
University of South Alabama University of South Alabama

JagWorks@USA JagWorks@USA

Theses and Dissertations Theses and Dissertations Graduate School Graduate School

5-2024

Multi-Script Handwriting Identification by Fragmenting Strokes Multi-Script Handwriting Identification by Fragmenting Strokes

Joshua Jude Thomas

Follow this and additional works at: https://jagworks.southalabama.edu/theses_diss

 Part of the Graphics and Human Computer Interfaces Commons, Information Security Commons,

Other Computer Sciences Commons, and the Systems Architecture Commons

https://jagworks.southalabama.edu/
https://jagworks.southalabama.edu/theses_diss
https://jagworks.southalabama.edu/gradschool
https://jagworks.southalabama.edu/theses_diss?utm_source=jagworks.southalabama.edu%2Ftheses_diss%2F185&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/146?utm_source=jagworks.southalabama.edu%2Ftheses_diss%2F185&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/1247?utm_source=jagworks.southalabama.edu%2Ftheses_diss%2F185&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/152?utm_source=jagworks.southalabama.edu%2Ftheses_diss%2F185&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/144?utm_source=jagworks.southalabama.edu%2Ftheses_diss%2F185&utm_medium=PDF&utm_campaign=PDFCoverPages

MULTI-SCRIPT HANDWRITING IDENTIFICATION BY FRAGMENTING

STROKES

A Thesis

Submitted to the Graduate Faculty of the

University of South Alabama

in partial fulfillment of the

requirements for the degree of

Master of Science

in

Computer Science

by

Joshua Jude Thomas

B.S., University of South Alabama, 2021

A.S., Coastal Alabama Community College, 2017

May 2024

ii

TABLE OF CONTENTS

Page

LIST OF TABLES ... iv

LIST OF FIGURES ...v

LIST OF ABBREVIATIONS .. vi

ABSTRACT ... vii

CHAPTER I INTRODUCTION ..1

1.1 Verification and Identification Model .. 1

1.2 Multi-Script Writer Identification ... 3

1.3 Convolutional Neural Networks ... 4

1.4 Goal of Study .. 5

CHAPTER II LITERATURE REVIEW ...7

2.1 Handwriting Identification .. 7

2.1.1 Single-Script Handwriting Identification ... 7

2.1.2 Multi-Script Handwriting Identification .. 8

2.2 Stroke Decomposition ... 10

CHAPTER III METHODOLOGY OF STUDY ..12

3.1 Stroke Fragmentation .. 13

3.1.1 Stroke Fragmentation Process.. 15

3.1.1.1 Preprocessing. ... 15

3.1.1.2 Skeletonization. ... 17

3.1.1.3 Graph Conversion. .. 17

iii

3.1.1.4 Stroke Fragment Skeleton Labeling. 18

3.1.1.5 Mask Segmentation. .. 18

3.1.1.6 Filtering. .. 18

3.1.1.7 Feature Extraction. .. 19

3.1.1.8 Summary. .. 20

3.2 Training and Evaluation .. 21

3.2.1 Model and Method of Analysis.. 22

CHAPTER IV EXPERIMENTS ...24

4.1 Visual Examination of Stroke Fragments ... 26

4.2 CERUG Evaluation Results .. 29

4.2.1 Per Class Metrics ... 30

CHAPTER V CONCLUSION ..37

5.1 Future Work .. 37

REFERENCES ..39

APPENDIX ..44

BIOGRAPHICAL SKETCH ...50

iv

LIST OF TABLES

Table Page

1. Five number summaries of the width and heights of the stroke samples, in

pixels (from 800 samples) ..21

2. Experimental results from experiments 1 (train CN test EN), 2 (train EN,

test CN), and 3 (train EN+CN, test MIXED)...30

3. Worst and best performers in experiments 1 and 2 with respect to F1 score32

4. Number of sub-image samples for the worst and best performers in experiments

1 and 2 ..33

Appendix Table

A1. Per-Class precisions and recalls from the evaluation phase of all three

 experiments ...39

v

LIST OF FIGURES

Table Page

1. The Handwriting Identification Model vs the Handwriting Verification Model2

2. Writing‑scripts of three different origins that look very different on the visual

level ..4

3. Visualization of mask construction ..15

4. Grayscale of a Document versus the Inverted Grayscale ..16

5. Extracting a Stroke Fragment from the Inverted grayscale ...20

6. Visualization of class distributions in the CERUG-CN and CERUG-EN datasets

vs, the total number of stroke fragments extracted from each25

7. Random Sample of 400 sub-images extracted from CERUG-CN...............................27

8. Random Sample of 400 sub-images extracted from CERUG-EN28

9. Box Plot of F1 Scores for Experiments 1, 2, and 3..31

10. Random Sample of 400 sub-images extracted from Writer6464.................................34

11. Random Sample of 400 sub-images extracted from Writer1616.................................35

12. Random Sample of 400 sub-images extracted from Writer9101.................................36

vi

LIST OF ABBREVIATIONS

CERUG Chinese-English database of the University of Groningen

CERUG-CN CERUG Chinese Partition

CERUG-EN CERUG English Partition

CERUG-MIXED CERUG Mixed Partition

CNN Convolutional Neural Network

GSC Gradient Scale Concavity

HIM Handwriting Identification Model

HVM Handwriting Verification Model

ICFHR International Conference on Frontiers in Handwriting Recognition

KD Known Document

KNN K-Nearest Neighbors

MSWI Multi-Script Writer Identification

OBIF Oriented Basic Image Features

OCR Optical Character Recognition

QD Questioned Document

SIFT Scale-Invariant Feature Transform

U-LBP Uniform-Complete Local Binary Patterns

VLAD Vector of Locally Aggregated Descriptors

vii

ABSTRACT

Joshua Jude Thomas, M. S., University of South Alabama, May 2024. Multi-Script

Handwriting Identification by Fragmenting Strokes. Chair of Committee: Ryan G.

Benton, Ph.D.

 This study tests the effectiveness of Multi-Script Handwriting Identification after

simplifying character strokes, by segmenting them into sub-parts. Character

simplification is performed through splitting the character by branching-points and end-

points, a process called stroke fragmentation in this study. The resulting sub-parts of the

character are called stroke fragments and are evaluated individually to identify the writer.

