*:

GF = {ye L* | (L, L) = 0,7(«") = y(2)? V = € L}

(cf. [SF, p. 242]). As a consequence of the Jordan-Chevalley-Seligman de-
composition (cf. Theorem 1.1), we obtain that G is finite (cf. [SF, Proposi-
tion V.8.8(1)]). For every v € G the one-dimensional vector space F, := F1,,
is a restricted L-module via x - 1, := v(z)1, V = € L and conversely, every
one-dimensional restricted L-module occurs in this way. Hence we obtain
from Theorem 3.7 and the long exact cohomology sequence in conjunction
with degree shifting and (the proof of) Theorem 2.5:

Corollary 3.8. [Fab, Fe2] Let L be a finite dimensional supersolvable re-
stricted Lie algebra and suppose L is not a torus. Then

H!NL, @ F,)#0 YneZ O

yeGL

Remark. By virtue of [Fe5, Lemma 2], G¥ can be replaced by G¥ (see also
the proof of Theorem 4.2(b)).

As an analogue to Theorem 3.4, we have the following cohomological char-
acterization of supersolvable restricted Lie algebras:

Theorem 3.9. [Fe2, Fe3| Let L be a finite dimensional restricted Lie alge-
bra. Then L is supersolvable if and only if H}(L, S) vanishes for every simple
restricted L-module S that is not one-dimensional.

Proof. According to Theorem 3.7, it is enough to prove that the condition is
sufficient for the supersolvability of L. From M* = H!(L, M) = 0 we deduce
by means of Hochschild’s five-term exact sequence (see (2) in §2 or Theorem
3.1(c)) the vanishing of H!(L, M) for every simple restricted L-module M
that is not one-dimensional. By virtue of Theorem 3.1(a) and [Ba2, Theorem
4], we obtain the assertion. [

Remark. Tt is also possible to give cohomological characterizations of finite
dimensional (strongly) solvable restricted Lie algebras in the spirit of [Sta,
Theorem A] (cf. [Fe2, Proposition 5.8 and Proposition 5.12]). For a unifying
approach towards a cohomological characterization of certain classes of finite
dimensional solvable modular Lie algebras we refer the reader to [Fe3].
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Since such satisfactory vanishing results as Theorem 3.4 are not true for
more general classes of restricted Lie algebras (see e.g. Theorem 3.7) and the
actual computation of restricted cohomology spaces is in most cases a very
difficult (or even impossible) task, it is quite natural to introduce some co-
homological invariants of L that are connected with both aspects mentioned.
Define

p(L) := min{dimg M | 0 # M such that H"(L, M) =0V n € Z},
tp(L) := min{dimg M | 0 # M is cohomologically trivial}.
R. Farnsteiner introduced in [Fa4, Fa5] a similar invariant, namely
vp(L) := min{dimg M | 0 # M such that H](L,M) =0V n > 0}.

By virtue of Theorem 3.4, we have 9,(L) = v, (L) for nilpotent restricted Lie
algebras L.* Let rk(L) denote the maximal dimension of a torus of L. Then
the following inequalities hold:

(4) 1 < w,(L) < p(L) <tp(L) < pdimmL—rk(L)'

The first three inequalities are obvious consequences of the definitions and
the last one follows from Shapiro’s Lemma for restricted cohomology in
conjunction with Lemma 3.2. In particular, we obtain for any torus that
vp(L) = 0p(L) = tp(L) = 1 (see also Lemma 3.2). Moreover, Theorem 6.12
(cf. also the remark after Lemma 3.3) implies that

(5) tp(L) = min{dimg M | 0 # M is a projective u(L,0)-module}.

Since cohomology is additive, the problem of determining ¢,(L) is thus the
same as that of determining the minimal dimensions of projective indecom-
posable u(L,0)-modules (cf. [Hum3, Problem 5]). As an easy consequence of
(5) we obtain that tori are characterized by the property t,(L) = 1:

Proposition 3.10. A finite dimensional restricted Lie algebra L is a torus
if and only ift, (L) = 1.

Proof. Assume that t,(L) = 1 and S is a one-dimensional projective u(L, 0)-
module. Since the tensor product of a projective u(L,0)-module with any
u(L,0)-module is always projective (cf. [Par, Lemma II.2.5]), we conclude
that the one-dimensional trivial L-module F = § ®p S* is projective. From
the Reduction Theorem in conjunction with Theorem 2.5 we finally deduce
that L is a torus. Since the other implication has already been observed, the
proof is complete. [J

4As a consequence of the results in [CNP] this is true in general.
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Examples.

(i)

(i)

(iii)

For any p-nilpotent restricted Lie algebra we have
tp(L) = 0p(L) = vp(L) = pdimFL

(cf. Lemma 3.3). But the equality ¢,(L) = 9,(L) is not in general
true as the non-abelian two-dimensional Lie algebra shows. In this
case we have U,(L) = 1 < p = t,(L) for p > 2. (Of course, equality
holds for p = 2 because of the lack of enough simple modules.)

If L is strongly solvable, then by virtue of (5), we can read off from
the well-known description of the projective indecomposable u(L, 0)-
modules as induced modules (see the proof of Theorem 4.7):

tp(L) _ pdim[p L—rk(L) )

But in general not much is known about 0, (L).

Let L be a (restricted) simple Lie algebra of classical type. (5) in
conjunction with Humphreys’ dimension formula for projective inde-
composable u(L,0)-modules [Hum1, Theorem 4.5] yields:

tp(L) _ p%~[dim[p L—rk(L)]

In fact, this can also be derived directly from an analogue of a result
of L.E. Dickson for finite dimensional modular group algebras (cf.
[Hum1, Proposition 4.3] or [Fel, Satz I1.3.1]) and the well-known
dimension of the (projective) Steinberg module.

Consider sl (F) for p > 2. If p > 3, then we obtain 0, (sl (F)) = 2
since the two-dimensional natural sy (IF)-module does not belong to
the principal block of u(slz(F),0) (see §4). If p = 3, then the ad-
joint module (= Steinberg module) is the only simple module with
vanishing (complete) restricted cohomology and therefore we obtain
in this case 0, (sl2(F)) = 3 = t,(sl2(F)). In fact, one has explicit di-
mension formulas for the restricted cohomology of all indecomposable
restricted sla(F)-modules (see [Fi, Chapter 3]). For L # sly(F) there
is only some information on 1-cohomology (see [Sul2, Pfe, Jan5]).
For a restricted simple Lie algebra of Cartan type over any alge-

braically closed field F of characteristic p > 2, one can read off from
the work of R.R. Holmes and D.K. Nakano [Nal, HN2]:

tp (W1 (F)) = pP~2, t,(Wa(F)) = p?" =%, t,(Ha(F)) = p? ~°.
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About ¥, nothing is known except for W1 (F), p = 5 or p = 7 (see
[Nad]) and W5(F), p = 2. E.g. in the latter case we have

op(W2(F)) = 8 = t,(W2(F))

since the adjoint module is a projective u(Wa2(IF), 0)-module which is
very similar to sla(F), p = 3 (cf. §4).°

Next, we prove an analogue of Proposition 3.10 for ¢, in the nilpotent
case. The equivalence of (a) and (b) is due to R. Farnsteiner [Fa5].

Theorem 3.11. Let L be a non-zero finite dimensional nilpotent Lie al-
gebra over an algebraically closed field. Then the following statements are
equivalent:

(a) 0p(L) = 1.

(b) Tor,(L) Z ([L, L])p-
(c) GE #£0.

Proof. (a)==(b): Assume that 0,(L) = 1 and F}, is a one-dimensional re-
stricted L-module such that H” (L, F,) =0 for every n € Z. If v = 0, then
Corollary 3.5 implies that L is a torus, i.e., Tor,(L) = L Z 0 = ([L, L]),.
If v # 0, then we have y1or,(z) # 0. Otherwise F, is a trivial L/ Tor,(L)-
module (because L/ Tor,(L) is p-nilpotent) and as in the proof of Theo-
rem 3.4 we obtain by applying again Corollary 3.5:

0# H"(L/Tor,(L),F,) = H*(L, F,) = 0,

a contradiction. Since F, is restricted, we have v(([L, L]),) = 0 and hence
the assertion.

(b)==(c): Set A := L/([L,L]),. Since (L,L), C Ker(y) = Annp(Fy),
F, is a restricted A-module for any v € GL. This establishes a one-to-
one correspondence between one-dimensional restricted L-modules and one-
dimensional restricted A-modules, i.e., GL' = GA. By hypothesis, A is not
p-nilpotent and therefore G4 # 0 is an immediate consequence of an old

result of Jacobson establishing the existence of a toral basis (cf. [SF, Theorem
I1.3.6(1)]).

