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Abstract

In this paper we study injective modules over universal enveloping algebras of finite-dimensional
Lie algebras over fields of arbitrary characteristic. Most of our results are dealing with fields of
prime characteristic but we also elaborate on some of their analogues for solvable Lie algebras
over fields of characteristic zero. It turns out that analogous results in both cases are often quite
similar and resemble those familiar from commutative ring theory.

2000 Mathematics Subject Classification: 17B35, 17B50, 17B55, 17B56

Introduction

In this paper we investigate the injective modules and their relation to prime ideals in universal
enveloping algebras of finite-dimensional Lie algebras. Especially, in the case that the ground field
is of prime characteristic we obtain several results that seem to be new. It should be remarked
that most of the results of the first two sections and the last section are already contained in an
unpublished manuscript of the author (cf. [Fel90]) but the entire third section and Theorem 4.3 are
completely new. In the following we will describe the contents of the paper in more detail.

The first section provides the framework for the paper. We begin by recalling the well-known
result from noetherian ring theory that every injective module decomposes uniquely (up to isomor-
phism and order of occurrence) into a direct sum of indecomposable injective modules. Then it is
shown that universal enveloping algebras of finite-dimensional Lie algebras over fields of prime char-
acteristic are FBN rings. As a consequence, indecomposable injective modules are in bijection with
prime ideals. Moreover, it is proved that the universal enveloping algebra of a finite-dimensional
Lie algebra over a field of prime characteristic is a Matlis ring (i.e., every indecomposable injective
module is the injective hull of a prime factor ring of the universal enveloping algebra considered as
a one-sided module) if and only if the underlying Lie algebra is abelian. A similar result might also
hold in characteristic zero but we were neither able to prove this nor to find it in the literature.

In the second section we study certain finiteness conditions for injective hulls. It is well-known
from a result obtained by Donkin [Don82] and independently by Dahlberg [Dah84] that injective
hulls of locally finite modules over universal enveloping algebras of finite-dimensional solvable Lie

∗E-mail address: jfeldvoss@jaguar1.usouthal.edu

1



algebras over fields of characteristic zero are again locally finite. We show that the converse of this
result holds, i.e., the locally finiteness of injective hulls of locally finite modules in characteristic zero
implies that the underlying Lie algebra is solvable. In fact, the locally finiteness of the injective hull of
the one-dimensional trivial module already implies that the underlying Lie algebra is solvable. This
generalizes an observation of Donkin in [Don82]. Moreover, we prove that every essential extension
of a locally finite module over a universal enveloping algebra of any finite-dimensional Lie algebra
over a field of prime characteristic is locally finite by applying a result of Jategaonkar [Jat74] in
conjunction with the result from the first section saying that universal enveloping algebras of finite-
dimensional Lie algebras over fields of prime characteristic are FBN rings. In particular, injective
hulls of locally finite modules are always locally finite. By generalizing slightly another result of
Jategaonkar [Jat75], we also show that injective hulls of artinian modules over universal enveloping
algebras of finite-dimensional Lie algebras over a field of prime characteristic are always artinian.
Finally, it is established that for the universal enveloping algebra of a non-zero finite-dimensional
Lie algebra over a field of prime characteristic non-zero noetherian modules are never injective by
proving that the injective dimension of a non-zero noetherian module coincides with the dimension
of the underlying Lie algebra. On the other hand, there are artinian and locally finite modules of
any possible injective dimension.

In the third section we consider certain locally finite submodules of the linear dual of a universal
enveloping algebra. We start off by showing how an argument from [Dah84] can be changed slightly to
make it work over arbitrary fields of any characteristic and therefore obtaining a different (and in our
opinion more transparent) proof of a result due to Levasseur [Lev76]. Then we give a very short proof
of the main result of [Kos54] by using the locally finiteness of injective hulls of locally finite modules
over universal enveloping algebras of finite-dimensional solvable Lie algebras in characteristic zero in
an essential way. In fact, this argument was motivated by our proof of the injectivity of the continuous
linear dual of the universal enveloping algebra of an arbitrary finite-dimensional Lie algebra over a
field of prime characteristic. As an immediate consequence, we obtain that in prime characteristic the
cohomology with values in the continuous linear dual vanishes in every positive degree. In particular,
Koszul’s cohomological vanishing theorem does remain valid in prime characteristic. These results
seem to be new. Moreover, the modular cohomological vanishing theorem is much stronger than its
analogue in characteristic zero which follows from a recent result of Schneider (cf. [Mas00]) and says
that the cohomology with values in the continuous linear dual vanishes in degrees one and two.

