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ABSTRACT 

 

Joshua Jude Thomas, M. S., University of South Alabama, May 2024. Multi-Script 

Handwriting Identification by Fragmenting Strokes. Chair of Committee: Ryan G. 

Benton, Ph.D.  

 

 This study tests the effectiveness of Multi-Script Handwriting Identification after 

simplifying character strokes, by segmenting them into sub-parts. Character 

simplification is performed through splitting the character by branching-points and end-

points, a process called stroke fragmentation in this study. The resulting sub-parts of the 

character are called stroke fragments and are evaluated individually to identify the writer. 

This process shares similarities with the concept of stroke decomposition in Optical 

Character Recognition which attempts to recognize characters through the writing strokes 

that make them up. The main idea of this study is that the characters of different 

writing‑scripts (English, Chinese, etc.) may have common shapes which can be extracted 

and used in the handwriting identification process. The effectiveness of the stroke 

fragmentation described in this study is tested on the Chinese-English Database from the 

University of Groningen. While not achieving state of the art performance, the results of 

this study imply that simplifying characters shows promise in use for handwriting 

identification. 
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CHAPTER I 

INTRODUCTION 

 

Handwriting Identification is the process of classifying the writer of a handwritten 

document based on the handwriting habits contained in that document. According 

Harralson and Miller in Huber and Headrick’s Handwriting Identification: Facts and 

Fundamentals, forensics experts commonly compare twenty one “discriminating 

elements of handwriting” that deal with properties such as word size, word placement, 

margin sizes, abbreviation choices, etc. [1]. Computationally assisted handwriting uses a 

similar process, but mainly works by extracting visual features from a set of Known 

Documents (KD) and Questioned Documents (QD). In general, the features of a QD are 

compared to a database of writers having a set of KD, or a model of the handwriting 

habits of the writers. The goal is to attribute the QD to one of the known writers by 

detecting similar features; the accuracy of this attribution, generally, increases as the set 

of KD increases [2].  

 

1.1 Verification and Identification Model 

 Srihari et al. describe two main frameworks for performing handwriting 

identification, the Handwriting Verification Model (HVM) and the Handwriting 

Identification Model (HIM), both of which are shown in figure 1 [2]. Much of the 
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research literature falls under one of the two categories. The goal of the HVM is to 

determine whether the document was written by the same person or not (2-class 

classification). The extracted features of two documents are compared by a model to 

produce either a direct classification or a similarity score representing the likelihood that 

the two documents were written by the same person. The HIM, compares the features of 

a QD to a model of known writers to determine the writer directly (assuming the writer of 

the QD is in the set of known writers) [2]. Like the HVM, the HIM can produce a direct 

classification but can also produce vector of probabilities that the document belongs to 

any of the writers (e.g. SoftMax score). The HIM is typically the more popular of the two 

frameworks and is the framework used in this study. 

 

 

 
 

Figure 1. The Handwriting Identification Model vs the Handwriting Verification Model. 
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1.2 Multi-Script Writer Identification 

 In Multi-Script Handwriting Identification (MSWI), writers are not limited to 

one language or writing‑script. A writing‑script is a set of characters used to inscribe a 

written language to a medium, such as paper. A writer can produce handwritten 

documents in languages (English, Chinese, etc.) that use different writing‑scripts, write in 

different languages that share a writing‑script, or even write in the same language but use 

different writing-scripts across the set of documents. The goal of MSWI, according to the 

2018 International Conference on Frontiers in Handwriting Recognition  (ICFHR) 

competition paper on the subject, is to find “… writing patterns that are common across 

different scripts [and] may be exploited to identify the writer” [3]. This problem is based 

on the assumption that there are ingrained patterns in a person’s handwriting that are 

stable across different writing‑scripts, and that these patterns could be extracted as 

features for use in writing identification [3]. The competition paper specifically tries to do 

MSWI such that the model used to identify the writer is trained on one writing‑script, and 

then evaluated on the other. A model that performs well on this specific task would 

heavily be implied to have detected writing patterns unique to the writer that are present 

in both the training and evaluation (testing) dataset. 

MSWI requires common features that can be extracted from the multiple different 

writing‑scripts being compared. However, the visual features of the different 

writing‑scripts can vary drastically from each other. Figure 2 shows the differences 

between four different sample scripts. On one side, you have Bengali and Tamil which 

typically have a flowing, cursive style. On the opposite end you have Hanzi (Chinese), 

which has a more printed style. The English writing‑script can vary between having a 
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cursive and print style, and even the visual difference between cursive and printed 

English could influence the Handwriting Identification process. 

 

 

 
 

Figure 2. Writing‑scripts of three different origins that look very different on the visual level. 

(From left to right) Chinese, Bengali, English, and Tamil.  

 

 

 

1.3 Convolutional Neural Networks 

 Convolutional Neural Networks (CNN) are deep neural networks specialized for 

processing spatial information such as images [4]. They are very good architectures for 

classification tasks on images and have been used in handwriting identification research 

to learn and extract the feature of handwriting [3], [5]. However, one problem of CNN, 

shared by all deep learning models, is the sheer amount of data required to train them 

properly. A standard CNN trained to extract features for handwriting identification would 
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have to have a large amount of labeled data to train on. Even then, the CNN model may 

be trained on many data on a writer class in one writing‑script but lack data for that same 

writer in another writing‑script. In addition, the visual features of the different 

writing‑scripts may, themselves, have an impact on model performance. 

 

1.4 Goal of Study 

 This study attempts to perform Multi-Script Writer Identification (MSWI) by 

breaking down the characters of different writing‑scripts into simpler shapes, or sub-

parts. The concept is that the sub-parts of a handwritten character may be more common 

across writing‑scripts and could be exploited to compare documents across different 

writing‑scripts. This study uses a CNN model as its HIM to produce probabilities of the 

writer of a given document in a multi-script dataset. The novelty presented in this study is 

defined in a process called Stroke Fragmentation, which breaks characters of a document 

into multiple, simpler sub-parts which are called stroke fragments. Stroke Fragmentation 

is called so because this process typically results in fragments of a writing stroke, which 

is a portion of a character caused by a writing utensil being pressed down on the paper, 

then lifted, once. This study also performs a special case of MSWI, described in the 

competition paper [3], where the HWI is trained on one writing‑script and evaluated on 

another, different writing‑script. 