5For the p-dimensional Witt algebra the 1- and 2-cohomology is known [Dzhul, Dzhu3]
and for the other restricted simple Lie algebras of Cartan type there is some information on
1-cohomology [CS, Chiul] which can be improved by using [Jan5] (cf. also [Fel] especially
for small characteristics).
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Finally, the remaining implication (¢)==-(a) follows from Theorem 3.4. [J

Remark. Condition (c¢) in Theorem 3.11 just says that there exists a non-
trivial one-dimensional restricted L-module (cf. Corollary 3.5). By means of
Theorem 3.11 it is possible to obtain a better upper bound than in (4) which
is attained for nilpotent restricted Lie algebras (see [Fab, Theorem 3.5(2)]).

Let us finish this section by pointing out the following generalization of
Corollary 3.5 to arbitrary restricted Lie algebras, which follows from Theo-
rem 6.5 in conjunction with Theorem 2.5:

Theorem 3.12. Let L be a finite dimensional restricted Lie algebra and
suppose L is not a torus. Then there are infinitely many positive and infin-
itely many negative integers n such that H'(L,F) # 0. O

Note that for (restricted) simple Lie algebras of classical type or their Borel
subalgebras the following stronger statement is true (cf. [AJ, FP1, Jan2]):

Conjecture. ¢ Let L be a finite dimensional restricted Lie algebra and
suppose L is not a torus. Then H'(L,F) # 0 for every even integer n.

64. BLOCK STRUCTURE

Let L denote a finite dimensional restricted Lie algebra over an arbitrary
field F. In the following we are interested in the category mod(L,y) of fi-
nite dimensional L-modules for an arbitrary character y € L*. In §2, we
mentioned that a complete classification of simple objects in mod(L, x) is
known only in a few cases. Moreover, this supplies enough information to
describe mod(L, x) only if u(L, x) is a semisimple algebra. But u(L, x) does
not always possess this property (cf. Theorem 2.5 and §7). So in the other
cases one should try to get (at least) some information on the indecompos-
able u(L, x)-modules. Since this is a very hard problem in general (cf. §7),
we consider in this section a decomposition of u(L, ) into smaller subalge-
bras such that mod(L, x) decomposes into the corresponding smaller module
categories (block decomposition):

b
u(L,x) =P B;

Jj=1

6Recently this conjecture has been proved by R. Farnsteiner in [Fal0, Corollary 2.3].
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where each B; is an indecomposable two-sided ideal of w(L,x). The B,
are called block ideals of u(L,x). This decomposition is in one-to-one corre-
spondence with a primitive central idempotent decomposition of the identity
element 1 of u(L, x):

b
1= E Cj,
j=1

where B; = u(L, x)c; is a finite dimensional associative F-algebra with iden-
tity element ¢;. The ¢;’s are called block idempotents of u(L,x) (cf. [HB,
Theorem VII.12.1]). Every indecomposable u(L, x)-module is a (unitary left)
Bj-module for some uniquely determined j, i.e.,

mod(L, x) @modB

In particular, this induces an equivalence relation “belonging to a block” or
“linked” on the finite set Irr(L, x) of all isomorphism classes of (irreducible
or) simple u(L, x)-modules

b
Irr(L, x) U

=1
such that the equivalence classes
B; ={[S] € Irr(L, x) | ¢; - S = S},

the so-called blocks or linkage classes of Irr(L, x), are in one-to-one corre-
spondence with the set of isomorphism classes of simple Bj-modules. For
the convenience of the reader we state some cohomological features of the
linkage relation which will be useful in the sequel:

Lemma 4.1. Let L be a finite dimensional restricted Lie algebra and x € L*.
Then the following statements hold:

(a) If two u(L,x)-modules M and N belong to different blocks, then
Exty 1,5 (M, N) vanishes for every integer n > 0.

(b) Two simple u(L, x)-modules M and N belong to the same block if
and only if there exists a finite sequence Si, ..., Sy, of simple u(L, x)-
modules such that M = S;, N = S, and EXt,llL(L’X)(Sj,Sj_i_l) #+
0 or Extt(L’X)(SjH, S;) #0 for every 1 <j <n-—1.
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Proof. (a) is an immediate consequence of [Fa2, Corollary 4.10] applied to
the block idempotents corresponding to M resp. N and (b) is well-known in
the literature (see e.g. [Sta, Corollary 1]. [

Remark. One can also show that two simple u(L, x)-modules M and N be-
long to the same block if and only if there exists a finite sequence Py, ..., P,
of projective indecomposable u(L, y)-modules such that P; resp. P, is the
projective cover (see §5) of M resp. N and P; and Pj;; have a common
composition factor for every 1 < j <n —1 (see e.g. [Fel]).

There exists a nice combinatorial description of the linkage relation, the so-
called Gabriel quiver Q(L, x) of u(L, x), i.e., the finite directed graph with the
set Irr(L, x) as vertices and dimy Extt(L’X)(M, N) arrows from [M] to [N].
By virtue of Lemma 4.1(b), it is obvious that the B; are in one-to-one cor-
respondence with Ehe connected components of the underlying (undirected)
graph Q(L, x) of Q(L, x)-

Next, we briefly describe how @(L, X) determines the so-called basic al-
gebra of u(L,x) and thus mod(L, x) (up to equivalence). For any finite di-
mensional associative F-algebra A there exists a (finite dimensional) Morita
equivalent algebra Apasic such that every simple Apasic-module S is one-
dimensional over its centralizer Endga,, . (S). It turns out that Apasic is
uniquely determined up to isomorphism which justifies to call it the basic
algebra of A (cf. [Benl, p. 23]). In order to explain the connection between
Q(L,x) and u(L, x)pasic, we recall that the vector space F[Q(L, x)], which is
freely generated by all (directed) paths in @(L, X), becomes a (not necessarily
finite dimensional) associative F-algebra with identity element by the usual
concatenation of paths. According to a result of P. Gabriel, u(L, X)basic 1S
a certain factor algebra of IF[Q(L, X)]°P, where 7°P denotes the opposite ring
structure (cf. [Benl, Proposition 4.1.7]). Therefore the knowledge of the
Gabriel quiver @(L,X) of u(L,x) is a first step in computing u(L, X )basic-
Nevertheless, in general, the explicit determination of @ (L, x) already turns
out to be very difficult (e.g. for the p-dimensional Witt algebra (p > 5) only

—

parts of the “restricted” quiver Q(W7,0) are known). It should also be men-
tioned that the relations of IF[Q(L, X)]°P are determined by the structure of
the projective indecomposable u(L, y)-modules about whose structure not
much is known in general (but see §5). In the sequel, we will consider the

following
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Problems.

—

I. Describe the Gabriel quiver Q(L, x) of u(L, x), in particular,

(1) determine the number b(L, x) of blocks of u(L, x) (i.e., determine the
number of connected components of Q(L, x)),

(2) determine the number |B;| of isomorphism classes of simple mod-
ules in every block B; (i.e., determine the number of vertices of the
connected components of Q(L, x) corresponding to B;),

(3) investigate which special properties (e.g. no loops, etc.) of @(L,X)
(resp. of the connected components B;) can occur.

II. Determine the algebra structure resp. the representation theory of the
block ideals B; (1 < j < b(L, x)).

The second problem was (at least partially) motivated by the desire to
determine all characters x of L for which the indecomposable u (L, x)-modules
can be classified (up to isomorphism), i.e., to decide for which characters
u(L,x) is tame (cf. §7 for the definition). By the above remarks on the
Gabriel quiver, Problem I can be considered as a first step in solving Problem
II. Tt is also of independent interest because the solution of Problem 1.2 for all
blocks with a fixed character x would give the number of isomorphism classes
of the simple u(L, x)-modules which is still unknown in many cases (cf. e.g.
[Str3] for (non-nilpotent) solvable restricted Lie algebras). In the following,
we will describe partial solutions to both problems for supersolvable resp.
simple restricted Lie algebras.

Since a closed formula for the block invariants mentioned in Problems 1.1
and 1.2 seems to be difficult to obtain, we restrict ourself first to the simplest
possible cases, i.e.,

e |B| =1 for every block B of u(L, x) (= b(L, x) = |Irr(L, x)|),
e b(L,x) =1 (= |B| = |Irr(L,x)|) (“block degeneracy”)

and attempt to discover classes of restricted Lie algebras resp. characters for
which these conditions hold. It is well-known from classical ring theory (cf.
[Pie, Proposition 6.5a]) that in the first case every block ideal B is primary,
i.e., B/Jac(B) is a simple algebra. This condition can be generalized as
follows:

(%) dimp S is constant for every simple module in B,

(%) |B| is constant for every block B of u(L, x).
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It turns out that () holds for supersolvable restricted Lie algebras (see Corol-
lary 4.3), and even in this case it does not seem to be obvious under which
conditions (xx) will be satisfied (see [Feb, Example 1]). Recall that by virtue
of Lie’s Theorem (which fails in the modular situation) every non-modular
solvable Lie algebra (over an algebraically closed field) is supersolvable and
thus Theorem 4.2 resp. Corollary 4.3 and 4.4 should be considered as a mod-
ular analogue of Lie’s Theorem.