The last section closes the circle of ideas by coming back to the correspondence between injective
modules and prime ideals. It is verified that universal enveloping algebras of finite-dimensional Lie
algebras over fields of prime characteristic are injectively homogeneous in the sense of [BH88]. As a
consequence of the general theory of injectively homogeneous rings developed in [BH88] we obtain
a nice description of a minimal injective resolution of the universal enveloping algebra as a module
over itself in terms of the injective hulls of its prime factor rings considered as one-sided modules.
In particular, this enables us to show that the last term of such a minimal injective resolution is
isomorphic to the continuous linear dual which was proved by Barou and Malliavin [BM85] for
finite-dimensional solvable Lie algebras over algebraically fields of characteristic zero.

Throughout this paper we will assume that all associative rings have a unity element and that
all modules over associative rings are unital.

1 Injective Modules and Prime Ideals

Since the universal enveloping algebra of a finite-dimensional Lie algebra a is left and right noetherian
(cf. [Jac79, Theorem V.6]), finding all injective left and right U (a)-modules reduces to the classi-
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fication of the indecomposable ones (see [Mat58, Theorem 2.5, Proposition 2.6, and Proposition
2.7]):

Proposition 1.1 Let a be a finite-dimensional Lie algebra over an arbitrary field. Then the follow-
ing statements hold:

(1) Every injective left or right U (a)-module is a direct sum of indecomposable injective submodules.

(2) If I is an indecomposable injective left or right U (a)-module, then Enda(I) is local. In partic-
ular, the decomposition in the first part is unique up to isomorphism and order of occurrence
of the direct summands. 2

In order to be able to parameterize the indecomposable injective left or right U (a)-modules, one needs
the following concept from non-commutative ring theory. A left and right noetherian associative
ring R is called a FBN ring if every essential left ideal and every essential right ideal of every prime
factor ring of R contains a non-zero two-sided ideal (which, in fact, is essential). While classifying
the indecomposable injective U (a)-modules by analogy with the commutative case (see [Mat58,
Proposition 3.1]), one should be aware that the injective hull of U (a)/P (considered as a left or right
U (a)-module) is not necessarily indecomposable for every prime ideal P of U (a). For example, the
injective hull of U (a)/AnnU(a)(S) is isomorphic to the direct sum of d copies of the injective hull of
any simple a-module S of dimension d > 1 (cf. the proof of Theorem 1.3 and Theorem 4.3).

Let M be a non-zero U (a)-module. A two-sided ideal P is said to be associated to M if there
exists a submodule N of M such that P equals the annihilator of every non-zero submodule of N . It
is well-known that P is necessarily prime and that for an indecomposable injective module I there
exists a unique prime ideal PI associated to I (cf. [BGR73]).

If a is a finite-dimensional Lie algebra over a field of prime characteristic, then U (a) is a finitely
generated C(U (a))-module (cf. [SF88, Theorem 5.1.2]). Hence one has the following well-known
facts which are crucial for the results obtained in this paper:

(IC) U (a) is integral over its center C(U (a)) (cf. [SF88, Theorem 6.1.4]). More generally, there
exists a subalgebra O(a) ∼= F[t1, . . . , tdimF a] of C(U (a)) such that U (a) is integral over every
subring C of U (a) with O(a) ⊆ C ⊆ C(U (a)).

(PI) U (a) is a PI ring (cf. [GW89, p. xi]).

The next result shows that the indecomposable injective modules over universal enveloping al-
gebras in prime characteristic can be classified by their associated prime ideals.

Theorem 1.2 Let a be a finite-dimensional Lie algebra over a field of prime characteristic. Then the
universal enveloping algebra U (a) is a FBN ring. In particular, there is a one-to-one correspondence
between the indecomposable injective U (a)-modules and the prime ideals of U (a) given by I 7→ PI ,
where PI is the unique prime ideal associated to I.

Proof. The first assertion follows from [GW89, Proposition 8.1(b)] and the second assertion is a
consequence of the first and [Kra72, Theorem 3.5]. 2

Question. Let a be a finite-dimensional Lie algebra over a field of characteristic zero. It would be
interesting to know when U (a) is a FBN ring? Is U (a) only an FBN ring if a is abelian?1

1Recently, Ian Musson [Mus06] answered this question in the affirmative by showing that a universal enveloping
algebra in characteristic zero is only bounded if it is commutative.
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An associative ring R is called a Matlis ring if every indecomposable injective left or right R-
module is isomorphic to the injective hull of R/P (considered as a left or right R-module) for some
prime ideal P of R. Every left and right noetherian Matlis ring is a FBN ring (see [Kra72, Corollary
3.6]), but the converse is not true as follows from Theorem 1.2 and the next result.