There are several important assumptions in this study. Each document is assumed 

to have only one writer per document. A document may contain multiple writing‑scripts, 

but there is a many-to-one relationship between the documents in a dataset and the writer 

classes of the dataset. Another assumption is that the writing medium and utensil is the 
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same, or similar enough, between each of the datasets. This study also assumes that the 

habits of a writer do not vary across a document due to influences such as time [1].  
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CHAPTER II 

LITERATURE REVIEW 

 

2.1 Handwriting Identification 

 In general, the methodologies presented in the Handwriting Identification 

literature present new types of features they extract from a handwritten document. Each 

of the studies presented in this review either define new features to extract from a 

handwritten document or utilize known feature extraction techniques in a novel way. 

“Individuality of Handwriting” by Srihari et al. is an old and well-regarded paper that 

tests the hypothesis that “handwriting is individual” [2]. The hypothesis is tested by 

implementing features based on the twenty-one features by Huber and Headrick, plus a 

set of “computational features” consisting of a set of eleven “macro-features”, and 

“micro-features”. The features are tested in both the HVM and HIM, described in the 

study. 

 

2.1.1 Single-Script Handwriting Identification  

 Foroozandeh et al. used a deep transfer-learning approach to perform signature 

verification [5]. Several popular CNN architectures were used as feature extractors which 

were then used to classify a genuine signature versus a forgery. Nguyen et al. uses a CNN 

to extract the local features of randomly sampled sub-images of a document [6]. The 
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local features were aggregated via a pooling operation and then used to classify the 

writer. Shaikh et al. use a “Hybrid Deep Learning” approach to perform writer 

verification [7]. They pair one of two “Auto-Learned” features, a CNN and an Auto 

Encoder, and one of two “Human Engineered” features, Scale-Invariant Feature 

Transform (SIFT) [8] descriptors and Gradient Scale Concavity (GSC) [2] descriptors. 

The four resulting combinations were trained to classify the writers of pairs of “AND” 

images. Wu et al. extracted SIFT key points from segmented word regions to generate a 

codebook based classifier [9].  Jain, Rajiv and Doermann, David approximate the 

contours of handwritten characters into “k-adjacent” segments [10]. The contours are 

approximated into lines by a line-fitting algorithm and then sets of 2-to-4 line segments 

are taken and described through a feature vector. Tan et al. extract features from a 

bounding box and a bounding quadrilateral of the handwriting characters for writer 

identification [11]. Pervouchine et al. extract handwriting strokes via modeling with 

cubic splines [12]. Strokes are recreated via curves by vectorizing the input image, 

merging choice skeletal branches, and recreating the loops of a handwriting stroke 

(caused by self-overlapping strokes). The recreated strokes are not directly passed to the 

HIM but are summarized via a feature vector. 

2.1.2 Multi-Script Handwriting Identification 

The International Conference on Frontiers in Handwriting Recognition (ICFHR) 

2018 Multi-Script Handwriting Identification competition reports on the successes of four 

different systems submitted to the competition [3]. These systems are called LIMPAF-I, 

LIMPAF-II, Tokyo System, and the Nuremberg System. The LIMPAF-I and LIMPAF-II 

were submitted by the same group; LIMPAF-I uses Uniform Complete Local Binary 
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Patterns (U-LBP) [13] for its feature extraction while the LIMPAF-II uses Oriented Basic 

Image Features (OBIF) [14]. The Tokyo system used two CNNs to extract features from 

randomly selected sub-images of a writing sample. Features extracted from writing 

samples were passed into a “Transfer Neural Net” to transform the extracted features of 

different writing‑scripts into a more uniform representation. The Nuremberg system was 

actually based on another paper [15] which extracts features by a pre-trained CNN. The 

extracted features were then “PCA-Whitened” and encoded in a visual bag of words 

algorithm called Vector of Locally Aggregated Descriptors (VLAD) [16]. Abbas et al 

combines LBP and OBIF to create a histogram of both over the whole range of the 

document [17]. He et al. tested the power of handwriting junctions on the writer 

identification task [18]. Junctions are grouped into L-junctions representing points where 

writing strokes are sufficiently curved, and T, Y and X-junctions where two handwriting 

strokes intersect. A junction feature is defined containing the center-point, scale (defined 

as minimum branch-length, where a branch is one part of an intersecting stroke), two-to-

four angles representing the directions the branches of a junction point in, and the 

“strength of a branch” in a set number of directions. This junction feature is used to form 

a “junctlet” codebook of common junctions. Finally, the codebook is used to create a 

histogram containing the number of times a type of junction was detected in a document, 

which is then used for classification. This study also introduces the Chinese-English 

database of the University of Groningen (CERUG) consisting of a collection of 

Documents written in Chinese, English, or a combination of both1. Semma et al. use 

 
1 The CERUG dataset is used for this study and the results are compared to the presenting 

paper. 
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CNN features encoded into modified VLAD vectors [16] for handwriting identification 

[19]. Sub-images of a handwritten document are taken around key-points found via the 

Harris corner detector. And then CNN features are extracted, processed into fixed length 

VLAD vectors, and classified. Ahmed et al. focus on the “ending strokes”, parts of a 

character appearing at the tail-end, for writer identification by assembling their contours 

into a code-book [20]. 

 

2.2 Stroke Decomposition 

 Stroke Decomposition is a method of reducing a handwritten character into 

approximate individual strokes. While similar concepts have been applied in Handwriting 

Identification [12], This technique typically appears in research on Optical Character 

Recognition (OCR) which tries to convert a handwritten text into a typed, digital format 

rather than identify the writer of the text. The stroke fragmentation process defined in this 

study shares many similarities to stroke decomposition, mainly through the 

skeletonization (thinning used in the stroke decomposition literature) of a handwritten 

character and the identification of branching points. 

Kim et al. decompose Chinese characters into individual strokes by first 

performing a morphological thinning to reduce each character to a single pixel width 

[21]. They then segment the characters based on branching points (areas where strokes 

overlap) and excessively curved segments, similar to the critical points in [18]. The 

segments are grown morphologically using two modifications on a morphological 

dilation which use vectors both parallel, elongation, and perpendicular, fattening, to the 

direction of each segment. A more standard dilation, named isotropic expansion, is 
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performed on segments that are not long enough for the elongation step. Both Fattening 

and Isotropic expansion are constrained by an approximate convexity measure. Finally, 

Grown stroke segments that have intersecting parts are then potentially merged using the 

same convexity measure as a conditional [21]. Chen et al. convert handwritten Chinese 

characters into stroke sequences (strings of numbers that indicate the type of stroke by 

number and the order the stroke was written by the position of that number) by using an 

encoder-decoder architecture to convert the character images to stroke sequences [22]. 