The block of u(L,0) which contains the one-dimensional trivial L-module
is called the principal block of L and will be denoted by By. Then the
following result provides a class of restricted Lie algebras which satisfies (%),
and it reduces in this case the problem of finding an upper bound for the
number of simple modules in an arbitrary block to the principal block.

Theorem 4.2. [Feb| Let L be a finite dimensional supersolvable restricted
Lie algebra and x € L*. Then the following statements hold:

(a) Every simple module in the principal block of L is one-dimensional.

(b) If two simple u(L,x)-modules M and N belong to the same block,
then there exists a simple module S in the principal block of L such
that N =25 Qrp M.

(c) |B| < |By| holds for any block B of u(L, x).

Proof. (a): Let X and Y be simple restricted L-modules such that dimp X #
1 and dimp Y = 1. Then Homyp(X,Y) & X*®rY and Homp(Y, X) =2 Y*®pX
are also simple restricted L-modules such that dimp Homp(X,Y) # 1 #
dimp Homp (Y, X). From Theorem 3.7 we derive

Bxt] 1, 0)(X,Y) = H'(L, Homg(X,Y)) = 0, and
Bxt! 1, 0)(Y, X) & H(L, Homp (Y, X)) = 0.

If we apply this to a simple module S in the principal block of L and to I,
we obtain dimp S = 1 by the transitivity of the linkage relation.

In order to prove (b) and (c), we set H := Homp(M, N). Without loss of
generality we may assume H]'(L,H) = Extt(L’O)(M, N) # 0 and by virtue
of a slight generalization of Lemma 4.1(a) (see [Feb, Lemma 2]), H possesses
a simple submodule S belonging to the principal block of L. From the ad-
jointness of Hom and ® we obtain Homp, (S ®r M, N) = Homp (S, H) # 0.
According to (a), S is one-dimensional and thus S ®g M is simple. Hence (b)

follows from Schur’s Lemma and finally, (¢) is an immediate consequence of
(b). O

Since all composition factors of an indecomposable module belong to the
same block, we can immediately derive from Theorem 4.2(a):
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Corollary 4.3. [Voigtl, Feb] Let L be a finite dimensional supersolvable
restricted Lie algebra and x € L*. Then all simple modules in the same
block of u(L,x) have the same dimension. In particular, all composition
factors of a finite dimensional indecomposable u(L, x)-module have the same
dimension. [

A finite dimensional associative F-algebra A is called basic if A = Apasic,
i.e., A/Jac(A) is a direct product of division algebras. If F is algebraically
closed, A is basic if and only if every simple A-module is one-dimensional.

Corollary 4.4. [Voigtl, Fe5| Every block ideal of a reduced universal en-
veloping algebra of a finite dimensional supersolvable restricted Lie algebra
is a full matrix algebra over a basic algebra.

Proof. Let B be an arbitrary block ideal of a reduced universal enveloping
algebra of a finite dimensional supersolvable restricted Lie algebra. Accord-
ing to Corollary 4.3, all the simple B-modules have the same dimension
d. Let Pi,...,Ps be a representative set of the isomorphism classes of the
projective indecomposable B-modules. Then [Benl, Lemma 1.7.5] implies
B = @;_, dP; (see the proof of Theorem 5.2) and therefore we obtain (cf.
[Pie, Corollary 3.4a)):

B = Endp(B)® = Endp(dP)°° = Maty(Endg (P)°P),

where P := @;_, P, and 7°P denotes the opposite ring structure. Since P is
multiplicity-free, Endg(P)°P is a basic algebra (cf. [Pie, Lemma 6.6a]). O

As an immediate consequence of Corollary 4.3, we obtain the following
(partial) generalization of Theorem 3.7:

Corollary 4.5. [Feb| Let L be a finite dimensional supersolvable restricted
Lie algebra and x € L*. If M and N are simple u(L, x)-modules such that
dimp M # dimg N, then Exty (M, N) = 0 for every integer n > 0. [

Remark. From [Fa2, Corollary 6.4] and Theorem 3.1(b) it follows that for
arbitrary simple L-modules M, N such that dimg M # dimp N, we have
Ext ) (M, N) = 0 for every n > 0. Is this also true in zero characteristic?

The following module-theoretic characterization of supersolvable restric-
ted Lie algebras over algebraically closed fields was given by D. Voigt [Voigt1,
Satz 2.40] in the more general context of infinitesimal algebraic group schemes
(cf. also [Sta, Corollary 2] for the case of finite groups).
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Theorem 4.6. [Voigtl, Feb| A finite dimensional restricted Lie algebra L is
supersolvable if and only if the principal block ideal of L is a basic algebra.

Proof. One implication is an immediate consequence of Corollary 4.4 (resp.
its proof) and the other implication follows from Lemma 4.1(a) in conjunction
with Theorem 3.9. [

In order to solve Problem 1.2, we consider for any finite dimensional re-
stricted Lie algebra L the finite abelian p-subgroup G* of the (additive)
group of L* (cf. §3). For any x € L*, G¥ acts on Irr(L, x) via

v-[S]:=[F, @8]  VyeGE[S]eTr(L, ).

Question 1. Does there exist a (sufficiently large) subgroup G§ of G such
that B, is G§-invariant for every 1 < j < b(L, x)?

Consider G := {y € G* | [F,] € By} which indeed is a subgroup of G.
(For the proof apply Lemma 4.1(b)!) According to Theorem 4.6, G} is as
large as possible (i.e., |G§| = |Bo|) if and only if L is supersolvable.

Question 2. Let L be a finite dimensional supersolvable restricted Lie al-
gebra, x € L* and B be a block of u(L, ). For which simple modules S in
By and for which simple modules M in B does S ®r M again belong to B?
Under which conditions on L resp. x is this satisfied for every simple module
in By and every block B?

In the case of an affirmative answer to the second part of Question 2,
Theorem 4.2(b) would imply that G§ acts transitively on every block B of
u(L, x), i.e., |B] would be always a p-power (which?) < |By|.

In order to show how powerful this approach is, we use the simplest pos-
sible case for which the second question has an affirmative answer to char-
acterize block degenerate supersolvable restricted Lie algebras (see also [Feb,
Theorem 4] for a more general result in this direction). The proof was inspired
by a result of R. Farnsteiner [Fa8] (see also [Feb, Proposition 5, Proposition
6 and Theorem 4] for a different approach avoiding projective covers).

Theorem 4.7. [Feb| A finite dimensional supersolvable restricted Lie alge-
bra over an algebraically closed field has exactly one block if and only if it
has no non-zero toral ideals.

Proof. Suppose that L has no non-zero toral ideals. Since L is supersolvable,
there is a torus 7" such that L = T @ Nil(L). But Tor,(Nil(L)) is an ideal
in L and thus by hypothesis zero. Hence Nil(L) is p-nilpotent and there-
fore every simple restricted L-module is one-dimensional. By virtue of the
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universal property of projective covers (see §5) and Lemma 3.3, we obtain
that the projective cover P(S) of any simple restricted L-module is isomor-
phic to Ind%(S,0) (see e.g. [Huml, Proposition 4.3] or [Fel, Satz 1.2.3]).

Let {a1,...,an} be a basis of the roots of Nil(L) with respect to 7" and
Gl = Z;-Lﬂ Fpo;. Applying the Cartan-Weyl formula n times to the eigen-
vectors of P(S), we see that the composition factors of P(S) form the orbit
of S under G}, i.e., GI = GE (see the Remark after Lemma 4.1) and thus

Bo| = |GE| = pimep 9 . But dimp, Gl is just dimp T since the canonical
pairing between GF and the Fp-form of T is by hypothesis non-degenerate.
Hence we finally obtain

[Bo| = p@™ T = | Lrx(L, 0)],

i.e., u(L,0) has precisely one block.