Theorem 1.3 Let a be a finite-dimensional Lie algebra over a field of prime characteristic. Then
the universal enveloping algebra U (a) is a Matlis ring if and only if a is abelian.

Proof. Since both conditions are independent of the ground field F, we can assume that F is
algebraically closed. Suppose that U (a) is a Matlis ring. According to [Kra70, Corollary 14], every
prime ideal of U (a) is completely prime. Let S be a simple a-module and set D := Enda(S). Since
S is finite-dimensional (cf. [SF88, Theorem 5.2.4]), D is a finite-dimensional division algebra over F,
and thus D = F. Then the density theorem (cf. [Kap72, Theorem 16, p. 95]) implies that

U (a)/AnnU(a)(S) ∼= EndF(S) ∼= Matd(F),

where d := dimF S. Since S is simple, AnnU(a)(S) is primitive (i.e., prime), and thus, AnnU(a)(S)
is completely prime. It follows that Matd(F) has no zero divisors, i.e., d = 1. Hence every simple a-
module is one-dimensional. By virtue of a result due to Jacobson, there exists a (finite-dimensional)
faithful semisimple a-module (see [SF88, Theorem 5.5.2]). Therefore, we have

[a, a] ⊆
⋂

S∈Irr(a)

Anna(S) = 0,

where Irr(a) denotes the set of isomorphism classes of simple a-modules, i.e., a is abelian. Finally,
the converse is just [Mat58, Proposition 3.1]. 2

Remark. The proof of Theorem 1.3 applied to a composition factor S of the adjoint module of a
finite-dimensional Lie algebra a over a field of characteristic zero shows that in this case the universal
enveloping algebra U (a) can only be a Matlis ring if a is solvable (cf. also [BGR73, p. 49]). This still
leaves the question as to whether Theorem 1.3 is also true in characteristic zero.2

2 Injective Hulls

In this section several finiteness properties of injective hulls are considered. Let R be an associative
ring and let M be a left or right R-module. An injective module I is called an injective hull (or
an injective envelope) of M if there exists an R-module monomorphism ι : M → I such that the
image Im(ι) of ι is an essential submodule of I. (By abuse of language, the pair (I, ι) is also called
an injective hull of M .)

It is well-known that every module has an injective hull (cf. [GW89, Theorem 4.8(a)]). Moreover,
injective hulls satisfy the following universal properties (cf. [GW89, Theorem 4.8(b) and (c)] or
[Rot79, Theorem 3.30]):

Let M be an R-module and let (IR(M ), ιM) be an injective hull of M .

(I) If I is an injective R-module and ι is an R-module monomorphism from M into I, then
every R-module homomorphism η from IR(M ) into I with η ◦ ιM = ι is a monomorphism.
(Since I is injective and ιM is an R-module monomorphism, there always exists an R-module
homomorphism from IR(M ) into I with η ◦ ιM = ι !)

2It follows from a recent result of Ian Musson [Mus06] mentioned above that Theorem 1.3 is also true in charac-
teristic zero.
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(E) If N is an R-module and ϕ is an R-module monomorphism from M into N such that ϕ(M ) is
an essential submodule of N , then every R-module homomorphism ν from N into IR(M ) with
ν◦ϕ = ιM is a monomorphism. (Since IR(M ) is injective and ϕ is an R-module monomorphism,
there always exists an R-module homomorphism from N into IR(M ) with ν ◦ ϕ = ιM !)

(I) says that injective hulls are minimal injective extensions and (E) says that injective hulls are max-
imal essential extensions. In particular, injective hulls are uniquely determined up to isomorphism
(cf. [GW89, Proposition 4.9]).

Recall that a module is said to be locally finite if every finitely generated (or equivalently, every
cyclic) submodule is finite-dimensional.

Theorem 2.1 Let a be a finite-dimensional Lie algebra over a field of prime characteristic. Then
every essential extension of a locally finite a-module is locally finite.

Proof. Let M be a locally finite a-module, let E be an essential extension of M , and let e be any
non-zero element of E. Then E′ := U (a)e is an essential extension of M ′ := E′ ∩ M . Since U (a)
is noetherian, M ′ ⊆ E′ is finitely generated. Because M is by assumption locally finite, M ′ ⊆ M
is finite-dimensional and thus artinian. By virtue of Theorem 1.2, we can apply [Jat74, Corollary
3.6] or the main result of [Sch75] (cf. also [GW89, Theorem 8.11]) which show that E′ has only
finitely many composition factors. Finally, we conclude from [SF88, Theorem 5.2.4] that E′ is
finite-dimensional, i.e., E is locally finite. 2

The next result is an immediate consequence of Theorem 2.1.