Liu et al. use a model based approach to stroke decomposition [23]. They represent the 

model of a character through an attributed-relationship graph and generate said graphs 

through thinning, forming control points, then approximating lines where possible. Kim 

et al. do not try to form the strokes of a character directly. Instead, they use a handwritten 

character model composed of (statistical) random variables on the distribution of pixel 

positions [24]. To more efficiently compare the pixels of an input character to the 

character model, the pixels are grouped into approximate stroke regions by applying a 

special thinning method to segment the strokes of an image into “sub-strokes”, and then 

using a nearest neighbors’ scheme to group the pixels of the original image on those 

strokes.  
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CHAPTER III 

METHODOLOGY OF STUDY 

 

The stroke fragmentation process is performed as a separate process from 

Writer Identification with the purpose of generating data (masked sub-images) for the 

Handwriting Identification Model (HIM). It takes the characters of a handwritten 

document and produces one or more sub-parts of a character, called stroke fragments in 

this study, each of which are stored in a sub-image. The sub-images are masked to 

contain only that stroke fragment. For a handwriting dataset consisting of a set of 

digitized handwritten document images (scanned or photographed), the stroke 

fragmentation process takes a document image and extracted multiple masked sub-

images, each containing a stroke fragment, and groups them into different datasets based 

on the writing‑script contained in the document. 

To extract the stroke fragments, a set of masks is constructed for each document. 

These masks are constructed by segmenting the foreground pixels (pixels representing 

the handwritten characters) of a binary representation of the document along detected 

stroke fragments. Each mask represents a stroke fragment to be extracted from the 

document. Specifically, they represent the bounding box coordinates of the stroke 

fragment in the document, as well as the corresponding pixels to be extracted. Sub-

images containing the stroke fragment are extracted from the document with the 
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bounding box coordinates of the masks, and then unneeded pixel values (not 

corresponding to the pixels in the mask) are removed. The extracted stroke fragments of a 

dataset are grouped together: first by the writing‑script used in the document and then by 

the writer class. This process results in a number of script-specific datasets from the 

original, depending on the number of writing‑scripts contained in that original dataset. 

For an experiment, two writing‑script datasets are chosen for the training and 

evaluation of the HIM, evaluating on one and testing on the other. Evaluating the trained 

model on a different writing‑script, not yet encountered by the HIM, will give insight into 

how well the features extracted by the model are at MSWI. The specific model used as 

the HIM is a CNN copying the ResNet-50 model architecture. The architecture is 

modified to classify the writers of a given dataset, and is trained on a single writing 

script. The evaluation is performed on a separate writing‑script and uses Top-1 Accuracy 

(Categorical Accuracy), Top-10 Accuracy, Precision, and Recall, as the evaluation 

metrics. 

 

3.1 Stroke Fragmentation 

 The main idea of the stroke fragmentation process is to split handwritten 

characters into simpler shapes, which are hopefully more common between different 

writing‑scripts. The handwritten characters of a document are split up using critical 

points which are defined as the branching-points and end-points of the character. The end 

goal of the fragmentation process is a collection of stroke fragments extracted from each 

document that could then be used in conventional handwriting identification methods. 
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  A mathematical graph representation is used to facilitate the finding of the critical 

points in a document. In this setting, all the characters contained in a handwritten 

document are represented as a disconnected, planar, multi-graph: 𝐺 = {𝑉, 𝐸}, where 𝑉 is 

a set containing vertices representing the critical points of the document and 𝐸 is a multi-

set of pairs 𝐸 = {𝑢𝑣 |𝑢, 𝑣 ∈ 𝑉}. Each pair in 𝐸 is an edge between two critical point 

vertices 𝑢, 𝑣 and represent that those two points are connected by a sub-part of the 

character, the stroke fragment that we want to extract. The stroke fragments we want to 

extract can then be thought of as the edges between the vertices of the document graph. 

Note that the actual pixel coordinates of the portion we want to extract as stroke 

fragments are not represented as the edges or nodes but are instead included as attributes 

of them. Figure 3 shows a simplification of the process that details how the masks 

representing stroke fragments are made. 
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Figure 3. Visualization of mask construction. Starting with a raw binary image to construct the 

masks. It is skeletonized, segmented on the branching points, and the regions of the stroke 

fragments are grown. Note that the vertex and edge points are plotted over the region grown 

image for visualization2. 

 

 

 

3.1.1 Stroke Fragmentation Process 

This section shows the stroke fragmentation process in detail. The process 

consists of seven steps, which are: preprocessing, skeletonization, graph conversion, 

stroke fragment skeleton labeling, mask segmentation, filtering, and feature extraction. 

3.1.1.1 Preprocessing. 

For a given scanned handwritten document, it is converted into an inverted 

grayscale representation, and a binary representation. The grayscale representation of the 

document is kept for the feature extraction stage, at the end of the stroke fragmentation 

process, and is inverted, meaning that the pixel values are changed to 𝑖 = max(𝐼) − 𝑖 

 
2 Due to the color-map used, the stem of the d in ‘and’ may not appear visible. 
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where 𝑖 is the grayscale level of any given pixel and max (𝐼) is the maximum possible 

grayscale value in the image. This results in the grayscale values of the background 

(typically white) and foreground (typically black) being reversed. Using a background 

grayscale value that is, or is close to, zero makes it possible to set unwanted foreground 

pixels (not belonging to the target stroke fragment) to be set to zero themselves. Figure 4 

shows the visual difference between an image and its inverted grayscale. 

 

 

 
 

Figure 4. Grayscale of a Document versus the Inverted Grayscale. Inverted Grayscale is used to 

make stroke fragment extraction easier in step 7. 

 



17 

 

The binary image is used to form the masks and is obtained by using Otsu’s 

method [25] to threshold the grayscale image. When processing the binary image, an 

inherent amount of noise may exist depending on both the method and quality of 

digitization and may influence the graph representation. Possible examples are smudges 

on the paper, and the visible texture of the paper, etc. A gaussian blur is first applied to 

the grayscale image, before thresholding, to try and remove some of this noise. note that 

the blur is not applied to the grayscale image when extracting the stroke fragments. 