This process shares similarities with the concept of stroke decomposition in Optical

Character Recognition which attempts to recognize characters through the writing strokes

that make them up. The main idea of this study is that the characters of different

writing‑scripts (English, Chinese, etc.) may have common shapes which can be extracted

and used in the handwriting identification process. The effectiveness of the stroke

fragmentation described in this study is tested on the Chinese-English Database from the

University of Groningen. While not achieving state of the art performance, the results of

this study imply that simplifying characters shows promise in use for handwriting

identification.

1

CHAPTER I

INTRODUCTION

Handwriting Identification is the process of classifying the writer of a handwritten

document based on the handwriting habits contained in that document. According

Harralson and Miller in Huber and Headrick’s Handwriting Identification: Facts and

Fundamentals, forensics experts commonly compare twenty one “discriminating

elements of handwriting” that deal with properties such as word size, word placement,

margin sizes, abbreviation choices, etc. [1]. Computationally assisted handwriting uses a

similar process, but mainly works by extracting visual features from a set of Known

Documents (KD) and Questioned Documents (QD). In general, the features of a QD are

compared to a database of writers having a set of KD, or a model of the handwriting

habits of the writers. The goal is to attribute the QD to one of the known writers by

detecting similar features; the accuracy of this attribution, generally, increases as the set

of KD increases [2].

1.1 Verification and Identification Model

 Srihari et al. describe two main frameworks for performing handwriting

identification, the Handwriting Verification Model (HVM) and the Handwriting

Identification Model (HIM), both of which are shown in figure 1 [2]. Much of the

2

research literature falls under one of the two categories. The goal of the HVM is to

determine whether the document was written by the same person or not (2-class

classification). The extracted features of two documents are compared by a model to

produce either a direct classification or a similarity score representing the likelihood that

the two documents were written by the same person. The HIM, compares the features of

a QD to a model of known writers to determine the writer directly (assuming the writer of

the QD is in the set of known writers) [2]. Like the HVM, the HIM can produce a direct

classification but can also produce vector of probabilities that the document belongs to

any of the writers (e.g. SoftMax score). The HIM is typically the more popular of the two

frameworks and is the framework used in this study.

Figure 1. The Handwriting Identification Model vs the Handwriting Verification Model.

3

1.2 Multi-Script Writer Identification

 In Multi-Script Handwriting Identification (MSWI), writers are not limited to

one language or writing‑script. A writing‑script is a set of characters used to inscribe a

written language to a medium, such as paper. A writer can produce handwritten

documents in languages (English, Chinese, etc.) that use different writing‑scripts, write in

different languages that share a writing‑script, or even write in the same language but use

different writing-scripts across the set of documents. The goal of MSWI, according to the

2018 International Conference on Frontiers in Handwriting Recognition (ICFHR)

competition paper on the subject, is to find “… writing patterns that are common across

different scripts [and] may be exploited to identify the writer” [3]. This problem is based

on the assumption that there are ingrained patterns in a person’s handwriting that are

stable across different writing‑scripts, and that these patterns could be extracted as

features for use in writing identification [3]. The competition paper specifically tries to do

MSWI such that the model used to identify the writer is trained on one writing‑script, and

then evaluated on the other. A model that performs well on this specific task would

heavily be implied to have detected writing patterns unique to the writer that are present

in both the training and evaluation (testing) dataset.

MSWI requires common features that can be extracted from the multiple different

writing‑scripts being compared. However, the visual features of the different

writing‑scripts can vary drastically from each other. Figure 2 shows the differences

between four different sample scripts. On one side, you have Bengali and Tamil which

typically have a flowing, cursive style. On the opposite end you have Hanzi (Chinese),

which has a more printed style. The English writing‑script can vary between having a

4

cursive and print style, and even the visual difference between cursive and printed

English could influence the Handwriting Identification process.

Figure 2. Writing‑scripts of three different origins that look very different on the visual level.

(From left to right) Chinese, Bengali, English, and Tamil.

1.3 Convolutional Neural Networks

 Convolutional Neural Networks (CNN) are deep neural networks specialized for

processing spatial information such as images [4]. They are very good architectures for

classification tasks on images and have been used in handwriting identification research

to learn and extract the feature of handwriting [3], [5]. However, one problem of CNN,

shared by all deep learning models, is the sheer amount of data required to train them

properly. A standard CNN trained to extract features for handwriting identification would

5

have to have a large amount of labeled data to train on. Even then, the CNN model may

be trained on many data on a writer class in one writing‑script but lack data for that same

writer in another writing‑script. In addition, the visual features of the different

writing‑scripts may, themselves, have an impact on model performance.

1.4 Goal of Study

 This study attempts to perform Multi-Script Writer Identification (MSWI) by

breaking down the characters of different writing‑scripts into simpler shapes, or sub-

parts. The concept is that the sub-parts of a handwritten character may be more common

across writing‑scripts and could be exploited to compare documents across different

writing‑scripts. This study uses a CNN model as its HIM to produce probabilities of the

writer of a given document in a multi-script dataset. The novelty presented in this study is

defined in a process called Stroke Fragmentation, which breaks characters of a document

into multiple, simpler sub-parts which are called stroke fragments. Stroke Fragmentation

is called so because this process typically results in fragments of a writing stroke, which

is a portion of a character caused by a writing utensil being pressed down on the paper,

then lifted, once. This study also performs a special case of MSWI, described in the

competition paper [3], where the HWI is trained on one writing‑script and evaluated on

another, different writing‑script.

There are several important assumptions in this study. Each document is assumed

to have only one writer per document. A document may contain multiple writing‑scripts,

but there is a many-to-one relationship between the documents in a dataset and the writer

classes of the dataset. Another assumption is that the writing medium and utensil is the

6

same, or similar enough, between each of the datasets. This study also assumes that the

habits of a writer do not vary across a document due to influences such as time [1].

7

CHAPTER II

LITERATURE REVIEW

2.1 Handwriting Identification

 In general, the methodologies presented in the Handwriting Identification

literature present new types of features they extract from a handwritten document. Each

of the studies presented in this review either define new features to extract from a

handwritten document or utilize known feature extraction techniques in a novel way.

“Individuality of Handwriting” by Srihari et al. is an old and well-regarded paper that

tests the hypothesis that “handwriting is individual” [2]. The hypothesis is tested by

implementing features based on the twenty-one features by Huber and Headrick, plus a

set of “computational features” consisting of a set of eleven “macro-features”, and

“micro-features”. The features are tested in both the HVM and HIM, described in the

study.