Corollary 2.2 If a is a finite-dimensional Lie algebra over a field of prime characteristic, then the
injective hull of every locally finite a-module is locally finite. 2

It is well-known that Corollary 2.2 is also true for a finite-dimensional solvable Lie algebra over
an arbitrary field of characteristic zero (see [Don82, Theorem 2.2.3] and [Dah84, Corollary 12]), but
it does not hold for a finite-dimensional semisimple Lie algebra over a field of characteristic zero
(see [Don82, Remark after the proof of Proposition 2.2.2] and [Dah89, Remark 1]). More precisely,
we have the following result.

Theorem 2.3 Let a be a finite-dimensional Lie algebra over a field of characteristic zero. Then the
following statements are equivalent:

(1) a is solvable.

(2) The injective hull of the one-dimensional trivial a-module is locally finite.

(3) The injective hull of every locally finite a-module is locally finite.

Proof. The implication (1)=⇒(3) is just [Don82, Theorem 2.2.3] or [Dah84, Corollary 12] and the
implication (3)=⇒(2) is trivial. Hence it only remains to show the implication (2)=⇒(1).

Suppose that the injective hull Ia(F) of the one-dimensional trivial a-module F is locally fi-
nite. Since the ground field is assumed to have characteristic zero, the Levi decomposition theorem
(cf. [Jac79, p. 91]) yields the existence of a semisimple subalgebra s of a (a so-called Levi factor of
a) such that a is the semidirect product of s and its solvable radical Solv(a). According to [Dah84,
Proposition 4], the restriction I := Ia(F)|s is an injective U (s)-module. Since Ia(F) is a locally finite
U (a)-module, I is a locally finite U (s)-module.
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Since I is injective, it follows from the universal property (I) of injective hulls that F ⊆ Is(F) ⊆ I.
If 0 6= m ∈ Is(F), then the cyclic submodule M := U (s)m of I is finite-dimensional. Since Is(F) is
an essential extension of F and M is a non-zero submodule of Is(F), M ∩F 6= 0. Then for dimension
reasons, M ∩ F = F, i.e., F ⊆ M . By virtue of Weyl’s completely reducibility theorem (cf. [Jac79,
Theorem III.8, p. 79]), F has a complement in M , i.e., there exists a submodule C of M such that
M = F ⊕ C. In particular, F ∩ C = 0 which implies that C = 0 because C is a submodule of
Is(F). Consequently, M = F and therefore F = Is(F). Hence F is an injective U (s)-module and
thus also an injective U (Fs)-module for every element s ∈ s (cf. [Dah84, Proposition 4]). Finally
Ext1U(Fs)(F, F) ∼= H1(Fs, F) 6= 0 for every 0 6= s ∈ s yields s = 0, i.e., a = Solv(a) is solvable. 2

Let a be a finite-dimensional Lie algebra over a field of characteristic zero. Donkin [Don82,
Theorem 2.2.3] proved that the largest locally finite submodule Ia(M )loc of the injective hull of
any finite-dimensional a-module M is artinian. In particular, if a is solvable, then injective hulls of
finite-dimensional a-modules are artinian. Furthermore, Dahlberg [Dah89] showed that the injective
hull of every artinian sl2(C)-module is locally artinian. In prime characteristic the following stronger
result holds.

Theorem 2.4 If a is a finite-dimensional Lie algebra over a field of prime characteristic, then the
injective hull of every artinian a-module is artinian.

Proof. Let M be an artinian a-module. Then the socle Soca(M ) of M is also artinian, i.e., a finite
direct sum of simple modules. According to Ia(M ) ∼= Ia(Soca(M )) and the additivity of Ia(−), the
assertion is an immediate consequence of (PI) and [Jat75, Theorem 2]. 2

Non-zero noetherian a-modules are very often not injective. This was proved in [BHM82, Corol-
lary 2.3] for every (not necessarily commutative) local noetherian associative ring and motivated
the first part of Proposition 2.5 below. In particular, injective hulls of noetherian (or even finite-
dimensional) a-modules are not noetherian. Moreover, for artinian and locally finite a-modules any
possible injective dimension can occur.

Proposition 2.5 Let a be a finite-dimensional Lie algebra over a field F of prime characteristic.
Then the following statements hold:

(1) For every non-zero finitely generated (= noetherian) a-module M , we have

inj.dimU(a)M = dimF a.

(2) For every integer 0 ≤ r ≤ dimF a there exists an artinian a-module Mr such that

inj.dimU(a)Mr = r.