In order to prove the converse implication let us assume that L has a
non-zero toral ideal Tg. Then 0 # £q(so) ™! - s¢ # 1 is a central idempotent of
u(L,0), where g¢ denotes the augmentation mapping of u(Ty,0) — wu(L,0)
and s denotes its trace element (see §3). [

As a consequence of Theorem 4.7 we obtain the following sufficient condi-
tion for simple modules to belong to the principal block:

Corollary 4.8. [Feb] Let L be a finite dimensional supersolvable restricted
Lie algebra and S be a simple restricted L-module. If Tor,(L) C Annr,(S),
then S belongs to the principal block of L.

Proof. The hypothesis implies that S is a simple restricted L/ Tor,(L)-mod-
ule. Since factor algebras of supersolvable Lie algebras are also supersolvable,
Theorem 4.7 in conjunction with Proposition 1.2(b) implies that L/ Tor,(L)
has precisely one block and therefore S necessarily belongs to the principal
block of L/ Tor,(L). Finally, the five-term exact sequence for restricted co-
homology in conjunction with Lemma 4.1(b) shows that then S also belongs
to the principal block of L. [

As an illustration of the foregoing result, we consider again the three-
dimensional supersolvable restricted Lie algebra from Example (ii) in §2:
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Example. Let L := Ft @ Fe @ Fz, where [t,e] = e+ z, tPl =t elPl =0 and
[Pl = 2. Then we have Tor,(L) = Fz and the restricted universal enveloping
algebra u(L,0) has the following Gabriel quiver (see [FeS1, Proposition 3.2]):

If L is supersolvable, the principal block of L forms an abelian group under
[S1]+[S2) := [S1®F S2] which is isomorphic to G§ via v + [F,]. In the above
example, By is generated by the only non-trivial chief factor (i.e., composition
factor of the adjoint module) F} and therefore By is cyclic. In general, it
follows from [Ba2, Theorem 1] that chief factors of solvable restricted Lie
algebras always belong to the principal block (cf. also [Feb, Proposition 2]).
Recall that a Lie algebra L is called unimodular if tr(adz(x)) = 0 for every
element x € L. Then we have the following

Lemma 4.9. Let L be a finite dimensional unimodular supersolvable re-
stricted Lie algebra. Then the principal block of L is generated by the (non-
trivial) chief factors of L.

Proof. Let S be a simple module belonging to By. According to the main re-
sult of [Schuel], our hypothesis implies that the restricted universal envelop-
ing algebra of L is symmetric. (In fact, by [Hum2, Theorem 4] our assumption
is also necessary for u(L,0) to be symmetric.) Then [La, Lemma 3] yields
a finite sequence F =: My, ..., M, := S of restricted simple L-modules such
that Extt(L’O)(Mj_l, M;) # 0 for every integer 1 < j < n. In particular, all
the M;’s belong to By. Since by Theorem 4.2(a) every simple module in By is
one-dimensional, for any 1 < j < n there exists a simple restricted L-module
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Sj (namely, M¥ ; ®p M;) such that M; = M;_, ®F S; and HX(L,S;) # 0.
Hence [Ba2, Theorem 1] shows that the S;’s are chief factors of L and

S=S5 Qp - Rp Sy, i.e., [5]2[31]+"'+[3n]. ]

As a first consequence of the results we proved so far, we obtain the follow-
ing characterization of simple modules in the principal block of a unimodular
supersolvable restricted Lie algebra. The example after Corollary 4.8 indi-
cates that this might be true without assuming the symmetry of the restricted
universal enveloping algebra which in fact is the case (see [Feb, Theorem 5]).

Corollary 4.10. Let L be a finite dimensional unimodular supersolvable
restricted Lie algebra. Then S belongs to the principal block of L if and only
if Tor, (L) € Anng,(S).

Proof. Assume that S belongs to the principal block of L. Then (the proof
of) Lemma 4.9 yields the existence of chief factors S; (1 < j < n) such that
S = 51 ®F ... ®F Sp. Since Tory, (L) is central, we obtain

Tor,(L) C ﬁ Anny (S;) C AnnL(é S;) € Anng,(S).

=1

The other implication is just Corollary 4.8. [J

Now we are ready to determine the number of simple modules in the
principal block, namely

Theorem 4.11. Let L be a finite dimensional unimodular supersolvable
restricted Lie algebra over an algebraically closed field F. Then

IBo| = pdime L/Nil(L)

Proof. By hypothesis, L is unimodular supersolvable and thus Corollary 4.10
applies and yields a bijection between the principal block of L and the set of
isomorphism classes of simple restricted L/ Tor,(L)-modules. As we have al-
ready used in the proof of Theorem 3.7, the latter algebra is strongly solvable
with maximal torus 7" if L =T & Nil(L). Hence

[Bol = | Irr(L/ Tor, (L), 0)] = pime T = plime 2/ NID) -
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Remark. According to the remark before Corollary 4.10, Theorem 4.11 is also
true in general (see [Feb, Theorem 6]). Since T' = (T'® Tor,(L))/ Tor,(L) is a
maximal torus of 7'/ Tor, (L), [SF, Theorem I1.4.5(2)] shows that 7'@ Tor,(L)
is a maximal torus of L and therefore the above formula can be interpreted

as

|B0| _ pdim[p Tmax/Torp(L)’

where Thax is a(ny) maximal torus of L (see again [Feb, Theorem 6]).

Let us now specialize to the nilpotent case. Let S 2% F be a simple re-
stricted L-module over a finite dimensional restricted nilpotent Lie algebra.
Then because of S¥ =0 = (S*)¥ an application of Theorem 3.4 or the clas-
sical cohomological vanishing theorem of J. Dixmier (cf. [Dix, Bal]) shows

Exty0)(F, S) = H; (L, S) — H'(L,S) =0,

Exty(r,0)(S,F) = H,(L,S*) < H'(L, ") =0,
and therefore the block structure of L is determined by the following result:

Corollary 4.12. [Voigtl, Feb] Let L be a finite dimensional nilpotent re-
stricted Lie algebra and x € L*. Then every block of u(L,x) contains only
one isomorphism class of simple modules. In particular, every finite dimen-
sional indecomposable u(L, x)-module has only one composition factor (up
to isomorphism). [

Remark. The proof of the second part of Corollary 4.12 gives a new concep-
tual approach to a special case of an old result of C.W. Curtis [Cu2]. In
fact, it can be shown that the same argument works even more generally for
locally finite indecomposable L-modules [Fe6].

Corollary 4.13. [Voigtl, Feb| Every block ideal of a reduced universal en-
veloping algebra of a finite dimensional nilpotent restricted Lie algebra is a
full matrix algebra over a local algebra.

Proof. This is quite analogous to the proof of Corollary 4.4 using Corol-
lary 4.12 instead of Corollary 4.3 (cf. [Pie, Proposition 6.5a]). O

Lemma 4.1(a), Corollary 4.12 and Theorem 6.5 (or Proposition 6.4) in
conjunction with Theorem 3.4 and the Reduction Theorem yield:
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Corollary 4.14. Let L be a finite dimensional nilpotent restricted Lie alge-
bra, x € L* and M, N be finite dimensional non-projective u(L, x)-modules.
Then the following statements are equivalent:

a) Ext. M, N) # 0 for every integer n.
u(L;x)
(b) There exists an integer n such that E;(tZ(L’X)(M, N) #0.
c

)
)
(¢) M and N belong to the same block of u(L, x).
(d) M=N. O

Example. Consider the three-dimensional Heisenberg algebra
L=Hi(F)=Fe;r &FzdFe_, [et,e_]=z2, e[f;] =0, zIPl = 2.

Put [ :=Fz @ Fe_ and assume x(z) = 0 (see Example (i) in §2). By virtue
of the Reduction Theorem, it is easy to compute that EXtt(L,X)(an F,) =
H!(L,T) is two-dimensional. Let V(w) denote the restricted I-module F_,®p
Ind%(Fw, X)|1- Using Frobenius Reciprocity and the five-term exact sequence
for restricted cohomology in conjunction with Lemma 3.2, we obtain

EXtt(L,x) (Il’ld% (va X)v Ind% (va X)) = Ethll,(I,Xu) (va Ind% (va X)H):
= H,(I,V(w)) = H, (Fe_,V(w)ze_ )"

According to Theorem 3.4, it is enough to show that the 0-th complete coho-
mology space ﬁf(lﬁ‘e_, V(w)re_ ) vanishes. But this is a consequence of the
description of the latter space in §3 because the trace element of u(Fe_,0)
is e?~" and therefore dimg V(w)f~ =1 = dimpe? " - V(w). Hence we have

—

the following Gabriel quiver Q(L, x) of u(L, x)

where the vertices corresponding to the simple u(L, x)-modules are labelled
by the respective eigenvalues w(z) of z. In particular, it follows from Corol-
lary 4.14 that Ind¥(F,,, x) is projective for any w with w(z) # 0.