2.1.1 Single-Script Handwriting Identification

 Foroozandeh et al. used a deep transfer-learning approach to perform signature

verification [5]. Several popular CNN architectures were used as feature extractors which

were then used to classify a genuine signature versus a forgery. Nguyen et al. uses a CNN

to extract the local features of randomly sampled sub-images of a document [6]. The

8

local features were aggregated via a pooling operation and then used to classify the

writer. Shaikh et al. use a “Hybrid Deep Learning” approach to perform writer

verification [7]. They pair one of two “Auto-Learned” features, a CNN and an Auto

Encoder, and one of two “Human Engineered” features, Scale-Invariant Feature

Transform (SIFT) [8] descriptors and Gradient Scale Concavity (GSC) [2] descriptors.

The four resulting combinations were trained to classify the writers of pairs of “AND”

images. Wu et al. extracted SIFT key points from segmented word regions to generate a

codebook based classifier [9]. Jain, Rajiv and Doermann, David approximate the

contours of handwritten characters into “k-adjacent” segments [10]. The contours are

approximated into lines by a line-fitting algorithm and then sets of 2-to-4 line segments

are taken and described through a feature vector. Tan et al. extract features from a

bounding box and a bounding quadrilateral of the handwriting characters for writer

identification [11]. Pervouchine et al. extract handwriting strokes via modeling with

cubic splines [12]. Strokes are recreated via curves by vectorizing the input image,

merging choice skeletal branches, and recreating the loops of a handwriting stroke

(caused by self-overlapping strokes). The recreated strokes are not directly passed to the

HIM but are summarized via a feature vector.

2.1.2 Multi-Script Handwriting Identification

The International Conference on Frontiers in Handwriting Recognition (ICFHR)

2018 Multi-Script Handwriting Identification competition reports on the successes of four

different systems submitted to the competition [3]. These systems are called LIMPAF-I,

LIMPAF-II, Tokyo System, and the Nuremberg System. The LIMPAF-I and LIMPAF-II

were submitted by the same group; LIMPAF-I uses Uniform Complete Local Binary

9

Patterns (U-LBP) [13] for its feature extraction while the LIMPAF-II uses Oriented Basic

Image Features (OBIF) [14]. The Tokyo system used two CNNs to extract features from

randomly selected sub-images of a writing sample. Features extracted from writing

samples were passed into a “Transfer Neural Net” to transform the extracted features of

different writing‑scripts into a more uniform representation. The Nuremberg system was

actually based on another paper [15] which extracts features by a pre-trained CNN. The

extracted features were then “PCA-Whitened” and encoded in a visual bag of words

algorithm called Vector of Locally Aggregated Descriptors (VLAD) [16]. Abbas et al

combines LBP and OBIF to create a histogram of both over the whole range of the

document [17]. He et al. tested the power of handwriting junctions on the writer

identification task [18]. Junctions are grouped into L-junctions representing points where

writing strokes are sufficiently curved, and T, Y and X-junctions where two handwriting

strokes intersect. A junction feature is defined containing the center-point, scale (defined

as minimum branch-length, where a branch is one part of an intersecting stroke), two-to-

four angles representing the directions the branches of a junction point in, and the

“strength of a branch” in a set number of directions. This junction feature is used to form

a “junctlet” codebook of common junctions. Finally, the codebook is used to create a

histogram containing the number of times a type of junction was detected in a document,

which is then used for classification. This study also introduces the Chinese-English

database of the University of Groningen (CERUG) consisting of a collection of

Documents written in Chinese, English, or a combination of both1. Semma et al. use

1 The CERUG dataset is used for this study and the results are compared to the presenting

paper.

10

CNN features encoded into modified VLAD vectors [16] for handwriting identification

[19]. Sub-images of a handwritten document are taken around key-points found via the

Harris corner detector. And then CNN features are extracted, processed into fixed length

VLAD vectors, and classified. Ahmed et al. focus on the “ending strokes”, parts of a

character appearing at the tail-end, for writer identification by assembling their contours

into a code-book [20].

2.2 Stroke Decomposition

 Stroke Decomposition is a method of reducing a handwritten character into

approximate individual strokes. While similar concepts have been applied in Handwriting

Identification [12], This technique typically appears in research on Optical Character

Recognition (OCR) which tries to convert a handwritten text into a typed, digital format

rather than identify the writer of the text. The stroke fragmentation process defined in this

study shares many similarities to stroke decomposition, mainly through the

skeletonization (thinning used in the stroke decomposition literature) of a handwritten

character and the identification of branching points.

Kim et al. decompose Chinese characters into individual strokes by first

performing a morphological thinning to reduce each character to a single pixel width

[21]. They then segment the characters based on branching points (areas where strokes

overlap) and excessively curved segments, similar to the critical points in [18]. The

segments are grown morphologically using two modifications on a morphological

dilation which use vectors both parallel, elongation, and perpendicular, fattening, to the

direction of each segment. A more standard dilation, named isotropic expansion, is

11

performed on segments that are not long enough for the elongation step. Both Fattening

and Isotropic expansion are constrained by an approximate convexity measure. Finally,

Grown stroke segments that have intersecting parts are then potentially merged using the

same convexity measure as a conditional [21]. Chen et al. convert handwritten Chinese

characters into stroke sequences (strings of numbers that indicate the type of stroke by

number and the order the stroke was written by the position of that number) by using an

encoder-decoder architecture to convert the character images to stroke sequences [22].

Liu et al. use a model based approach to stroke decomposition [23]. They represent the

model of a character through an attributed-relationship graph and generate said graphs

through thinning, forming control points, then approximating lines where possible. Kim

et al. do not try to form the strokes of a character directly. Instead, they use a handwritten

character model composed of (statistical) random variables on the distribution of pixel

positions [24]. To more efficiently compare the pixels of an input character to the

character model, the pixels are grouped into approximate stroke regions by applying a

special thinning method to segment the strokes of an image into “sub-strokes”, and then

using a nearest neighbors’ scheme to group the pixels of the original image on those

strokes.

12

CHAPTER III

METHODOLOGY OF STUDY

The stroke fragmentation process is performed as a separate process from

Writer Identification with the purpose of generating data (masked sub-images) for the

Handwriting Identification Model (HIM). It takes the characters of a handwritten

document and produces one or more sub-parts of a character, called stroke fragments in

this study, each of which are stored in a sub-image. The sub-images are masked to

contain only that stroke fragment. For a handwriting dataset consisting of a set of

digitized handwritten document images (scanned or photographed), the stroke

fragmentation process takes a document image and extracted multiple masked sub-

images, each containing a stroke fragment, and groups them into different datasets based

on the writing‑script contained in the document.