(3) For every integer 0 ≤ r ≤ dimF a there exists a locally finite a-module Nr such that

inj.dimU(a)Nr = r.

Proof. (1): Since M is noetherian, it has a maximal submodule N . Hence S := M/N is simple and
thus finite-dimensional (cf. [SF88, Theorem 5.2.4]). By virtue of [Far90, Theorem 4.2(3)], there exists
an a-module V such that Extd

U(a)(V, S) 6= 0, where d := dimF a. Then the long exact cohomology
sequence implies the exactness of

Extd
U(a)(V, M ) −→ Extd

U(a)(V, S) −→ Extd+1
U(a)(V, N ).
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Because of gl.dim U (a) = d (cf. [CE56, Theorem 8.2]), the right-hand term vanishes. One concludes
that Extd

U(a)(V, M ) 6= 0, i.e., inj.dimU(a)M ≥ d. The reverse inequality follows from inj.dimU(a)M ≤
gl.dim U (a) = d.

(2): Put d := dimF a and let Md be any non-zero finite-dimensional a-module. By the first part,
we have inj.dimU(a)Md = d. According to Theorem 2.4, the injective hull Ia(Md) and therefore
Md−1 := Ia(Md)/Md are artinian. From the long exact cohomology sequence and the injectivity of
Ia(Md) one concludes for an arbitrary a-module X that

Extd
U(a)(X, Md−1) ∼= Extd+1

U(a)(X, Md) = 0

because inj.dimU(a)Md = d. Hence inj.dimU(a)Md−1 ≤ d− 1 (cf. [Rot79, Theorem 9.8]). By another
application of [Rot79, Theorem 9.8], there exists an a-module Xd such that Extd

U(a)(Xd, Md) 6= 0.
Then the long exact cohomology sequence implies

Extd−1
U(a)(Xd, Md−1) ∼= Extd

U(a)(Xd, Md) 6= 0,

i.e., inj.dimU(a)Md−1 = d − 1, and the assertion follows by induction.
(3): The proof is the same as for (2) except that one uses Corollary 2.2 instead of Theorem 2.4

to conclude that Nd−1 := Ia(Nd)/Nd is locally finite. 2

Remark. Dually, non-zero artinian a-modules are never projective if a 6= 0 and for noetherian
a-modules any possible projective dimension can occur (see [Fel90]).

Since every simple module is finitely generated , the following is an immediate consequence of Propo-
sition 2.5(1).

Corollary 2.6 Let a be a finite-dimensional Lie algebra over a field F of prime characteristic and
let S be a simple a-module. Then inj.dimU(a)S = dimF a. 2

3 Locally Finite Submodules of the Coregular Module

Let a be a Lie algebra over a field F of arbitrary characteristic. Then the linear dual U (a)∗ :=
HomF(U (a), F) of U (a) is a left and a right U (a)-module, the so-called coregular module of U (a)
(cf. [Dix96, 2.7.7]). It is well-known that U (a)∗ is injective as a left and right U (a)-module (cf. [Lev76,
Proposition 1]).

Let U (a)◦ denote the continuous linear dual of U (a) which is the largest locally finite submodule
of the left and right U (a)-module U (a)∗. It is well-known that U (a)◦ also consists of all linear forms
on U (a) that vanish on some two-sided ideal of finite codimension in U (a) (cf. [Lev86, p. 51]).

Finally, let U (a)\ denote the set of all linear forms on U (a) that vanish on a certain power of
the augmentation ideal U (a)+ of U (a). Then one has the following inclusions where F∗ is identified
with the linear forms on U (a) that vanish on U (a)+ (cf. [Dix96, Lemma 2.5.1]):

F ∼= F∗ ⊆ U (a)\ ⊆ U (a)◦ ⊆ U (a)∗ .

The following is also well-known (cf. [Lev76, Lemme 2]).

Lemma 3.1 If a is a finite-dimensional Lie algebra over an arbitrary field, then U (a)\ is an essential
extension of the one-dimensional trivial left and right U (a)-module. 2
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For the convenience of the reader we include a proof of the following result.

Theorem 3.2 (cf. [Lev76, Théorème 3] or [Dah84, Theorem 3]) If a is a finite-dimensional nilpo-
tent Lie algebra over an arbitrary field, then U (a)\ is an injective hull of the one-dimensional trivial
left and right U (a)-module.