“If M and N are simple, then there exists a very short direct argument (see [Fe5,
Proposition 4]).
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Analogously to the supersolvable case we obtain the following module-
theoretic characterization of nilpotent restricted Lie algebras (cf. [Voigtl,
Satz 2.41] for an algebraically closed ground field).

Theorem 4.15. [Voigtl, Feb| A finite dimensional restricted Lie algebra L
is nilpotent if and only if the principal block ideal of L is a local algebra.

Proof. One implication is a special case of Corollary 4.12 and the other im-
plication follows immediately from Lemma 4.1(a) in conjunction with Theo-
rem 3.6. [J

In the non-solvable case there is at least a first step for restricted simple
Lie algebras (In fact, the first part of the next result is a special case of the
linkage principle for Lie algebras of classical type.):

Theorem 4.16. Let L be a restricted simple Lie algebra over an alge-
braically closed field F. Then the following statements hold:

(a) [KW] If L is of classical type and M, N are simple restricted L-
modules of highest weights u, v, respectively, then M and N belong
to the same block of u(L,0) if and only if there exists an reflection o
in the Weyl group of L such that y 4+ § = o(v + ), where § denotes
the halfsum of the positive roots of L.

(b) [HN2] If L is of Cartan type over a field of characteristic > 3, then
u(L,0) has exactly one block. [

Examples.

(i) Consider the three-dimensional (restricted) simple Lie algebra

sly(F) = Fe, @ Fh & Fe_,

[h,ei] =+2- €+, [6+,6_] = h: h[p] = h: 6£€] = 0.

over an algebraically closed field F of characteristic p > 2. Then we
have the following Gabriel quivers for the different orbits of charac-

ters:
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FIGURE 1. Restricted orbit [Pol, Po2, Fi, FP5]

FIGURE 2. Regular nilpotent orbit [FP5, Proposition 2.3]

FIGURE 3. Regular semisimple orbit [FP5, Corollary 2.2]

(ii) Consider the eight-dimensional simple Jacobson-Witt algebra W (IF)
over an algebraically closed field F of characteristic 2. Then Ws(IF)
has four (isomorphism classes of) simple restricted modules, namely
the one-dimensional trivial module, two three-dimensional modules
resulting from the defining representation as derivations on the trun-
cated polynomial algebra P,([F) in two variables resp. its dual P(FF)*
and the eight-dimensional adjoint module. The latter is a projec-
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tive u(Ws(F),0)-module and the other three simples belong to the
principal block of Wy (F). Hence Theorem 4.16(b) is not true for
char(F) = 2. Very similarly, the three-dimensional Witt algebra
W1 (FF) over an algebraically closed field of characteristic 3 (being iso-
morphic to slz(F)) has two blocks. This shows that the assumption
char(F) > 3 in Theorem 4.16(b) is really necessary.

Moreover, in both cases there is some information on the dimensions of the
blocks resp. indecomposable projective modules and the Cartan invariants
via generalized Reciprocity Theorems (cf. [Hum1, Nal, HN1, HN2, Chiu3,
Hol2)).

A Lie algebra is called strongly degenerate if there exists 0 # x € L such
that (ady z)? = 0. Then Theorem 4.16 leads to the following conjecture
which is closely related to Theorem 4.7:

Conjecture. [HN2| The restricted universal enveloping algebra of a strongly
degenerate restricted Lie algebra L without classical or non-zero toral ideals
has precisely one block.

§5. PROJECTIVE MODULES AND BLOCK STABILITY

In this section, we investigate the structure of projective indecomposable
u(L, x)-modules for an arbitrary character x of a finite dimensional nilpotent
restricted Lie algebra L.

A projective module P(M) is called a projective cover of a module M if
there exists a module epimorphism mp; from P(M) onto M such that the
kernel of mps is small in P(M), i.e., there are no proper submodules X of
P(M) with P(M) = X + Ker(mr) or equivalently, Ker(mys) is contained in
the radical of P(M) (see [DK, p. 53]). It is well-known that projective covers
of finite dimensional modules over finite dimensional algebras always exist
(cf. [DK, Theorem 3.3.7.1)]) and are again finite dimensional. Moreover, the
projective indecomposable modules of a finite dimensional algebra are isomor-
phic to the projective covers of the simple modules (cf. [DK, Theorem 3.3.7.2)
and Corollary 3.2.5]).

According to a classical result of H. Zassenhaus (cf. [SF, Corollary 1.4.4
and Proposition 1.4.6]), for every simple module S of a finite dimensional
nilpotent Lie algebra L there exists a function w : L. — F such that

VeeLdn=n(z)eN: [(x)s—w(z)- ids]|” =0.

w is called (weight function or) eigenvalue function of S. Note that w is
not necessarily linear on L. It is well-known (and originally also due to
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Zassenhaus) that the simple L-modules are uniquely determined (up to iso-
morphism) by its eigenvalue function (see [Str3]). More precisely, if we fix a
toral basis 7 := {t1,... ¢y} of Tor,(L) (cf. [SF, Theorem I1.3.6(1)]), we have
for any x € L* a bijective mapping (depending on 7.)

Irr(L,x) — 7 (L, x), [S]+— (w(t1),...,w(ts)),

where w is the eigenvalue function of S and the set of parameters is defined
by
M7 (L, x) := {(21,...,2) €EF’ | 2P — z; = x(2:)P ¥V 1 <i < b}

(see [Str3, p. 31]). In particular, we obtain (see [Str3, Satz 6]):
(6) | Irr(L, x)| = [z (L, x)| = ptime ),

We will need the following slight generalization of [SF, Theorem V.8.7(2)]:

Lemma 5.1. Let L be a finite dimensional nilpotent restricted Lie algebra
and x € L*. If X and Y are simple u(L, x)-modules, then

X =Y ifandonlyif Xiror, () = YiTor,(L)-

Proof. Note that the action of the p-nilpotent radical of the center of L on any
simple u(L, x)-module is uniquely determined by x (cf. [Str3, p. 31]). Hence
the assertion follows from Theorem 1.1 and [SF, Theorem V.8.7(2)]. O

Consider a simple u(L, x)-module S with eigenvalue function w as Tor, (L)-
module which we denote by S|ror,(r). Because Tor,(L) is central, Schur’s
Lemma implies that (t)s = w(t) - idg for all ¢ € Tor,(L). Hence the
semisimplicity of u(Tor,(L), X|Tor,(z)) (see Lemma 3.2) yields S)tor, (1) =
@dimFSFw, where F,, is the one-dimensional u(Tory,(L), X|Tor,(z))-module
with action t- f := w(t)- f for t € Tory(L), f € F,. In particular, S|to.,(r) has
a unique (one-dimensional) composition factor (up to isomorphism) which we
denote by F(S).

Theorem 5.2. [Fed] Let S be a simple module of a finite dimensional nilpo-
tent restricted Lie algebra L with character x. If F(S) is the (up to iso-
morphism) unique composition factor of S |Tor, (L), then there is an L-module

isomorphism Ind%orp(L)(F(S), x) = @ S P(S).

Proof. Put Ty := Tor,(L). According to Lemma 3.2, F'(S) is a projective
u(To, X |1, )-module. By the additivity of induction, P := Ind%O(F(S),X) is
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thus a projective u(L, x)-module. Since {P(X) | X € Irr(L,x)} is a full
set of representatives of isomorphism classes of indecomposable projective
u(L, x)-modules, there exist non-negative integers myx such that

Pz P mx-PX).
Xelrr(L,x)

Hence Frobenius Reciprocity in conjunction with Schur’s Lemma and the
additivity of the Hom-functor in conjunction with [Benl, Lemma 1.7.5] yield
for any simple u(L, x)-module Y:

dim[g S if YV|T0 = S|T0

dimp Homp,(P,Y") = dimp Hom7, (F'(S), Y|7,) = { 0 otherwise

)
resp.

dimp Homy (P, Y) = Z mx - dimp Homp, (P(X),Y) = my.
Xelrr(L,x)

Finally, an application of Lemma 5.1 shows that Y|z, = S7, if and only if
Y = S. Hence

dimp S if X =S
mx= { 0 otherwise -
Corollary 5.3. [Fed| Let L be a finite dimensional nilpotent Lie algebra. If S
is a one-dimensional u(L, x)-module, then there is an L-module isomorphism

P(S) = Ind%orp(L)(S|Torp(L): X) O

In particular, this applies to the projective cover of the trivial simple mod-
ule and moreover, Theorem 5.2 can be used to show the following Reciprocity
Theorem for projective indecomposable modules (cf. [Fe4, Theorem 2]):

Corollary 5.4. [Fed] For any finite dimensional nilpotent restricted Lie al-
gebra L the following statements hold:

(a) S* ®p P(S) = P(F).