3.1.1.2 Skeletonization. 

A skeletonized version of the binary image is created, such that the handwriting 

strokes contained in the image are reduced to a single pixel width. The skeletonization of 

the document attempts to preserve the general shape of the handwritten characters, and is 

performed by Scikit-Image with the skimage.morphology.skeletonize method. Their 

skeletonization algorithm is based on Zhang and Suen [26], which iteratively removes 

foreground pixels based on their 3x3 neighborhood. 

3.1.1.3 Graph Conversion. 

The skeletonized image is converted into a graph theory representation using the 

Skeleton Network library3. The purpose of this step is to segment the skeleton of the 

characters in the document into stroke fragments. These stroke fragment skeleton 

segments are then used in the next step to segment the pixels of the binary image into 

masks. The graph representing a handwritten document is defined such that the vertices 

of the graph correspond to the critical points in the document: the branching-points and 

 
3 Credit to https://github.com/Image-Py/sknw/tree/master/sknw for providing the code to 

generate a graph theory representation. 

https://github.com/Image-Py/sknw/tree/master/sknw
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end-points. A branching point is a point between two crossing strokes in a document and 

is connected to three or more pixels in the skeleton. An end-point in a document is where 

a handwriting stroke begins or ends, and is connected to only one pixel in the skeleton. 

Every pixel that does not fit the above criteria is considered a stroke fragment pixel and is 

used as the skeleton of the masks. The stroke fragment pixels are stored as attributes to 

edges connecting two vertices in the graph.  

3.1.1.4 Stroke Fragment Skeleton Labeling. 

For every edge, the stroke fragment pixels of that edge are assigned an integer 

label 𝑖 ∈ {1, 2, … , 𝑛 ∈ 𝕫}.  

3.1.1.5 Mask Segmentation. 

The masks of the document are formed by segmenting the foreground pixels of 

the binary image along the stroke fragment segments, labeled in the previous step, 

attributed to the edges of the graph. The segmentation is performed via K-Nearest 

Neighbors (KNN), specifically by Scikit-Learn’s sklearn.neighbors.KNeighborsClassifier 

method with the number of neighbors to consider set to three. The stroke fragment 

segments are used as inputs to KNN. And then, the foreground pixels of the original 

binary image are labeled based on the three stroke fragment pixels it is closest to 

(spatially). This results in a partition of the binary image into the different masks, each 

representing a stroke fragment to be extracted from the inverted grayscale. 

3.1.1.6 Filtering. 

Some artefacts may remain in the image even after the blur is applied. Large 

artefacts such as visible page edges will be viewed as handwriting strokes by the stroke 

decomposition process, and will result in a noisier dataset. In addition to large artefacts, 
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some masks may end up being too small to give any meaningful information. A filtering 

criterion is defined to remove the masks generated by large artefacts, as well as low 

quality masks, from the final output. The bounding box of each mask is found, and if 

both width and height are smaller than 10 pixels, or if either the width or height is smaller 

than 3 pixels or larger than 75% the width/height of the image document, then the mask 

is rejected and not used in the feature extraction step. This has the consequence that some 

foreground pixels of the original image are discarded and not used during the training 

process. 

3.1.1.7 Feature Extraction. 

Masks that are not rejected are used to extract the corresponding stroke fragments 

in the inverted grayscale image. The bounding box coordinates are used to define the 

location of the sub-image in the inverted grayscale, and after the sub-image is obtained, 

any pixel not coinciding with the foreground pixels in the mask is zeroed out. This results 

in a masked sub-image containing only the pixels of the stroke fragment. Figure 5 shows 

a visualization of this, with the mask overlayed on the inverted grayscale and the 

resulting masked sub-image displayed. 
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Figure 5. Extracting a Stroke Fragment from the Inverted grayscale. The mask and it’s bounding 

box are used to extract the stroke fragment. Pixels not corresponding to the mask are zeroed out. 

 

 

 

3.1.1.8 Summary. 

In summary, the stroke fragmentation process takes a scanned handwritten 

document of a given Dataset and transforms it from a single image into multiple, masked 

sub-images containing stroke fragments that, if put together, recreate the original 

character they were extracted from (except for the pixels corresponding to any rejected 

mask). The sub-images are saved to a directory and grouped into the different 

writing‑scripts of the document (English and Chinese) such that the stroke fragments of 

each writing‑script are grouped into their own sub-directory. Each sub-directory then 

further groups the stroke fragments into sub-directories of writer classes, which are then 

used to infer the labels of the writing‑script. Thus, the original dataset is processed into a 

directory of sub-directories representing the different writing‑scripts, each of which 

contains sub‑directories of the writer classes. These writing‑script subdirectories can be 

thought of as datasets themselves, and are then used to either train or evaluate a model in 

the training and evaluation processes, depending on the experiment. 
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3.2 Training and Evaluation 

 The following training and evaluation of the Handwriting Identification model 

(HIM) is a standard process and are implemented with Tensorflow-Keras API. 

Writing‑script directories are loaded as datasets via the 

keras.utils.image_dataset_from_directory method, which loads a directory of sub-

directories representing the writer classes. The class labels are inferred from the names of 

the subdirectories and are then one-hot encoded and used to predict the probabilities that 

the sub-image comes from a document written by any of the writers (through SoftMax 

activation). Each image must have a standard size when passed through a conventional 

CNN. However, the extracted sub-images do not have a standard width or weight due to 

the different sizes of the stroke fragments extracted. The minimum and maximum sizes, 

as well as the first, second, and third quartiles, of the width and height of the stroke 

fragment samples are shown in table 1 (extracted from CERUG with eight hundred 

samples). 

 

 
Table 1. Five number summaries of the width and heights of the stroke samples, in pixels (from 

800 samples). Includes the minimum value, maximum value, as well as the first quartile (25%), 

second quartile (50%), and third quartile (75%). 

 
 Min 25% 50% 75% Max 

Width (px) 5 11 15 22 98 

Height (px) 5 12 17 26 71 

 
 

 

 Both the width and height were resized to 128 pixels to avoid squishing some of 

the larger stroke segments. The writing‑scripts used in the training and evaluation stages 
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will depend on the experiment being performed. Training sets will be further split into 

training and validation datasets, using an 80-20 split. 

 

3.2.1 Model and Method of Analysis 

 The architecture of the Resnet-50 CNN is used as the HIM of this study [27]. The 

SoftMax layer of resnet-50 is altered to predict the writer classes of the dataset and the 

weights of the entire model are randomly initialized. The model is fit to the dataset over 

40 epochs, using the NADAM optimizer with the default parameters as set in keras [28]. 