To extract the stroke fragments, a set of masks is constructed for each document.

These masks are constructed by segmenting the foreground pixels (pixels representing

the handwritten characters) of a binary representation of the document along detected

stroke fragments. Each mask represents a stroke fragment to be extracted from the

document. Specifically, they represent the bounding box coordinates of the stroke

fragment in the document, as well as the corresponding pixels to be extracted. Sub-

images containing the stroke fragment are extracted from the document with the

13

bounding box coordinates of the masks, and then unneeded pixel values (not

corresponding to the pixels in the mask) are removed. The extracted stroke fragments of a

dataset are grouped together: first by the writing‑script used in the document and then by

the writer class. This process results in a number of script-specific datasets from the

original, depending on the number of writing‑scripts contained in that original dataset.

For an experiment, two writing‑script datasets are chosen for the training and

evaluation of the HIM, evaluating on one and testing on the other. Evaluating the trained

model on a different writing‑script, not yet encountered by the HIM, will give insight into

how well the features extracted by the model are at MSWI. The specific model used as

the HIM is a CNN copying the ResNet-50 model architecture. The architecture is

modified to classify the writers of a given dataset, and is trained on a single writing

script. The evaluation is performed on a separate writing‑script and uses Top-1 Accuracy

(Categorical Accuracy), Top-10 Accuracy, Precision, and Recall, as the evaluation

metrics.

3.1 Stroke Fragmentation

 The main idea of the stroke fragmentation process is to split handwritten

characters into simpler shapes, which are hopefully more common between different

writing‑scripts. The handwritten characters of a document are split up using critical

points which are defined as the branching-points and end-points of the character. The end

goal of the fragmentation process is a collection of stroke fragments extracted from each

document that could then be used in conventional handwriting identification methods.

14

 A mathematical graph representation is used to facilitate the finding of the critical

points in a document. In this setting, all the characters contained in a handwritten

document are represented as a disconnected, planar, multi-graph: 𝐺 = {𝑉, 𝐸}, where 𝑉 is

a set containing vertices representing the critical points of the document and 𝐸 is a multi-

set of pairs 𝐸 = {𝑢𝑣 |𝑢, 𝑣 ∈ 𝑉}. Each pair in 𝐸 is an edge between two critical point

vertices 𝑢, 𝑣 and represent that those two points are connected by a sub-part of the

character, the stroke fragment that we want to extract. The stroke fragments we want to

extract can then be thought of as the edges between the vertices of the document graph.

Note that the actual pixel coordinates of the portion we want to extract as stroke

fragments are not represented as the edges or nodes but are instead included as attributes

of them. Figure 3 shows a simplification of the process that details how the masks

representing stroke fragments are made.

15

Figure 3. Visualization of mask construction. Starting with a raw binary image to construct the

masks. It is skeletonized, segmented on the branching points, and the regions of the stroke

fragments are grown. Note that the vertex and edge points are plotted over the region grown

image for visualization2.

3.1.1 Stroke Fragmentation Process

This section shows the stroke fragmentation process in detail. The process

consists of seven steps, which are: preprocessing, skeletonization, graph conversion,

stroke fragment skeleton labeling, mask segmentation, filtering, and feature extraction.

3.1.1.1 Preprocessing.

For a given scanned handwritten document, it is converted into an inverted

grayscale representation, and a binary representation. The grayscale representation of the

document is kept for the feature extraction stage, at the end of the stroke fragmentation

process, and is inverted, meaning that the pixel values are changed to 𝑖 = max(𝐼) − 𝑖

2 Due to the color-map used, the stem of the d in ‘and’ may not appear visible.

16

where 𝑖 is the grayscale level of any given pixel and max (𝐼) is the maximum possible

grayscale value in the image. This results in the grayscale values of the background

(typically white) and foreground (typically black) being reversed. Using a background

grayscale value that is, or is close to, zero makes it possible to set unwanted foreground

pixels (not belonging to the target stroke fragment) to be set to zero themselves. Figure 4

shows the visual difference between an image and its inverted grayscale.

Figure 4. Grayscale of a Document versus the Inverted Grayscale. Inverted Grayscale is used to

make stroke fragment extraction easier in step 7.

17

The binary image is used to form the masks and is obtained by using Otsu’s

method [25] to threshold the grayscale image. When processing the binary image, an

inherent amount of noise may exist depending on both the method and quality of

digitization and may influence the graph representation. Possible examples are smudges

on the paper, and the visible texture of the paper, etc. A gaussian blur is first applied to

the grayscale image, before thresholding, to try and remove some of this noise. note that

the blur is not applied to the grayscale image when extracting the stroke fragments.

3.1.1.2 Skeletonization.

A skeletonized version of the binary image is created, such that the handwriting

strokes contained in the image are reduced to a single pixel width. The skeletonization of

the document attempts to preserve the general shape of the handwritten characters, and is

performed by Scikit-Image with the skimage.morphology.skeletonize method. Their

skeletonization algorithm is based on Zhang and Suen [26], which iteratively removes

foreground pixels based on their 3x3 neighborhood.

3.1.1.3 Graph Conversion.

The skeletonized image is converted into a graph theory representation using the

Skeleton Network library3. The purpose of this step is to segment the skeleton of the

characters in the document into stroke fragments. These stroke fragment skeleton

segments are then used in the next step to segment the pixels of the binary image into

masks. The graph representing a handwritten document is defined such that the vertices

of the graph correspond to the critical points in the document: the branching-points and

3 Credit to https://github.com/Image-Py/sknw/tree/master/sknw for providing the code to

generate a graph theory representation.

https://github.com/Image-Py/sknw/tree/master/sknw

18

end-points. A branching point is a point between two crossing strokes in a document and

is connected to three or more pixels in the skeleton. An end-point in a document is where

a handwriting stroke begins or ends, and is connected to only one pixel in the skeleton.

Every pixel that does not fit the above criteria is considered a stroke fragment pixel and is

used as the skeleton of the masks. The stroke fragment pixels are stored as attributes to

edges connecting two vertices in the graph.