(b) P(F) = Ind%orp(L) (Fv 0) [

It should be remarked that Corollary 5.4 yields the projectivity of the
p-dimensional simple H;(F)-modules much faster than in the correspond-

ing example in §3 and, moreover, immediately generalizes to H,,(F) for any
positive integer n (cf. [Fed]).
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Definition. A block ideal B of a finite dimensional associative F-algebra A

is called stable if dimp B : |Irr(B)| = dimp A : |Irr(A)|. A is called block
stable if every block ideal of A is stable.

Brauer-Humphreys Reciprocity in conjunction with Theorem 4.16(a) shows
that restricted universal enveloping algebras of simple Lie algebras of classical
type are block stable (cf. [Hum1, Theorem 4.5]) and since block degenerate
algebras are trivially block stable, the same is true for restricted simple Lie
algebras of Cartan type (see Theorem 4.16(b)). But note that already for
a(ny) regular nilpotent character of sl the corresponding reduced universal
enveloping algebra is not block stable (see Example (iii) in §2 and Exam-
ple (i) after Theorem 4.16). Nevertheless, Corollary 5.4 in conjunction with
Corollary 4.12 and (6) implies (cf. also [Pet]):

Corollary 5.5. Every reduced universal enveloping algebra of a finite di-
mensional nilpotent restricted Lie algebra L is block stable, i.e., every block
ideal B satisfies dimp B = pdims L/ Torp (L)

Remark. More generally, it can be shown that for every simple u(L,x)-
module S the induced module Ind%orp( 1)(F(S), x) has a ring structure and
that it is isomorphic to B(S) as an F-algebra (cf. [Fe4, Theorem 1]).

§6. COMPLEXITY AND SUPPORT VARIETIES

Throughout this section, L will denote a finite dimensional restricted Lie
algebra over a field F. Then for any u(L, x)-module M there exists a pro-
jective u(L, x)-module P and an epimorphism 7 of P onto M (see §5). By
virtue of the Krull-Remak-Schmidt Theorem and since u(L, x) is a Frobenius
algebra, the kernel of 7 is isomorphic to Q(M) & @, where @ is a projective
u(L, x)-module and Q(M) has no projective submodules. Schanuel’s Lemma
implies that the isomorphism class of (M) is independent of the choice of
P and w. (?) is called the loop-space functor (cf. [He]). Define Q"(?) re-
cursively by Q*(M) = QQ"Y(M)) Vn > 1 and Q°(M) := M for every
u(L, x)-module M.

By the definition of Q(M) we obtain Q(M) = Ker(mps) if mas : P(M) — M
is a projective cover of M (see §5). A projective resolution

Pb:ww-—P,—--—>F—-M-=—0
is called minimal if P, is isomorphic to the projective cover P(Q"(M)) of

Q"(M) for every integer n > 0. By using injective hulls instead of projective
covers this definition can be extended to all integers and then Qo Q7! resp.
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Q!0 Q are identity functors on the subcategory of modules with no direct
projective (= injective) summands.

Recall that the rate of growth gr(Vs) of a family of finite dimensional
vector spaces Vo = (V;,)n>0 is the smallest non-negative integer ¢ such that
there is a constant b with dimg V;, < b-n°"! ¥V n > 1. If such c exists, then
Ve is said to have polynomial growth; otherwise we set gr(V,) := oco. We
will see in the following that every minimal projective resolution of a finite
dimensional u(L, x)-module has polynomial growth. From the short exact
sequence

(7 00— Q""" (M) — P, — Q" (M) —0 VYn>0

it is clear that gr(P,) = gr(Q®*(M)). These coinciding integers are called
the complexity cxp (M) of M. Since u(L,y) is a Frobenius algebra, M is
projective if and only if cxz, (M) = 0.

Lemma 6.1. Let M be an arbitrary u(L, x)-module and S be a simple
u(L, x)-module. Then for every non-negative integer n there is an isomor-
phism

Exty, (1) (M, S) = Homp (Q" (M), S).

Proof. Let n > 2. Then an application of the contravariant Homp (7, 5)-
functor to the short exact sequence 0 — Q(M) — P(M) — M — 0 in con-
junction with the projectivity of P(M) yields the following exact sequence:

0= Ext;;|  (P(M),S) — Extl | (Q(M),S)

— EXtZ(L,X) (M, S) I EXtZ(L,X) (P(M), S) =0.
By induction on n we therefore obtain:
EXtZ(L,x)(M7 S) = EXtt(L’X)(Qn_l(M), S) Vn 2 2.
Since the case n = 0 is clear, it is enough to show
Exty, (M, S) = Hom, (Q(M), S).

Looking at the beginning of the long exact cohomology sequence used above
we have the following short exact sequence:

0 — Homp(M,S) — Homp(P(M),S) — Homp (2(M),.S)
— Bxty, (M, §) — 0.
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By the exactness of the sequence it is enough to show that the first (non-zero)
mapping is surjective. Let my; denote the epimorphism from P(M) onto M
and let 0 # ¢ € Homp(P(M),S). Because S is simple, Schur’s Lemma
implies that ¢ is surjective and therefore Ker(y) is a maximal submodule of
P(M). By definition Q(M) = Ker(mps) is small in P(M). Hence ¢ # 0 and
the maximality of Ker(yp) imply the inclusion Q(M) C Ker(yp), i.e., there
exists an L-module homomorphism ¢ from M into S such that ¢ o Ty =
p. U

Let M, N be finite dimensional u(L, x)-modules. Then we define
cxr (M, N) := gr(Exty (M, N)).

Proposition 6.2. For every finite dimensional u(L, x)-module M the fol-
lowing equalities hold:

cxr, (M) = max{cxr(M,S) | S simple} = max{cxr(M,N) | dimp N < oo}.

Proof. Let S be a simple u(L, x)-module and put dg := dimy Endy,(S). An
application of the contravariant Homyp (?,.5)-functor to (7) in conjunction
with the projectivity of P, yields the following exact sequence:

0 — Homy(Q"(M),S) — Homp(P,,S) — Homg (Q" (M), S)
— Bxty, (" (M), 5) — 0.
By virtue of (the proof of) Lemma 6.1, the third (non-zero) map is bijective.

According to the exactness of the sequence, then the first (non-zero) map
must also be bijective. Therefore another application of Lemma 6.1 implies

dimp Exty, 1 ) (M, S) = dimg Homp (P, S) = ds - [P, : P(5)],

where [P, : P(S)] denotes the multiplicity of P(S) as a direct summand of
P, (cf. [Benl, Lemma 1.7.5]). Hence we obtain for every non-negative integer

n:
dimp Ext” M,S
dim[g Pn = Z o IZ;;’X)( ) . dim[g PL(S), i.e.,

Selrr(L,x)
cxr (M) < max{cxr(M,S)) | S simple } < max{cxy(M,N) | dimp N < oco}.

The remaining inequality max{cx(M,N) | dimp N < oo} < cxr (M) is an
immediate consequence of

dimp Eth(L’X)(M, N) < dimy Homp(P,, N) = dimy N -dimy P, Vn > 1. O

In particular, cxy (IF) is the maximal growth of the restricted cohomology of
L with coefficients in a finite dimensional restricted L-module:



44

Corollary 6.3. Let L be a finite dimensional restricted Lie algebra. Then

cxr (F) = max{gr(H; (L,S)) | S simple}
= max{gr(H: (L, M)) | dimp M < co}. O

Fundamental to the rest of this section will be the fact that (via the
cup product) H¢(L, M) is a noetherian H?(L,F)-module for every finite
dimensional restricted L-module M (cf. [FP3, Proposition 1.3(c)]). Let us
immediately apply this in order to obtain the following useful modification
of Proposition 6.2:

Proposition 6.4. For every finite dimensional u(L, x)-module M we have
cxr (M) = exp (M, M).

Proof. By an argument similar to the proof of [Ben2, Corollary 4.2.4], one
can show that (via the Yoneda product) Exty,;, ,y(M,S) is a finitely gener-
ated Exty, .y (M, M)-module for every simple u(L, x)-module S. Hence we
obtain

CXL (Mv S) = gr(EXt;(L,X) (Mv S)) < gr(EXt;(L,X) (Mv M)) = XL (Mv M)

for every simple u(L, x)-module S. From this we conclude by applying Propo-
sition 6.2 twice:

cxr (M) = max{cxr(M,S) | S simple} < cxp (M, M) <cxp(M). O

An immediate consequence of Proposition 6.4 is the following projectivity
criterion (cf. also [Ben2, Lemma 5.2.3] for a slightly more direct proof or
[Schulz, Theorem 2.5] for a ring-theoretical approach):

Theorem 6.5. Let L be a finite dimensional restricted Lie algebra, x € L*
and M be a finite dimensional u(L, x)-module. If there exists an integer ng
such that E;(tZ(L’X)(M, M) = 0 for every n > ngy (or n < ng), then M is
projective. [J

Remark. If L is nilpotent, then Theorem 3.4 in conjunction with the Re-
duction Theorem shows that the vanishing of Extu(()L’X)(M , M) for only one

integer ng implies the projectivity of M (cf. Corollary 4.14 and also [Fal0,
Proposition 2.2(2)]).