The keras.callbacks.ModelCheckpoint callback is used to select the best performing 

model trained over the epochs. Note that this serves as a form of regularization for the 

model [4]. Validation loss is used to determine the best model using a 20% random split 

of the training data.  

For evaluation metrics: Top-1 (Categorical Accuracy), Top-10, Precision, and 

Recall are used. Top-10 is a  Top-N metric and, as defined in the ICFHR 2018 

Competition on Multi-Script Writer Identification, is defined as “… the scenario where 

the genuine writer of a query document is present within the list of N most probable 

writers received by the system” [3]. The Top-N metric is a popular evaluation metric in 

the literature, and Top-10 is specifically chosen to compare with the results of this study 

with the junctlets feature presented by He et al. in ‘Junction Detection in Handwritten 

Documents and its Application to Writer Identification’ [18]. The precision and recall are 

metrics measuring the model’s ability to correctly predict a label and to capture all the 

labels of a given class, respectively. 
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Top-1 (Categorical) Accuracy =
TP

TP+FP+TN+FN
 

 

Top-10 Accuracy =
∑ 𝐺(𝑖)𝑖∈𝐼

TP+FP+TN+FN
  

Precision =
TP

(TP + FP)
 

Recall =
TP

(TP + FN)
 

Where: 

1. TP (True Positive) is the sum of stroke fragments correctly attributed to a writer. 

2. FP (False Positive) is the sum of stroke fragments incorrectly attributed to a 

writer. 

3. TN (True Negative) is the sum of instances correctly classified as not being 

written by a writer. 

4. FN (False Negative) is the sum of instances incorrectly classified as not being 

written by a writer. 

5. 𝐺(𝑖) is the sum of stroke fragments whose prediction had the correct writer, 𝑖, 

within the top ten most probable writers. Where the set of writers is 𝐼 

The metrics used are fine-grained, meaning that the sum of the true positive, false 

positive, and false negative instances of all the classes are summed before calculating the 

precision and recall.  
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CHAPTER IV 

EXPERIMENTS 

 

 The Chinese-English Database of the University of Groningen (CERUG), defined 

in [18] contains different writing‑script per writer, for 105 writers. The SoftMax layer of 

the Resnet-50 CNN is altered to have 105 outputs, one for each writer. The 

writing‑scripts are partitioned into: CERUG-CN for Chinese writing in page 1 and 2, 

CERUG-EN in page 3 (split over two images), and CERUG-MIXED in page 4 which 

consists of a mix of Chinese and English.  

Three experiments are performed in this study (two of which follow the tasks 

described in [3]). Experiment 1 uses the CERUG-CN as the training-set, and CERUG-EN 

as a evaluation set. Experiment 2 uses CERUG-EN as the training set and CERUG-CN as 

the evaluation set. Experiment 3 merges CERUG-CN and CERUG-EN together for use 

as the training set and uses CERUG-MIXED as the evaluation set. Note that experiment 3 

does not fit the goal of training on one writing set and evaluating on another and is used 

more for comparison.  
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Figure 6. Visualization of class distributions in the CERUG-CN and CERUG-EN datasets vs, the 

total number of stroke fragments extracted from each. The number of sub-image samples in 

CERUG-CN greatly outnumbers the number of sub-image samples in CERUG-EN. 

 

 

 

Figure 6. shows the class distribution CERUG-CN and CERUG-EN vs. the 

distribution of stroke fragments extracted from each. It is of interest to note that, while 

the individual classes seem relatively balanced, the different writing‑scripts themselves 

constitute a data imbalance. In Total: there were 463,507 sub-images extracted from 

CERUG-CN, 137,258 sub-images extracted from CERUG-EN, resulting in different 

drastically different evaluation performances in experiment 1 and 2. 
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4.1 Visual Examination of Stroke Fragments 

 It may be useful to examine the images extracted during the stroke fragmentation 

process. The stroke fragments of the sub-images are the parts of a handwriting stroke in 

between the critical points of a character. The pixels corresponding to the critical points 

aren’t necessarily in the stroke fragment, since only the stroke fragment pixels attributed 

to the graph edges are used in the KNN region growing step. Thus, the stroke fragments 

generated, generally, will be line curves with no branching off parts and few, if any, will 

be complete loops. Figures 7 and 8 show two different samples of CERUG-CN and 

CERUG EN, respectively. Each shows a sample of 400 different stroke fragments of 

varying scales. With the assumption that both stroke fragment samples are representative 

of the total dataset, we can draw some visual observations from the two figures. Three 

classes of stroke fragments are observed: blobs, curves, and loops. Blobs are squarish, 

small parts of a character that were sandwiched between two critical points in close 

proximity. It is assumed that little useful information can be drawn from the blobs, and 

the filtering criterion (step 6 of stroke fragmentations) removes the especially small 

blobs. Curves are any sufficiently long stroke fragment that does not contain a loop. 

Curves seem to make up most of the stroke fragments extracted from CERUG. Finally, 

loops are any curves that completely wrap around and connect to themselves. For curves 

to form, the part of the handwriting character making up the loop would have to be 

connected to the character by only one branching point, or the branching points would 

have to be positioned such that the region growing step partitions all of them into the 

loops mask. 
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Figure 7. Random Sample of 400 sub-images extracted from CERUG-CN. 
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Figure 8. Random Sample of 400 sub-images extracted from CERUG-EN. 

 

 

 

The following is based on casual examination of the two samples. CERUG-CN 

appears to have many more blobs than CERUG-EN while CERUG-EN seems to have 

more loops. The curves of CERUG-EN also seem to have more curvature than the curves 

of CERUG-CN. The increased number of blobs, at least in CERUG-CN could be 

attributed to tightly packed, crisscrossing handwriting strokes making up the characters. 

The loops and higher curvature of the curves in CERUG-EN seems to be due to the more 

cursive nature of English in CERUG-EN, with the handwriting strokes overall being 

more flowing that than of the handwriting strokes of the Chinese writing in CERUG-CN. 
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4.2 CERUG Evaluation Results 

Table 2 presents the experimental results from all three experiments. The 

performance results of the junctlets feature (as reported in the paper introducing the 

feature extraction method [18]) are also added for reference. Note that the two metrics are 

not exactly comparable because the junctlets feature compute a global feature over the 

entire document while the HIM of this study evaluates individual stroke fragments of the 

document. However the results from [18] are still a good baseline metric. 