3.1.1.4 Stroke Fragment Skeleton Labeling.

For every edge, the stroke fragment pixels of that edge are assigned an integer

label 𝑖 ∈ {1, 2, … , 𝑛 ∈ 𝕫}.

3.1.1.5 Mask Segmentation.

The masks of the document are formed by segmenting the foreground pixels of

the binary image along the stroke fragment segments, labeled in the previous step,

attributed to the edges of the graph. The segmentation is performed via K-Nearest

Neighbors (KNN), specifically by Scikit-Learn’s sklearn.neighbors.KNeighborsClassifier

method with the number of neighbors to consider set to three. The stroke fragment

segments are used as inputs to KNN. And then, the foreground pixels of the original

binary image are labeled based on the three stroke fragment pixels it is closest to

(spatially). This results in a partition of the binary image into the different masks, each

representing a stroke fragment to be extracted from the inverted grayscale.

3.1.1.6 Filtering.

Some artefacts may remain in the image even after the blur is applied. Large

artefacts such as visible page edges will be viewed as handwriting strokes by the stroke

decomposition process, and will result in a noisier dataset. In addition to large artefacts,

19

some masks may end up being too small to give any meaningful information. A filtering

criterion is defined to remove the masks generated by large artefacts, as well as low

quality masks, from the final output. The bounding box of each mask is found, and if

both width and height are smaller than 10 pixels, or if either the width or height is smaller

than 3 pixels or larger than 75% the width/height of the image document, then the mask

is rejected and not used in the feature extraction step. This has the consequence that some

foreground pixels of the original image are discarded and not used during the training

process.

3.1.1.7 Feature Extraction.

Masks that are not rejected are used to extract the corresponding stroke fragments

in the inverted grayscale image. The bounding box coordinates are used to define the

location of the sub-image in the inverted grayscale, and after the sub-image is obtained,

any pixel not coinciding with the foreground pixels in the mask is zeroed out. This results

in a masked sub-image containing only the pixels of the stroke fragment. Figure 5 shows

a visualization of this, with the mask overlayed on the inverted grayscale and the

resulting masked sub-image displayed.

20

Figure 5. Extracting a Stroke Fragment from the Inverted grayscale. The mask and it’s bounding

box are used to extract the stroke fragment. Pixels not corresponding to the mask are zeroed out.

3.1.1.8 Summary.

In summary, the stroke fragmentation process takes a scanned handwritten

document of a given Dataset and transforms it from a single image into multiple, masked

sub-images containing stroke fragments that, if put together, recreate the original

character they were extracted from (except for the pixels corresponding to any rejected

mask). The sub-images are saved to a directory and grouped into the different

writing‑scripts of the document (English and Chinese) such that the stroke fragments of

each writing‑script are grouped into their own sub-directory. Each sub-directory then

further groups the stroke fragments into sub-directories of writer classes, which are then

used to infer the labels of the writing‑script. Thus, the original dataset is processed into a

directory of sub-directories representing the different writing‑scripts, each of which

contains sub‑directories of the writer classes. These writing‑script subdirectories can be

thought of as datasets themselves, and are then used to either train or evaluate a model in

the training and evaluation processes, depending on the experiment.

21

3.2 Training and Evaluation

 The following training and evaluation of the Handwriting Identification model

(HIM) is a standard process and are implemented with Tensorflow-Keras API.

Writing‑script directories are loaded as datasets via the

keras.utils.image_dataset_from_directory method, which loads a directory of sub-

directories representing the writer classes. The class labels are inferred from the names of

the subdirectories and are then one-hot encoded and used to predict the probabilities that

the sub-image comes from a document written by any of the writers (through SoftMax

activation). Each image must have a standard size when passed through a conventional

CNN. However, the extracted sub-images do not have a standard width or weight due to

the different sizes of the stroke fragments extracted. The minimum and maximum sizes,

as well as the first, second, and third quartiles, of the width and height of the stroke

fragment samples are shown in table 1 (extracted from CERUG with eight hundred

samples).

Table 1. Five number summaries of the width and heights of the stroke samples, in pixels (from

800 samples). Includes the minimum value, maximum value, as well as the first quartile (25%),

second quartile (50%), and third quartile (75%).

 Min 25% 50% 75% Max

Width (px) 5 11 15 22 98

Height (px) 5 12 17 26 71

 Both the width and height were resized to 128 pixels to avoid squishing some of

the larger stroke segments. The writing‑scripts used in the training and evaluation stages

22

will depend on the experiment being performed. Training sets will be further split into

training and validation datasets, using an 80-20 split.

3.2.1 Model and Method of Analysis

 The architecture of the Resnet-50 CNN is used as the HIM of this study [27]. The

SoftMax layer of resnet-50 is altered to predict the writer classes of the dataset and the

weights of the entire model are randomly initialized. The model is fit to the dataset over

40 epochs, using the NADAM optimizer with the default parameters as set in keras [28].

The keras.callbacks.ModelCheckpoint callback is used to select the best performing

model trained over the epochs. Note that this serves as a form of regularization for the

model [4]. Validation loss is used to determine the best model using a 20% random split

of the training data.

For evaluation metrics: Top-1 (Categorical Accuracy), Top-10, Precision, and

Recall are used. Top-10 is a Top-N metric and, as defined in the ICFHR 2018

Competition on Multi-Script Writer Identification, is defined as “… the scenario where

the genuine writer of a query document is present within the list of N most probable

writers received by the system” [3]. The Top-N metric is a popular evaluation metric in

the literature, and Top-10 is specifically chosen to compare with the results of this study

with the junctlets feature presented by He et al. in ‘Junction Detection in Handwritten

Documents and its Application to Writer Identification’ [18]. The precision and recall are

metrics measuring the model’s ability to correctly predict a label and to capture all the

labels of a given class, respectively.

23

Top-1 (Categorical) Accuracy =
TP

TP+FP+TN+FN

Top-10 Accuracy =
∑ 𝐺(𝑖)𝑖∈𝐼

TP+FP+TN+FN

Precision =
TP

(TP + FP)

Recall =
TP

(TP + FN)

Where:

1. TP (True Positive) is the sum of stroke fragments correctly attributed to a writer.

2. FP (False Positive) is the sum of stroke fragments incorrectly attributed to a

writer.

3. TN (True Negative) is the sum of instances correctly classified as not being

written by a writer.

4. FN (False Negative) is the sum of instances incorrectly classified as not being

written by a writer.