The following result summarizes some of the main properties of complex-
ity.
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Theorem 6.6. Let M,N be finite dimensional u(L,x)-modules, M' be a
finite dimensional u(L, x")-module and K be a p-subalgebra of L. Then the
following statements hold:
(a) exx(Mx) < exp(M).
) exp(M & N) = max{cxr(M),cxr(N)}.
(c) exp(M ®@p M) < min{cxy, (M), cxr(M’)}.
(d) cxz(M*) = exp (M) = cxp(QE(M)) VY n € Z.
(e) exp (M) < exp(F).

Proof. (a): Since u(L,x) is a free u(K, x|k )-module, every (minimal) pro-
jective resolution over u(L, x) is also a projective resolution over u(K, x|x ).

Consider a short exact sequence 0 — M; — My — M3z — 0 of u(L, x)-
modules and let S be any simple u(L, x)-module. By applying Proposition
6.2 we can read off from the long exact cohomology sequence associated
to Homyp,(?,S) that cxp(M;) < max{cxr(M;),cxr (M)} for any 4,4,k €
{1,2,3}. This immediately implies (b) and, in view of (7), the second equality
in (d).

(c): Let Y be a finite dimensional restricted L-module. Then the adjoint-
ness of ® and Hom yields the isomorphism

EXtZ(L,O) (M QF M/: Y) = EXtZ(L,X) (M, HOHI[F(M/, Y)) Vn> 0,

i.e., according to Proposition 6.2, we have cx, (M @p M') < c¢xp, (M) and thus
the assertion follows by symmetry.

Finally, for an algebraically closed field F, (d) is a consequence of Theo-
rem 6.8(a), whereas the general case follows from cx; o #(M @ F) = cxz, (M)

if F denotes the algebraic closure of F, and (e) is the special case M’ := F in
(c). O

Remark. Contrary to the modular representation theory of finite groups, the
analogue of (a) for induced modules, namely

cxy, (Indf( (V,x)) = exg (V),

is not true in general. Look at the example of sl and its (standard) Borel
subalgebra B, where cxp(F,—1) = 1, but cxq, (V(p —1,0)) = 0 as the Stein-
berg module V(p — 1,0) is projective (cf. Example (iii) in §3).
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Corollary 6.7. If L is a finite dimensional p-nilpotent restricted Lie algebra
and M is a finite dimensional restricted L-module, then

cxp (M) = gr(Hz (L, M)).

Proof. According to Theorem 6.6(d) and Proposition 6.2 in conjunction with
EXtZ(L,O)(M*’F) = EXtZ(L,o)(Fa M) ¥V n >0, we obtain

cxr, (M) = exp,(M™) = max{cxy (M*,S) | S simple}
= cxi(M*,F) = cx (F, M) = gr(H? (L, M)),

where the third equality follows from the fact that p-nilpotent restricted Lie
algebras have only one simple restricted module (up to isomorphism), namely
the one-dimensional trivial module F. [

For the remainder of this section we assume that the ground field F is
algebraically closed. We refer the reader to [Ben0O, Ben2, Cal, Ca2, Ca3,
Ev] for the origin of module varieties in the cohomology theory of modular
group algebras, to [FP3, FP4, FP5, Janl, Jan2, Jan3] for more details and
to [Na6, Section 3| for a slightly different presentation and examples. The
cohomology variety X, of a restricted Lie algebra L is the maximal spectrum
of the noetherian commutative graded F-algebra HSY(L,F) of cohomology
classes of even degree. Let M be a finite dimensional u(L, x)-module. Since
M* ®@p M is restricted (cf. [SF, Theorem V.2.7(3)]), He (L, M* @ M) is a
HY(L,F)-module via the cup product. The corresponding annihilator A,
of H}(L,M* ®p M) in HSV(L,F) defines a closed homogeneous subvariety
X (M) := Supp(HS (L, M* @z M)) :={M € X1, | M D Ay} of X, the
so-called support variety of M. Note that X = X (F).

The natural F-linear mapping ®2 from L* into H2(L,F)(-Y induces a
homomorphism ®° of commutative graded F-algebras from the symmetric
algebra S*(L*) into H® (L,F)(=Y, where ?(-1) means that the scalars a act
through multiplication by o? (cf. [Hol]). Via ®® any H?(L, M* @ M)~
can be viewed as an S®(L*)-module. Then V(M) is defined as the support
of H*(L, M* @p M)~V in S*(L*). In more geometric terms, V(M) is the
image of X1, (M) under the morphism ® from X, to L =& AdmrL(F) which
is induced by ®°.
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Theorem 6.8. [Janl, FP3, FP4, FP5| For every finite dimensional u(L, x)-
module M the following statements hold:

(a) cxp (M) =cxp(M* ®@p M) = dim X1 (M) = dim Vi, (M).

(b) V(M) ={z € L|zlPl =0 and Mz, is not projective } U {0}.
Sketch of Proof. (a): Set H := HV(L,F) and Ep := HY (L, M* ®p M). Since
& is a finitely generated faithful H/ Anny (Epr)-module, we obtain in view
of Proposition 6.4:

exp (M) =cxp, (M, M) = gr(Epr) = gr(H/ Anny (Enr))
= Krull-dim(H/ Anny(Err)) = dim Suppy (Ear) = dim Xp (M).

According to X1.(M) = Ugeree(r,y) SUPP(EXt;, (1 ) (M, 5)), we have
XL(M) - XL(M* QF M)

This fact and an application of Theorem 6.6(c) in conjunction with the al-
ready established equality cxy (M) = dim X, (M) imply that

cxp (M) =dim X (M) <dim X7 (M* @ M) = cxp,(M™ @ M) < cxr,(M).

Because H is a finitely generated S®(L*)-module, the morphism ® from X,
into L is finite, from which we finally deduce that dim X, (M) = dim Vg (M).
In order to prove (b) we consider the so-called “rank variety”

Ri(N):={zeL|zPl =0 and N)(z), is not projective} U {0}
of N in L for any finite dimensional u(L, x)-module N. [Fe2, Lemma 2.3] and
the Reduction Theorem Exty (M, M) = HP(L,M* @ M)V n > 1 (see
§3) in conjunction with Proposition 6.4 show that Rp(M) = R (M* &g M).
Since M* ®p M is restricted, the proof of V(M) = Ry (M) can be reduced

to the main result of [Janl|, namely the case of the one-dimensional trivial
module M =T (see [FP4]). O

As a consequence of Theorem 6.8(b), we have

Corollary 6.9. [FP3, FP4, FP5] Let M, N be finite dimensional u(L, x)-
modules, M’ be a finite dimensional u(L, x')-module and K be a p-subalgebra
of L. Then the following statements hold:

(a) Vk(M|g) = V(M) N K.

(b) VoL(M & N) = V(M) UVL(N).

(¢) V(M ®@p M') = V(M) NV (M").

(d) Vo (M*) = V(M) = V(@ (M)) VY neEZ.
) Vi(

M) C Vi(F). O
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Corollary 6.10. Let M and N be finite dimensional u(L, x)-modules such
that VL,(M)NVL(N) = 0. Then Exty, (M, N) = 0 for every integer n > 1.

Proof. According to Corollary 6.9(c) and Theorem 6.8(a), we obtain that
M*®pr N is projective, i.e., the assertion follows from the Reduction Theorem
Exty (M, N) = H}(L,M* ®@r N)Vn>1 (see §3). O

If we consider the projective completion Proj(Vy(M)) C Pdims L=1(F) of
the support variety Vi, (M) of a finite dimensional module M, then the con-
nectedness of Proj(Vy(M)) reflects the indecomposability of M:

Theorem 6.11. [FP5] For any finite dimensional indecomposable u(L, x)-
module M the projective variety Proj(Vi(M)) is connected. [

Finally, we present an application of the algebro-geometric methods de-
veloped in this section to a purely module-theoretic question (for another
application see [Na3]).

Theorem 6.12. Let L be a finite dimensional restricted Lie algebra and
M be a finite dimensional restricted L-module. Then M is cohomologically
trivial if and only if M is projective.