Proof. Since F ∼= F∗ ⊆ U (a)∗ and U (a)∗ is injective, the universal property (I) of injective hulls
implies that Ia(F) ⊆ U (a)∗. It follows from [Dah84, Proposition 1] (cf. also Theorem 2.3 and
Corollary 2.2) that Ia(F) is locally finite. Consider ϕ ∈ Ia(F). Then E := U (a)ϕ is a finite-
dimensional extension of F. An application of Fitting’s lemma (cf. [Jac79, Theorem II.4, p. 39])
shows that a acts nilpotently on E and it follows from the Engel-Jacobson theorem (cf. [SF88,
Corollary 1.3.2]) that a certain power of the augmentation ideal U (a)+ annihilates E. Consequently,
ϕ ∈ U (a)\ and therefore Ia(F) ⊆ U (a)\. Finally, the other inclusion follows from Lemma 3.1 and
the universal property (E) of injective hulls. 2

Remark. It is observed in [Lev76, Remarque 2 after Théorème 3] that U (a)\ is not injective for the
two-dimensional non-nilpotent Lie algebra. It would be interesting to know whether the injectivity
of U (a)\ implies that a is nilpotent.

The isomorphism Hn(a, U (a)\) ∼= Extn
U(a)(F, U (a)\) in conjunction with Theorem 3.2 and [Rot79,

Theorem 7.6] yields the following cohomological vanishing theorem due to Koszul:

Corollary 3.3 (cf. [Kos54, Théorème 6]) If a is a finite-dimensional nilpotent Lie algebra over an
arbitrary field, then

Hn(a, U (a)\) = 0

for every positive integer n. 2

Question. Does the vanishing Hn(a, U (a)\) for every positive integer n imply that a is nilpotent?

Let us now consider arbitrary finite-dimensional Lie algebras over fields of prime characteristic.

Theorem 3.4 If a is a finite-dimensional Lie algebra over a field of prime characteristic, then the
continuous linear dual U (a)◦ is injective as a left and right U (a)-module.

Proof. Since U (a)◦ ⊆ U (a)∗ and U (a)∗ is injective, the universal property (I) of injective hulls
implies that Ia(U (a)◦) ⊆ U (a)∗. Because U (a)◦ is locally finite, it follows from Corollary 2.2 that
Ia(U (a)◦) is also locally finite. But since by definition U (a)◦ is the largest locally finite submodule
of U (a)∗, U (a)◦ = Ia(U (a)◦) is injective. 2

The isomorphism Hn(a, U (a)◦) ∼= Extn
U(a)(F, U (a)◦) in conjunction with Theorem 3.4 and [Rot79,

Theorem 7.6] yields the following cohomological vanishing theorem:

Corollary 3.5 If a is a finite-dimensional Lie algebra over a field of prime characteristic, then

Hn(a, U (a)◦) = 0

for every positive integer n. 2
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Remark. The case n = 1 of Corollary 3.5 was already proved by Masuoka [Mas00, Proposition
5.1]. It follows from Corollary 3.5 in conjunction with [Kos54, Théorème 2] that every cohomology
class of a finite-dimensional Lie algebra over a field of prime characteristic with coefficients in a
finite-dimensional module is annihilable. This result was proved in a completely different way by
Dzhumadil’daev [Dzh90, Theorem 3.1, pp. 467–470].

The equivalence of (1), (3), and (4) in the next result is essentially due to Koszul (see [Kos54,
Théorème 7 and p. 536]. Moreover, for an algebraically closed ground field the implication (1)=⇒(2)
follows from [BM85, Théorème 3.6 and Théorème 4.10] (see also [Lev86, Proposition 3.4 and Propo-
sition 3.6] for F = C).

Theorem 3.6 Let a be a finite-dimensional Lie algebra over a field of characteristic zero. Then the
following statements are equivalent:

(1) a is solvable.

(2) The continuous linear dual U (a)◦ is injective as a left and right U (a)-module.

(3) Hn(a, U (a)◦) = 0 for every positive integer n.

(4) H3(a, U (a)◦) = 0.

Proof. The proof of the implication (1)=⇒(2) is the same as for Theorem 3.4 except that one uses
Theorem 2.3 instead of Corollary 2.2 in order to conclude that Ia(U (a)◦) is locally finite. Since
(2)=⇒(3) is clear and (4) is just a special case of (3), it remains to show the implication (4)=⇒(1).