5. 𝐺(𝑖) is the sum of stroke fragments whose prediction had the correct writer, 𝑖,

within the top ten most probable writers. Where the set of writers is 𝐼

The metrics used are fine-grained, meaning that the sum of the true positive, false

positive, and false negative instances of all the classes are summed before calculating the

precision and recall.

24

CHAPTER IV

EXPERIMENTS

 The Chinese-English Database of the University of Groningen (CERUG), defined

in [18] contains different writing‑script per writer, for 105 writers. The SoftMax layer of

the Resnet-50 CNN is altered to have 105 outputs, one for each writer. The

writing‑scripts are partitioned into: CERUG-CN for Chinese writing in page 1 and 2,

CERUG-EN in page 3 (split over two images), and CERUG-MIXED in page 4 which

consists of a mix of Chinese and English.

Three experiments are performed in this study (two of which follow the tasks

described in [3]). Experiment 1 uses the CERUG-CN as the training-set, and CERUG-EN

as a evaluation set. Experiment 2 uses CERUG-EN as the training set and CERUG-CN as

the evaluation set. Experiment 3 merges CERUG-CN and CERUG-EN together for use

as the training set and uses CERUG-MIXED as the evaluation set. Note that experiment 3

does not fit the goal of training on one writing set and evaluating on another and is used

more for comparison.

25

Figure 6. Visualization of class distributions in the CERUG-CN and CERUG-EN datasets vs, the

total number of stroke fragments extracted from each. The number of sub-image samples in

CERUG-CN greatly outnumbers the number of sub-image samples in CERUG-EN.

Figure 6. shows the class distribution CERUG-CN and CERUG-EN vs. the

distribution of stroke fragments extracted from each. It is of interest to note that, while

the individual classes seem relatively balanced, the different writing‑scripts themselves

constitute a data imbalance. In Total: there were 463,507 sub-images extracted from

CERUG-CN, 137,258 sub-images extracted from CERUG-EN, resulting in different

drastically different evaluation performances in experiment 1 and 2.

26

4.1 Visual Examination of Stroke Fragments

 It may be useful to examine the images extracted during the stroke fragmentation

process. The stroke fragments of the sub-images are the parts of a handwriting stroke in

between the critical points of a character. The pixels corresponding to the critical points

aren’t necessarily in the stroke fragment, since only the stroke fragment pixels attributed

to the graph edges are used in the KNN region growing step. Thus, the stroke fragments

generated, generally, will be line curves with no branching off parts and few, if any, will

be complete loops. Figures 7 and 8 show two different samples of CERUG-CN and

CERUG EN, respectively. Each shows a sample of 400 different stroke fragments of

varying scales. With the assumption that both stroke fragment samples are representative

of the total dataset, we can draw some visual observations from the two figures. Three

classes of stroke fragments are observed: blobs, curves, and loops. Blobs are squarish,

small parts of a character that were sandwiched between two critical points in close

proximity. It is assumed that little useful information can be drawn from the blobs, and

the filtering criterion (step 6 of stroke fragmentations) removes the especially small

blobs. Curves are any sufficiently long stroke fragment that does not contain a loop.

Curves seem to make up most of the stroke fragments extracted from CERUG. Finally,

loops are any curves that completely wrap around and connect to themselves. For curves

to form, the part of the handwriting character making up the loop would have to be

connected to the character by only one branching point, or the branching points would

have to be positioned such that the region growing step partitions all of them into the

loops mask.

27

Figure 7. Random Sample of 400 sub-images extracted from CERUG-CN.

28

Figure 8. Random Sample of 400 sub-images extracted from CERUG-EN.

The following is based on casual examination of the two samples. CERUG-CN

appears to have many more blobs than CERUG-EN while CERUG-EN seems to have

more loops. The curves of CERUG-EN also seem to have more curvature than the curves

of CERUG-CN. The increased number of blobs, at least in CERUG-CN could be

attributed to tightly packed, crisscrossing handwriting strokes making up the characters.

The loops and higher curvature of the curves in CERUG-EN seems to be due to the more

cursive nature of English in CERUG-EN, with the handwriting strokes overall being

more flowing that than of the handwriting strokes of the Chinese writing in CERUG-CN.

29

4.2 CERUG Evaluation Results

Table 2 presents the experimental results from all three experiments. The

performance results of the junctlets feature (as reported in the paper introducing the

feature extraction method [18]) are also added for reference. Note that the two metrics are

not exactly comparable because the junctlets feature compute a global feature over the

entire document while the HIM of this study evaluates individual stroke fragments of the

document. However the results from [18] are still a good baseline metric.

 While not performing nearly as well as the junctlets feature proposed in [18], the

evaluation performance does show that the method of simplifying stroke shapes has

promise in use for writing identification. A completely random classifier would have an

average top-1 (categorical accuracy) score of about 1% for the 105 writer classes of

CERUG. The range of 21%-47% implies that there is some information of the writer

carried in the stroke fragments produced in this experiment. Furthermore, the top-10

accuracy, having a range of 71-92%, implies that even in the worst case, the correct

writer will be in the ten most probable writers, out of 105 writers, for at least 71% of all

the stroke fragments in the dataset. While not directly important to the study, it is of

interest to note the overall precision and recall of the trained CNN model for each

experiment. The recall performance is noticeably less than the precision performance,

and the trend between precision and recall matches the training size between all three

experiments (with experiment 3 having the highest). These scores seem to imply that

while the model is not able to correctly classify many of the stroke fragments of a writer,

the strokes it does classify as belonging to a particular writer have a, relatively, higher

chance of actually being produced by that writer.

30

Table 2. Experimental results from experiments 1 (train CN test EN), 2 (train EN, test CN), and 3

(train EN+CN, test MIXED).

Experiment

Number

Top-1 Accuracy Top-10 Accuracy Precision Recall

Proposed Junctlets Proposed Junctlets Proposed Proposed

Experiment

1

0.365 0.907 0.865 0.967 0.524 0.266

Experiment

2

0.214 n/a 0.715 n/a 0.318 0.138

Experiment

3

0.477 n/a 0.920 n/a 0.662 0.355

 As expected with the imbalance of the writing‑scripts, Experiment 2 is the

worst performer of all three experiments due to CERUG-EN being much smaller, at least

in the number of extracted stroke fragments, than CERUG-CN. Experiment 3, naturally,

has the highest performance since it includes both CERUG-CN and CERUG-EN as the

training set. However, experiment 3 does not fit the particular case of MSWI evaluated in

this study and is more used as a comparison.