Proof. Since both properties are independent of the ground field, we can as-
sume that it is algebraically closed. Suppose that M is cohomologically triv-
ial. In particular, we have for every element z € L that H®((x),, M(zy,) = 0.
If 2Pl = 0, then (x), is p-nilpotent and Lemma 3.3 implies that My, is
projective. Hence we can conclude from Theorem 6.8 that cxy (M) = 0, i.e.,
M is projective. The other implication is trivial. [

§7. MODULE TYPE

As in §4 we are interested in the category mod(L, x) of finite dimensional
L-modules with a fixed character y over a finite dimensional restricted Lie
algebra L.

Problem. Determine the characters x € L* for which every u(L, x)-module
is semisimple.
As far as I know, there are only two classes of restricted Lie algebras for
which a complete answer to this question is known:
e For a torus L, every u(L, x)-module is semisimple (see Lemma 3.2).
e Let L be a (restricted) simple Lie algebra of classical type over an

algebraically closed field F of characteristic > 3. Then E.M. Friedlan-
der and B.J. Parshall have shown in [FP5] that u(L, x) is semisimple
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if and only if x is reqular semisimple, i.e., x belongs to the same orbit
under Aut, (L) as xs which satisfies xs(L+a) =0 # Xs([La, L—a]) for
every root « of L relative to a classical Cartan subalgebra of L). We
should mention that in this case

Xo(L) :={x € L™ | x is regular semisimple}

is an open and therefore dense subset of L* (cf. [KW]). Hence u(L, x)
is semisimple for (in a geometrical sense) “most” of the characters of
L.

The second example makes it reasonable to consider the set
Xo(L) :={x € L | u(L, x) is semisimple}

as a subvariety of the affine space L* = AYm#L(F) (with the Zariski topol-
ogy) and ask whether X (L) is non-empty resp. open? (It is not difficult to
find examples for which Xy (L) is empty, e.g. consider the three-dimensional
Heisenberg algebra with z[?! = 0.)

It is well-known that any non-zero finite dimensional restricted Lie alge-
bra has indecomposable modules of arbitrarily high dimensions [Zas2, Zas3].
Nevertheless, the dimensions of indecomposable L-modules with a given char-
acter y might well be bounded. Following the terminology of [Pol, Po2], we
say that the reduced universal enveloping algebra u(L, x) is of bounded mod-
ule type if there is an integer d(L, x) such that dimyp M < d(L,x) for every
finite dimensional indecomposable u(L, x)-module M. wu(L, ) is said to be
of finite module type if there are only finitely many isomorphism classes of fi-
nite dimensional indecomposable u(L, x)-modules. Algebras of finite module
type are obviously of bounded module type, while the converse statement is a
consequence of Roiter’s famous solution of the first Brauer-Thrall Conjecture

[Roi].

Problem. Determine the characters y € L* for which u(L,x) is of finite
module type. Moreover, prove® that

X1(L) :=={x € L" | u(L, x) is of finite module type}
is open in L*.

8This can be shown by using the methods of [Ga] (see also [Kraft]) which was recently
done by R. Farnsteiner [Fal0, Theorem 4.5(2)]
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A module is called uniserial if it has a unique composition series. In
this case, the finite number of members of the composition series exhaust
all submodules, and therefore every submodule and every factor module of a
uniserial module is also uniserial. u(L, ) is called serial if every projective
indecomposable u(L, x)-module is uniserial (cf. [ARS, EG1, EG2, Hup]).

We say that L has bounded cohomology if for every finite dimensional re-
stricted L-module M there is an integer b(L, M) such that dimy H} (L, M) <
b(L, M) for every n > 0. It is easy to see that L has bounded cohomol-
ogy if u(L,0) is of bounded module type. L has periodic cohomology if
there exists an integer ¢ such that for every positive integer n and all (not
necessarily finite dimensional) restricted L-modules there are natural iso-
morphisms H?(L,M) = H!19Y(L,M). Restricted Lie algebras with pe-
riodic cohomology clearly have bounded cohomology (with upper bound
b(L,M) := max{dim H}(L,M) | 0 < n < gq}). The reverse implication
follows by using the methods of §6 (see also [Fe2, Theorem 4.1]). Moreover,
[He, Proposition 2] implies that L has periodic cohomology if u(L,0) is of
finite module type.

Since the restricted cohomology of sla(F) is not bounded (see e.g. [Fi,
Chapter 3], it is an immediate consequence of an old classification result of
J.R. Schue [Schuel] that restricted Lie algebras with bounded cohomology
(over fields of characteristic > 3) need to be solvable (see also [Fe2, Proposi-
tion 4.3]). H. Strade and the author have shown the somewhat surprising fact
that the five properties mentioned above are indeed equivalent. Moreover we
classified the corresponding restricted Lie algebras completely.

A restricted Lie algebra L is called cyclic if there is an element x € L
such that L = (x), and a p-nilpotent cyclic restricted Lie algebra is called
nilcyclic.

Theorem 7.1. [FeSl| Let L be a finite dimensional restricted Lie algebra
over a pertect field F of prime characteristic p. Then the following statements
are equivalent:

(a) u(L,0) is serial.

)

) u(L,0) is of bounded module type.
(d) L has periodic cohomology.
)

)

L/I is an at most one-dimensional torus. [
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Remark. W. Pfautsch and D. Voigt have announced in [PV] the classifica-
tion of the restricted Lie algebras of finite module type over algebraically
closed fields. They approach this problem in the context of algebraic group
schemes. Our original proof of Theorem 7.1 in [FeS1] works for perfect fields
but without some modifications not in general since we use [Fe2, Remark
after Corollary 3.6] which is not valid in the generality as it was stated.”

From [FeS1, §3] we can see that the three-dimensional supersolvable re-
stricted Lie algebra from Example (ii) in §2 is the “generic” case of a re-
stricted Lie algebra of finite module type. Since its reduced universal en-
veloping algebras are either isomorphic to the restricted universal enveloping
algebra or semisimple, the following consequence of Theorem 7.1 connecting
the restricted case with the general case is not surprising (compare this with
Lemma 3.2):19

Corollary 7.2. Let L be a finite dimensional restricted Lie algebra over
a perfect field. If u(L,0) is of finite module type, then u(L, ) is of finite
module type for every x € L*. [

Remark. Corollary 7.2 shows that the restricted representations of L are the
most complicated ones similar to the relationship between the principal block
and the other blocks.

It is possible to derive from the complete classification of indecomposable
restricted modules in [FeS1] the following generalization of an old result of
B. Pareigis [Par, Korollar IV.2.4]:

Corollary 7.3. [FeSl] If a finite dimensional restricted Lie algebra over an
algebraically closed field has periodic cohomology, then the period is at most
2. O

Corollary 7.3 has been generalized further by R. Farnsteiner [Fal0, Theo-
rem 2.5(4)] from the trivial simple module to any finite dimensional periodic
u(L, x)-module over an arbitrary finite dimensional restricted Lie algebra L.
Recently, K. Erdmann [Erd2] has used Farnsteiner’s result to give necessary
conditions for the graph structure of the connected components of the stable
Auslander-Reiten quiver of u(L,0) (see also [Fal0]).

A finite dimensional algebra A over an (at least infinite) field F is called
tame if for any positive integer d almost all indecomposable A-modules

9This can be shown by a counterexample due to A.D. Bell which was communicated
to the author by R. Farnsteiner.

107t is not at all clear (to the author) how one could prove Corollary 7.2 without using
our classification result.



52

of dimension d belong to a finite number of one-parameter families (e.g.
parametrized by the simple F[z]-modules resp. the affine line A'(FF)) (see
[Benl, Section 4.4]). Using a recent result of J. Rickard [Ric|, H. Strade and
the author [FeS2] were able to classify the restricted Lie algebras of tame
module type over an algebraically closed field of characteristic p > 2 (cf. also
[Voigt2] for a necessary condition if p > 3). The analogue of Corollary 7.2
for “tame” instead of “finite module type” should still be valid, and we can
also introduce a subvariety Xo(L) analogous to X;(L). Moreover, the clas-
sification of the (isomorphism classes of) finite dimensional indecomposable
restricted sly(F)-modules over an algebraically closed field of characteristic
> 2 was carried out (independently) by Yu.A.Drozd [Dro|, A.N. Rudakov
[Ru3] and G. Fischer [Fi] (with parts also due to R.D. Pollack [Pol]) by
reduction to the Kronecker quiver (see [Benl, Section 4.3]), similar to the
classification for dihedral 2-groups in characteristic 2. The analogue problem
for sl3(F) in characteristic 2 was solved earlier by D. Voigt [Voigtl].
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