 While not performing nearly as well as the junctlets feature proposed in [18], the 

evaluation performance does show that the method of simplifying stroke shapes has 

promise in use for writing identification. A completely random classifier would have an 

average top-1 (categorical accuracy) score of about 1% for the 105 writer classes of 

CERUG. The range of 21%-47% implies that there is some information of the writer 

carried in the stroke fragments produced in this experiment. Furthermore, the top-10 

accuracy, having a range of 71-92%, implies that even in the worst case, the correct 

writer will be in the ten most probable writers, out of 105 writers, for at least 71% of all 

the stroke fragments in the dataset. While not directly important to the study, it is of 

interest to note the overall precision and recall of the trained CNN model for each 

experiment. The recall performance is noticeably less than the precision performance, 

and the trend between precision and recall matches the training size between all three 

experiments (with experiment 3 having the highest). These scores seem to imply that 

while the model is not able to correctly classify many of the stroke fragments of a writer, 

the strokes it does classify as belonging to a particular writer have a, relatively, higher 

chance of actually being produced by that writer. 



30 

 

Table 2. Experimental results from experiments 1 (train CN test EN), 2 (train EN, test CN), and 3 

(train EN+CN, test MIXED). 

 
Experiment 

Number 

Top-1 Accuracy Top-10 Accuracy Precision Recall 

Proposed Junctlets Proposed Junctlets Proposed Proposed 

Experiment 

1 

0.365 0.907 0.865 0.967 0.524 0.266 

Experiment 

2 

0.214 n/a 0.715 n/a 0.318 0.138 

Experiment 

3 

0.477 n/a 0.920 n/a 0.662 0.355 

 

 

 

   As expected with the imbalance of the writing‑scripts, Experiment 2 is the 

worst performer of all three experiments due to CERUG-EN being much smaller, at least 

in the number of extracted stroke fragments, than CERUG-CN. Experiment 3, naturally, 

has the highest performance since it includes both CERUG-CN and CERUG-EN as the 

training set. However, experiment 3 does not fit the particular case of MSWI evaluated in 

this study and is more used as a comparison. 

 

4.2.1 Per Class Metrics 

 The precision and recall metrics presented in table 1 are the fine-grained metrics 

over all 105 writer classes. The per-class precision and recalls may also be used to draw 

some useful insights of the model. To facilitate comparison, the precision and recall are 

combined into the F1 score, which is a harmonic average between the two. 

F1 = 2 ⋅
precision ⋅ recall

precision + recall
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Figure 9. Box Plot of F1 Scores for Experiments 1, 2, and 3.  

 

 

 

Figure 9 shows the boxplots of the F1 score for experiments 1, 2, and 3. 

Experiment 3 uses both CERUG-CN and CERUG-CN as its training set so it is not 

surprising that it outperforms the models in both experiments 1 and 2. Experiment 3 is 

ignored for the remainder of this analysis as it does not experiment with the specific case 

of MSWI used in this study, to train on one writing‑script and evaluate on the other, and 

is more of a baseline. 
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Table 3. Worst and best performers in experiments 1 and 2 with respect to F1 score. Writer1616 

performed the worst in experiment 1, Writer9191 performed the worst in experiment 2, and 

Writer6464 performed the best in all three experiments. 

 
Writer 

Class 

Experiment 1 Experiment 2 Experiment 3 

precision recall F1 precision recall F1 precision recall F1 

Writer1616 0.023 0.008 0.006 0.06 0.019 0.014 0.186 0.218 0.1 

Writer9101 0.107 0.015 0.013 0.023 0.021 0.011 0.504 0.404 0.224 

Writer6464 0.833 0.95 0.444 0.651 0.673 0.331 0.886 0.82 0.426 

 

 

 

 Table 3 presents the worst performers in experiments 1 and 2, and then the best 

performer in all three experiments. The full table of writers and their performances in all 

three experiments can be found in Appendix A, table A1. Writer1616 performed the 

worst in experiment 1, Writer9101 performed the worst in experiment 2, and Writer6464 

performed the best in all three experiments. There does not appear to be a correlation 

between the number of samples (masked sub-images) of the writer classes, per script, and 

the performance of that class in a particular experiment. Table 4 shows the number of 

samples in the writer classes of CERUG-CN and CERUG-EN, for all three writers. If the 

number of samples were to be the deciding factor, Writer9191 would outperform 

Writer6464 in experiment 1, and Writer1616 would outperform Writer6464 in 

experiment 2, and neither is the case.  
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Table 4. Number of sub-image samples for the worst and best performers in experiments 1 and 2. 

 

Writer Samples in CERUG-CN Samples in CERUG-EN 

Writer1616 3174 1299 

Writer9191 3916 1244 

Writer6464 3816 1126 

 

 

 

 The following is a visual analysis of the three writers (as performed in 4.1). 

Figures 10, 11, and 12 (below) show a random sample of stroke fragments from Writers 

6464, 1616, and 9101, respectively. One immediate observation to make is that the stroke 

fragments of Writer6464 are much lighter than both the sample strokes of Writer1616 

and Writer9101, as well as the sample strokes from CERUG-CN and CERUG-EN 

overall. It is likely that Writer6464 performed so well in all three experiments due to the 

lighter shade used to create the strokes. It is not as clear why it may be that Writer1616 

and Writer9101 perform worse in experiments 1 and 2, respectively. One thing that 

stands out is that Writer1616 has consistently darker values representing their stroke 

fragments. The Stroke fragments presented in Figure 11 all have very dark gray level 

values with little variation in light. These two observations for Writer6464 and 

Writer1616 may indicate a grayscale level bias in the trained model for the three 

experiments. It is less clear why Writer9101 performs badly. Possible reasons may be 

that the particular writing style of Writer9101 may have a big impact on the stroke 

fragment generation process. The types of stroke fragments generated for Writer9101 

may throw off the model for experiment 2. 
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Figure 10. Random Sample of 400 sub-images extracted from Writer6464. 

  



35 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 11. Random Sample of 400 sub-images extracted from Writer1616 
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Figure 12. Random Sample of 400 sub-images extracted from Writer9101 
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CHAPTER V 

CONCLUSION 

 

Multi-Script Handwriting Identification attempts to classify the writer of a 

handwritten document in a setting where there can be multiple writing‑scripts or 

languages in use, and with the possibility that a writer can create documents in more than 

one writing‑script. As such, Multi-Script Handwriting Analysis seeks common features 

between the different writing‑scripts that are both effective and consistent. This study 

tested the effectiveness of breaking down the characters of a document into simpler sub-

parts and performed this by breaking down a character along its critical points. While not 

state-of-the-art, the results of the three experiments performed on the CERUG dataset 

show that simplifying character shapes have potential for being used in Handwriting 

Identification4.  