Suppose that H3(a, U (a)◦) = 0 and let M be an arbitrary finite-dimensional a-module. Then
the isomorphism HomF(U (a), M ) ∼= U (a)∗ ⊗F M (where M is considered as a trivial a-module)
implies that H3(a, HomF(U (a), M )loc) = 0 where HomF(U (a), M )loc denotes the largest locally finite
submodule of HomF(U (a), M ). According to [Kos54, Théorème 2], it follows that every cohomology
class in H3(a, M ) is annihilable and thus [Kos54, 5), p. 536] yields that a is solvable. 2

Remark. The above proof of the implication (1)=⇒(2) is not only much more direct than in [BM85]
or [Lev86] but also answers affirmatively a question posed at the end of the third section in [BM85].
Moreover, it should be noted that the implication (2)=⇒(1) in Theorem 3.6 can also be obtained
directly from the universal property (I) of injective hulls and Theorem 2.3.

Recently, H.-J. Schneider has generalized the implication (1)=⇒(2) in Theorem 3.6 even further.
Let a be a finite-dimensional Lie algebra over a field of characteristic zero and let Solv(a) denote the
solvable radical of a. Then Schneider proves that the restriction [U (a)◦]|Solv(a) of U (a)◦ to Solv(a) is
injective (cf. [Mas00, Theorem 5.3]). This in conjunction with the Hochschild-Serre spectral sequence
(cf. [HS53, Theorem 6]) and the two Whitehead lemmata (cf. [Jac79, Theorem III.13]) implies that
H1(a, U (a)◦) = 0 = H2(a, U (a)◦) (see [Mas00, Proposition 5.1 and Theorem 5.2]). But Theorem 3.6
shows that H3(a, U (a)◦) 6= 0 if a is not solvable which generalizes [Mas00, Remark 5.9].

It follows from the universal properties (E) and (I) of injective hulls in conjunction with Lemma
3.1 and Theorem 3.4 or Theorem 3.6 that

F ∼= F∗ ⊆ U (a)\ ⊆ Ia(F) ⊆ U (a)◦ .

Note that the cocommutative Hopf algebra structure on U (a) induces a commutative algebra struc-
ture on U (a)∗ which over a field F of characteristic zero can be identified with the algebra of power
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series in dimF a variables (cf. [Dix96, Proposition 2.7.5]) and the continuous linear dual U (a)◦ is a
subalgebra of U (a)∗.

Let a be a finite-dimensional solvable Lie algebra over the complex numbers. Then Levasseur
[Lev86, Théorème 2.2] has shown that Ia(F) is isomorphic to a polynomial algebra in dimF a variables
on which a acts via derivations.

Conjecture. Let a be a finite-dimensional Lie algebra over a field F. If a is solvable and char(F) = 0
or if a is arbitrary and char(F) > 0, then Ia(F) is isomorphic to a polynomial algebra in dimF a
variables on which a acts via derivations.

If a is abelian, then this follows from [Nor74, Theorem 2] and in [Dah84, Section 4] there are examples
confirming this for Lie algebras of small dimensions.

4 Minimal Injective Resolutions

Let I be a two-sided ideal of an associative ring R. Then u.gr(I) := sup{n ∈ N0 | Extn
R(R/I, R) 6= 0}

is called the upper grade of I. A left and right noetherian associative ring R is left (resp. right) injec-
tively homogeneous over a central subring C if R is integral over C, inj.dimRR < ∞ (resp. inj.dim RR

< ∞) and u.gr(M) = u.gr(N ) for all maximal ideals M and N such that M ∩ C = N ∩ C. In
[BH88] it was demonstrated that for associative rings integral over a central subring the class of in-
jectively homogeneous rings is a natural generalization of the class of commutative Gorenstein rings.
Moreover, [BH88, Corollary 3.6] shows that R is injectively homogeneous over its center C(R) if and
only if R is injectively homogeneous over every subring C ⊆ C(R) over which R is integral, and by
virtue of [BH88, Corollary 4.4], R is left injectively homogeneous if and only if R is right injectively
homogeneous.

Lemma 4.1 If a is a finite-dimensional Lie algebra over a field of prime characteristic, then U (a)
is injectively homogeneous over every subring C of U (a) with O(a) ⊆ C ⊆ C(U (a)).

Proof. Let M be a maximal ideal of U (a). Then ℘ := M∩C(U (a)) is also maximal [SF88, Corollary
6.3.4], and thus Hilbert’s Nullstellensatz yields that C(U (a))/℘ is finite-dimensional. Since U (a) is
finitely generated over C(U (a)), we conclude that M := U (a)/M is also finite-dimensional. Set
d := dimF a. According to [Far90, Theorem 4.2(3)], there exists a simple a-module S such that
Extd

U(a)(M, S) 6= 0. If A denotes the annihilator of a generator of S in U (a), we obtain a short exact
sequence 0 → A → U (a) → S → 0 of U (a)-modules. The long exact cohomology sequence implies
the exactness of

Extd
U(a)(M, U (a)) −→ Extd

U(a)(M, S) −→ Extd+1
U(a)(M,A).