4.2.1 Per Class Metrics

 The precision and recall metrics presented in table 1 are the fine-grained metrics

over all 105 writer classes. The per-class precision and recalls may also be used to draw

some useful insights of the model. To facilitate comparison, the precision and recall are

combined into the F1 score, which is a harmonic average between the two.

F1 = 2 ⋅
precision ⋅ recall

precision + recall

31

Figure 9. Box Plot of F1 Scores for Experiments 1, 2, and 3.

Figure 9 shows the boxplots of the F1 score for experiments 1, 2, and 3.

Experiment 3 uses both CERUG-CN and CERUG-CN as its training set so it is not

surprising that it outperforms the models in both experiments 1 and 2. Experiment 3 is

ignored for the remainder of this analysis as it does not experiment with the specific case

of MSWI used in this study, to train on one writing‑script and evaluate on the other, and

is more of a baseline.

32

Table 3. Worst and best performers in experiments 1 and 2 with respect to F1 score. Writer1616

performed the worst in experiment 1, Writer9191 performed the worst in experiment 2, and

Writer6464 performed the best in all three experiments.

Writer

Class

Experiment 1 Experiment 2 Experiment 3

precision recall F1 precision recall F1 precision recall F1

Writer1616 0.023 0.008 0.006 0.06 0.019 0.014 0.186 0.218 0.1

Writer9101 0.107 0.015 0.013 0.023 0.021 0.011 0.504 0.404 0.224

Writer6464 0.833 0.95 0.444 0.651 0.673 0.331 0.886 0.82 0.426

 Table 3 presents the worst performers in experiments 1 and 2, and then the best

performer in all three experiments. The full table of writers and their performances in all

three experiments can be found in Appendix A, table A1. Writer1616 performed the

worst in experiment 1, Writer9101 performed the worst in experiment 2, and Writer6464

performed the best in all three experiments. There does not appear to be a correlation

between the number of samples (masked sub-images) of the writer classes, per script, and

the performance of that class in a particular experiment. Table 4 shows the number of

samples in the writer classes of CERUG-CN and CERUG-EN, for all three writers. If the

number of samples were to be the deciding factor, Writer9191 would outperform

Writer6464 in experiment 1, and Writer1616 would outperform Writer6464 in

experiment 2, and neither is the case.

33

Table 4. Number of sub-image samples for the worst and best performers in experiments 1 and 2.

Writer Samples in CERUG-CN Samples in CERUG-EN

Writer1616 3174 1299

Writer9191 3916 1244

Writer6464 3816 1126

 The following is a visual analysis of the three writers (as performed in 4.1).

Figures 10, 11, and 12 (below) show a random sample of stroke fragments from Writers

6464, 1616, and 9101, respectively. One immediate observation to make is that the stroke

fragments of Writer6464 are much lighter than both the sample strokes of Writer1616

and Writer9101, as well as the sample strokes from CERUG-CN and CERUG-EN

overall. It is likely that Writer6464 performed so well in all three experiments due to the

lighter shade used to create the strokes. It is not as clear why it may be that Writer1616

and Writer9101 perform worse in experiments 1 and 2, respectively. One thing that

stands out is that Writer1616 has consistently darker values representing their stroke

fragments. The Stroke fragments presented in Figure 11 all have very dark gray level

values with little variation in light. These two observations for Writer6464 and

Writer1616 may indicate a grayscale level bias in the trained model for the three

experiments. It is less clear why Writer9101 performs badly. Possible reasons may be

that the particular writing style of Writer9101 may have a big impact on the stroke

fragment generation process. The types of stroke fragments generated for Writer9101

may throw off the model for experiment 2.

34

Figure 10. Random Sample of 400 sub-images extracted from Writer6464.

35

Figure 11. Random Sample of 400 sub-images extracted from Writer1616

36

Figure 12. Random Sample of 400 sub-images extracted from Writer9101

37

CHAPTER V

CONCLUSION

Multi-Script Handwriting Identification attempts to classify the writer of a

handwritten document in a setting where there can be multiple writing‑scripts or

languages in use, and with the possibility that a writer can create documents in more than

one writing‑script. As such, Multi-Script Handwriting Analysis seeks common features

between the different writing‑scripts that are both effective and consistent. This study

tested the effectiveness of breaking down the characters of a document into simpler sub-

parts and performed this by breaking down a character along its critical points. While not

state-of-the-art, the results of the three experiments performed on the CERUG dataset

show that simplifying character shapes have potential for being used in Handwriting

Identification4.

5.1 Future Work

 In this study, the characters are broken down into simpler shapes by segmenting

the fragments of a stroke along the “critical points” found in the document. Performance

4 The Experimental Results, Publication, Code, and Figures can be found at

https://github.com/justjude97/MultiScript-Handwriting-Identification-with-Stroke-

Decomposition

https://github.com/justjude97/MultiScript-Handwriting-Identification-with-Stroke-Decomposition
https://github.com/justjude97/MultiScript-Handwriting-Identification-with-Stroke-Decomposition

38

might be increased by adding an additional step that re-merges these stroke fragments

into larger, but still simpler, shapes than the whole character, shapes. It may also be

interesting to try and train a model directly on the curvature of the skeletons produced

during the stroke fragmentation process. The contours of a skeleton, produced during the

stroke fragmentation process, may be used to classify the writer by converting those

skeleton edges into a chain-code, or similar representation to be used as sequence data

instead of spatial data.

39

REFERENCES

[1] H. Harralson and L. Miller, Huber and Headrick’s Handwriting Identification:

Facts and Fundamentals, 2nd ed. CRC PRess, 2017.

[2] S. N. Srihari, Sung-Hyuk Cha, H. Arora, and S. Lee, “Individuality of

Handwriting,” Journal of Forensic Science, vol. 47, no. 4, p. 17, Jul. 2002.

[3] C. Djeddi, S. Al-Maadeed, I. Siddiqi, G. Abdeljalil, S. He, and Y. Akbari,

“ICFHR 2018 Competition on Multi-Script Writer Identification,” in 2018 16th

International Conference on Frontiers in Handwriting Recognition (ICFHR),

Aug. 2018, pp. 506–510. doi: 10.1109/ICFHR-2018.2018.00094.