 

5.1 Future Work 

 In this study, the characters are broken down into simpler shapes by segmenting 

the fragments of a stroke along the “critical points” found in the document. Performance 

 
4 The Experimental Results, Publication, Code, and Figures can be found at 

https://github.com/justjude97/MultiScript-Handwriting-Identification-with-Stroke-

Decomposition 

https://github.com/justjude97/MultiScript-Handwriting-Identification-with-Stroke-Decomposition
https://github.com/justjude97/MultiScript-Handwriting-Identification-with-Stroke-Decomposition
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might be increased by adding an additional step that re-merges these stroke fragments 

into larger, but still simpler, shapes than the whole character, shapes. It may also be 

interesting to try and train a model directly on the curvature of the skeletons produced 

during the stroke fragmentation process. The contours of a skeleton, produced during the 

stroke fragmentation process, may be used to classify the writer by converting those 

skeleton edges into a chain-code, or similar representation to be used as sequence data 

instead of spatial data. 
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APPENDIX 

 

Per-Class Precision and Recall Metrics 

 

Table A1. Per-Class precisions and recalls from the evaluation phase of all three experiments. 

 

Writer 

Class 

Experiment 1 Experiment 2 Experiment 3 

precision recall F1 precision recall F1 precision recall F1 

Writer0101 0.626 0.739 0.339 0.537 0.493 0.257 0.765 0.811 0.394 

Writer0202 0.454 0.36 0.201 0.216 0.114 0.075 0.38 0.543 0.224 

Writer0303 0.254 0.286 0.135 0.15 0.073 0.049 0.407 0.464 0.217 

Writer0404 0.336 0.237 0.139 0.079 0.303 0.063 0.378 0.402 0.195 

Writer0505 0.303 0.13 0.091 0.123 0.079 0.048 0.433 0.358 0.196 

Writer0606 0.222 0.09 0.064 0.09 0.053 0.033 0.366 0.178 0.12 

Writer0707 0.188 0.147 0.083 0.07 0.065 0.034 0.374 0.228 0.142 

Writer0808 0.321 0.166 0.109 0.128 0.148 0.068 0.554 0.361 0.219 

Writer0909 0.26 0.293 0.138 0.109 0.173 0.067 0.396 0.344 0.184 

Writer1010 0.302 0.159 0.104 0.122 0.13 0.063 0.398 0.263 0.159 

Writer1111 0.705 0.793 0.373 0.293 0.498 0.185 0.765 0.751 0.379 

Writer1212 0.185 0.171 0.089 0.193 0.026 0.023 0.372 0.216 0.137 

Writer1313 0.159 0.082 0.054 0.066 0.022 0.016 0.334 0.27 0.149 
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Table A1 cont. 

 

Writer1414 0.322 0.237 0.136 0.111 0.32 0.082 0.345 0.467 0.198 

Writer1515 0.528 0.288 0.186 0.262 0.311 0.142 0.606 0.431 0.252 

Writer1616 0.023 0.008 0.006 0.06 0.019 0.014 0.186 0.218 0.1 

Writer1717 0.327 0.205 0.126 0.279 0.071 0.057 0.374 0.494 0.213 

Writer1818 0.309 0.33 0.159 0.206 0.132 0.08 0.429 0.303 0.178 

Writer1919 0.093 0.324 0.073 0.076 0.116 0.046 0.328 0.446 0.189 

Writer2020 0.197 0.177 0.093 0.12 0.085 0.05 0.375 0.437 0.202 

Writer2121 0.333 0.181 0.117 0.156 0.175 0.083 0.344 0.187 0.121 

Writer2222 0.259 0.413 0.159 0.104 0.164 0.064 0.596 0.396 0.238 

Writer2323 0.328 0.151 0.103 0.142 0.139 0.07 0.366 0.318 0.17 

Writer2424 0.261 0.231 0.122 0.163 0.192 0.088 0.394 0.364 0.189 

Writer2525 0.42 0.277 0.167 0.13 0.185 0.076 0.555 0.51 0.266 

Writer2626 0.295 0.17 0.108 0.085 0.32 0.067 0.306 0.203 0.122 

Writer2727 0.311 0.236 0.134 0.117 0.177 0.07 0.425 0.486 0.227 

Writer2828 0.591 0.471 0.262 0.207 0.316 0.125 0.626 0.726 0.336 

Writer2929 0.388 0.698 0.249 0.125 0.41 0.096 0.594 0.53 0.28 

Writer3030 0.439 0.348 0.194 0.184 0.295 0.114 0.715 0.529 0.304 

Writer3131 0.578 0.358 0.221 0.217 0.504 0.152 0.795 0.547 0.324 

Writer3232 0.311 0.115 0.084 0.099 0.058 0.036 0.219 0.348 0.134 

Writer3333 0.506 0.432 0.233 0.331 0.209 0.128 0.626 0.635 0.315 

Writer3434 0.382 0.372 0.188 0.356 0.083 0.067 0.373 0.727 0.247 

Writer3535 0.347 0.104 0.08 0.19 0.04 0.033 0.373 0.334 0.176 
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Table A1 cont. 

 