Because of gl.dim U (a) = d (cf. [CE56, Theorem 8.2]), the right-hand term vanishes. We conclude
that Extd

U(a)(M, U (a)) 6= 0, i.e., u.gr(M) ≥ d. The reverse inequality follows from u.gr(M) ≤
gl.dim U (a) = d. Hence u.gr(M) = d for every maximal ideal of U (a). This and (IC) yield the
assertion. 2

Remark. Let a be a finite-dimensional Lie algebra over a field of characteristic zero. According to a
theorem of Latyšev [Lat63], U (a) is a PI algebra if and only if a is abelian. Since every algebra which
is a finitely generated module over its center is a PI algebra (cf. [GW89, p. xi]), U (a) is injectively
homogeneous over its center if and only if a is abelian.

10



One consequence of Lemma 4.1 is that inj.dimU (a)℘ < ∞ for every semiprime ideal ℘ of every
subring C of U (a) with O(a) ⊆ C ⊆ C(U (a)) (cf. [Bas63, Fundamental Theorem (e), p. 10] and
[BH88, Theorem 4.1]). More importantly for the purpose of this paper, it is an immediate conse-
quence of Lemma 4.1 and [BH88, Theorem 5.5] that the minimal injective resolution of U (a) has
the same form as for commutative Gorenstein rings (cf. [Bas63, Fundamental Theorem (f), p. 10]).
Recall that a minimal injective resolution of a module M is a long exact sequence

0 −→ M −→ I0
d0−→ I1 −→ · · · −→ In

dn−→ In+1 −→ · · ·

such that In is an injective hull of Ker(dn) for every non-negative integer n.

Theorem 4.2 Let a be a finite-dimensional Lie algebra over a field F of prime characteristic. If
0 −→ U (a) −→ I0 −→ · · · −→ Id −→ 0 is a minimal injective resolution of U (a) as a left or right
U (a)-module, then

In
∼=

⊕

ht(P)=n

Ia(U (a)/P)

for every 0 ≤ n ≤ d := dimF a. 2

Remark. If a is a finite-dimensional Lie algebra over a field of characteristic zero, then the structure
of a minimal injective resolution of U (a) is even in the solvable case more complicated than in
Theorem 4.2 (cf. [Mal83, Mal86]).

Let a be a finite-dimensional solvable Lie algebra over an algebraically closed field of characteristic
zero. Then the last term of a minimal injective resolution of U (a) is isomorphic to the continuous
linear dual U (a)◦ of U (a) (see [BM85, Théorème 3.6 and Théorème 4.10] and also [Lev86, Proposition
3.4 and Proposition 3.6] for F = C). We conclude the paper by applying Theorem 4.2 in order to
prove the analogue of this result in prime characteristic.

Theorem 4.3 Let a be a finite-dimensional Lie algebra over an algebraically closed field of prime
characteristic. If 0 −→ U (a) −→ I0 −→ · · · −→ Id −→ 0 is a minimal injective resolution of U (a)
as a left or right U (a)-module, then Id

∼= U (a)◦.

Proof. By virtue of Corollary 2.2, injective hulls of locally finite modules are locally finite. Since F
is algebraically closed, this enables one to prove that

U (a)◦ ∼=
⊕

S∈Irr(a)

Ia(S)⊕ dimF S

as a left or right U (a)-module, where Irr(a) denotes the set of isomorphism classes of simple a-
modules (cf. [Gre76, 1.5] for the analogous statement in terms of coalgebras and comodules). On
the other hand, it follows from (PI) and [Sch76, Theorem 4] that a prime ideal P of U (a) has
maximal height d if and only if P is maximal. But every maximal ideal P of U (a) is primitive, i.e.,
there is a simple a-module S such that P = AnnU(a)(S). Then the density theorem (cf. [Kap72,
Theorem 16, p. 95]) yields that

U (a)/P = U (a)/AnnU(a)(S) ∼= EndF(S) ∼= S⊕ dimF S∗

as a left or right U (a)-module. In particular, simple a-modules are isomorphic if and only if their
annihilators in U (a) coincide. According to (PI) and Kaplansky’s theorem (cf. [Kap72, Theorem 50,
p. 157]), every primitive ideal of U (a) is maximal and therefore

Id
∼=

⊕

ht(P)=d

Ia(U (a)/P) ∼=
⊕

S∈Irr(a)

Ia(S)⊕ dimF S∗ ∼= U (a)◦ . 2
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Question. Does Theorem 4.3 remain valid for arbitrary ground fields of prime characteristic?
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1120–1121.
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