Writer3636 0.066 0.067 0.033 0.046 0.026 0.016 0.273 0.246 0.129 

Writer3737 0.119 0.093 0.052 0.16 0.054 0.04 0.219 0.309 0.128 

Writer3838 0.449 0.448 0.224 0.275 0.217 0.121 0.489 0.552 0.259 

Writer3939 0.152 0.243 0.094 0.142 0.049 0.036 0.237 0.332 0.138 

Writer4040 0.196 0.21 0.101 0.117 0.06 0.04 0.325 0.3 0.156 

Writer4141 0.167 0.203 0.092 0.124 0.023 0.02 0.335 0.256 0.145 

Writer4242 0.7 0.6 0.323 0.338 0.321 0.165 0.488 0.675 0.283 

Writer4343 0.252 0.37 0.15 0.213 0.111 0.073 0.319 0.428 0.183 

Writer4444 0.473 0.245 0.161 0.207 0.235 0.11 0.639 0.52 0.287 

Writer4545 0.542 0.438 0.242 0.236 0.208 0.111 0.672 0.486 0.282 

Writer4646 0.248 0.29 0.134 0.149 0.115 0.065 0.331 0.328 0.165 

Writer4747 0.269 0.186 0.11 0.186 0.135 0.078 0.48 0.451 0.233 

Writer4848 0.488 0.466 0.238 0.348 0.232 0.139 0.694 0.497 0.29 

Writer4949 0.149 0.092 0.057 0.122 0.091 0.052 0.228 0.208 0.109 

Writer5050 0.71 0.635 0.335 0.47 0.48 0.238 0.703 0.649 0.337 

Writer5151 0.704 0.568 0.314 0.44 0.425 0.216 0.593 0.609 0.3 

Writer5252 0.373 0.324 0.173 0.165 0.147 0.078 0.482 0.494 0.244 

Writer5353 0.265 0.276 0.135 0.242 0.152 0.093 0.369 0.532 0.218 

Writer5454 0.223 0.389 0.142 0.17 0.178 0.087 0.404 0.605 0.242 

Writer5555 0.303 0.525 0.192 0.212 0.182 0.098 0.619 0.477 0.269 

Writer5656 0.42 0.243 0.154 0.236 0.169 0.098 0.018 0.007 0.005 

Writer5757 0.453 0.661 0.269 0.278 0.308 0.146 0.551 0.725 0.313 
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Table A1 cont. 

 

Writer5858 0.485 0.217 0.15 0.253 0.157 0.097 0.488 0.565 0.262 

Writer5959 0.315 0.372 0.171 0.177 0.104 0.065 0.48 0.362 0.206 

Writer6060 0.452 0.399 0.212 0.429 0.137 0.104 0.606 0.372 0.23 

Writer6161 0.437 0.485 0.23 0.237 0.176 0.101 0.799 0.58 0.336 

Writer6262 0.802 0.455 0.29 0.449 0.427 0.219 0.742 0.788 0.382 

Writer6363 0.453 0.674 0.271 0.464 0.365 0.204 0.504 0.65 0.284 

Writer6464 0.833 0.95 0.444 0.651 0.673 0.331 0.886 0.82 0.426 

Writer6565 0.459 0.518 0.243 0.4 0.198 0.132 0.71 0.379 0.247 

Writer6666 0.185 0.307 0.116 0.12 0.094 0.053 0.391 0.557 0.23 

Writer6767 0.143 0.242 0.09 0.161 0.149 0.078 0.254 0.157 0.097 

Writer6868 0.253 0.485 0.166 0.18 0.207 0.096 0.415 0.55 0.237 

Writer6969 0.273 0.129 0.088 0.146 0.336 0.102 0.399 0.315 0.176 

Writer7070 0.153 0.069 0.047 0.131 0.186 0.077 0.323 0.142 0.099 

Writer7171 0.416 0.069 0.059 0.22 0.181 0.099 0.498 0.581 0.268 

Writer7272 0.327 0.31 0.159 0.245 0.144 0.091 0.276 0.318 0.148 

Writer7373 0.284 0.224 0.125 0.215 0.098 0.067 0.483 0.298 0.184 

Writer7474 0.351 0.593 0.221 0.252 0.269 0.13 0.469 0.734 0.286 

Writer7575 0.223 0.456 0.15 0.194 0.231 0.105 0.345 0.435 0.192 

Writer7676 0.379 0.42 0.199 0.117 0.215 0.076 0.637 0.529 0.289 

Writer7777 0.464 0.438 0.225 0.274 0.288 0.14 0.553 0.639 0.296 

Writer7878 0.665 0.617 0.32 0.566 0.308 0.199 0.737 0.805 0.385 

Writer7979 0.135 0.114 0.062 0.075 0.128 0.047 0.34 0.351 0.173 
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Table A1 cont. 

 

Writer8080 0.221 0.398 0.142 0.152 0.164 0.079 0.404 0.335 0.183 

Writer8181 0.523 0.691 0.298 0.319 0.294 0.153 0.421 0.665 0.258 

Writer8282 0.373 0.354 0.182 0.185 0.162 0.086 0.319 0.22 0.13 

Writer8383 0.325 0.472 0.193 0.192 0.219 0.102 0.462 0.472 0.234 

Writer8484 0.824 0.871 0.423 0.57 0.622 0.297 0.804 0.841 0.411 

Writer8585 0.667 0.355 0.232 0.236 0.289 0.13 0.492 0.335 0.199 

Writer8686 0.286 0.136 0.092 0.12 0.04 0.03 0.415 0.319 0.18 

Writer8787 0.491 0.693 0.288 0.464 0.118 0.094 0.499 0.645 0.281 

Writer8888 0.434 0.521 0.237 0.216 0.304 0.126 0.647 0.553 0.298 

Writer8989 0.518 0.551 0.267 0.35 0.342 0.173 0.609 0.73 0.332 

Writer9090 0.619 0.866 0.361 0.469 0.449 0.229 0.687 0.794 0.368 

Writer9100 0.856 0.884 0.435 0.576 0.538 0.278 0.836 0.851 0.422 

Writer9101 0.107 0.015 0.013 0.023 0.021 0.011 0.504 0.404 0.224 

Writer9102 0.426 0.504 0.231 0.332 0.17 0.112 0.583 0.676 0.313 

Writer9103 0.412 0.491 0.224 0.371 0.153 0.108 0.557 0.724 0.315 

Writer9104 0.517 0.269 0.177 0.212 0.361 0.134 0.516 0.551 0.266 

Writer9105 0.671 0.661 0.333 0.391 0.38 0.193 0.7 0.764 0.365 

Writer9191 0.327 0.199 0.124 0.129 0.164 0.072 0.381 0.4 0.195 

Writer9292 0.278 0.185 0.111 0.179 0.132 0.076 0.448 0.343 0.194 

Writer9393 0.358 0.662 0.232 0.314 0.406 0.177 0.527 0.581 0.276 

Writer9494 0.296 0.515 0.188 0.154 0.166 0.08 0.484 0.617 0.271 

Writer9595 0.593 0.716 0.324 0.453 0.31 0.184 0.609 0.752 0.336 
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Writer9696 0.475 0.266 0.171 0.256 0.16 0.098 0.537 0.415 0.234 

Writer9797 0.511 0.156 0.12 0.181 0.328 0.117 0.411 0.687 0.257 

Writer9898 0.309 0.493 0.19 0.232 0.187 0.103 0.455 0.465 0.23 

Writer9999 0.312 0.411 0.177 0.276 0.241 0.129 0.485 0.352 0.204 
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