[4] A. Géron, Hands-On Machine Learning with Scikit-Learn, Keras, and

TensorFlow: Concepts, Tools, and Techniques to Build Intelligent Systems, 3rd

edition. Beijing Boston Farnham Sebastopol Tokyo: O’Reilly Media, 2022.

[5] A. Foroozandeh, A. Askari Hemmat, and H. Rabbani, “Offline Handwritten

Signature Verification and Recognition Based on Deep Transfer Learning,” in

2020 International Conference on Machine Vision and Image Processing (MVIP),

Feb. 2020, pp. 1–7. doi: 10.1109/MVIP49855.2020.9187481.

[6] H. T. Nguyen, C. T. Nguyen, T. Ino, B. Indurkhya, and M. Nakagawa, “Text-

independent writer identification using convolutional neural network,” Pattern

40

Recognition Letters, vol. 121, pp. 104–112, Apr. 2019, doi:

10.1016/j.patrec.2018.07.022.

[7] M. A. Shaikh, M. Chauhan, J. Chu, and S. Srihari, “Hybrid Feature Learning for

Handwriting Verification,” Aug. 2018, pp. 187–192. doi: 10.1109/ICFHR-

2018.2018.00041.

[8] D. G. Lowe, “Distinctive Image Features from Scale-Invariant Keypoints,”

International Journal of Computer Vision, vol. 60, no. 2, Art. no. 2, Nov. 2004,

doi: 10.1023/B:VISI.0000029664.99615.94.

[9] X. Wu, Y. Tang, and W. Bu, “Offline Text-Independent Writer Identification

Based on Scale Invariant Feature Transform,” IEEE Transactions on Information

Forensics and Security, vol. 9, no. 3, pp. 526–536, Mar. 2014, doi:

10.1109/TIFS.2014.2301274.

[10] R. Jain and D. Doermann, “Offline Writer Identification Using K-Adjacent

Segments,” in 2011 International Conference on Document Analysis and

Recognition, Sep. 2011, pp. 769–773. doi: 10.1109/ICDAR.2011.159.

[11] J. Tan, J. Lai, C. Wang, and M. Feng, “A Stroke Shape and Structure Based

Approach for Off-line Chinese Handwriting Identification,” IJISA, vol. 3, no. 2,

pp. 1–8, Mar. 2011, doi: 10.5815/ijisa.2011.02.01.

[12] V. Pervouchine, G. Leedham, and K. Melikhov, “Three-stage handwriting stroke

extraction method with hidden loop recovery,” in Eighth International

Conference on Document Analysis and Recognition (ICDAR’05), Aug. 2005, pp.

307-311 Vol. 1. doi: 10.1109/ICDAR.2005.241.

41

[13] Z. Guo, L. Zhang, and D. Zhang, “A Completed Modeling of Local Binary

Pattern Operator for Texture Classification,” IEEE Transactions on Image

Processing, vol. 19, no. 6, pp. 1657–1663, Jun. 2010, doi:

10.1109/TIP.2010.2044957.

[14] A. J. Newell and L. D. Griffin, “Writer identification using oriented Basic Image

Features and the Delta encoding,” Pattern Recognition, vol. 47, no. 6, pp. 2255–

2265, Jun. 2014, doi: 10.1016/j.patcog.2013.11.029.

[15] V. Christlein and A. Maier, “Encoding CNN Activations for Writer Recognition,”

in 2018 13th IAPR International Workshop on Document Analysis Systems (DAS),

Apr. 2018, pp. 169–174. doi: 10.1109/DAS.2018.9.

[16] H. Jégou, M. Douze, C. Schmid, and P. Pérez, “Aggregating local descriptors into

a compact image representation,” in 2010 IEEE Computer Society Conference on

Computer Vision and Pattern Recognition, Jun. 2010, pp. 3304–3311. doi:

10.1109/CVPR.2010.5540039.

[17] F. Abbas, A. Gattal, C. Djeddi, I. Siddiqi, A. Bensefia, and K. Saoudi, “Texture

feature column scheme for single- and multi-script writer identification,” IET

Biometrics, vol. 10, no. 2, pp. 179–193, 2021, doi: 10.1049/bme2.12010.

[18] S. He, M. Wiering, and L. Schomaker, “Junction detection in handwritten

documents and its application to writer identification,” Pattern Recognition, vol.

48, no. 12, pp. 4036–4048, Dec. 2015, doi: 10.1016/j.patcog.2015.05.022.

[19] A. Semma, Y. Hannad, I. Siddiqi, S. Lazrak, and M. E. Y. E. Kettani, “Feature

learning and encoding for multi-script writer identification,” IJDAR, vol. 25, no.

2, pp. 79–93, Jun. 2022, doi: 10.1007/s10032-022-00394-8.

42

[20] A. A. Ahmed, H. R. Hasan, F. A. Hameed, and O. I. Al-Sanjary, “Writer

Identification on Multi-Script Handwritten Using Optimum Features,” KJAR, vol.

2, no. 3, pp. 178–185, Aug. 2017, doi: 10.24017/science.2017.3.64.

[21] J. W. Kim, K. I. Kim, B. J. Choi, and H. J. Kim, “Decomposition of Chinese

character into strokes using mathematical morphology,” Pattern Recognition

Letters, vol. 20, no. 3, pp. 285–292, Mar. 1999, doi: 10.1016/S0167-

8655(98)00147-0.

[22] J. Chen, B. Li, and X. Xue, “Zero-Shot Chinese Character Recognition with

Stroke-Level Decomposition.” arXiv, Jun. 22, 2021. doi:

10.48550/arXiv.2106.11613.

[23] C.-L. Liu, I.-J. Kim, and J. H. Kim, “Model-based stroke extraction and matching

for handwritten Chinese character recognition,” Pattern Recognition, vol. 34, no.

12, pp. 2339–2352, Dec. 2001, doi: 10.1016/S0031-3203(00)00165-5.

[24] I.-J. Kim, C.-L. Liu, and J.-H. Kim, “Stroke-guided pixel matching for

handwritten Chinese character recognition,” in Proceedings of the Fifth

International Conference on Document Analysis and Recognition. ICDAR ’99

(Cat. No.PR00318), Sep. 1999, pp. 665–668. doi: 10.1109/ICDAR.1999.791875.

[25] N. Otsu, “A Threshold Selection Method from Gray-Level Histograms,” IEEE

Transactions on Systems, Man, and Cybernetics, vol. 9, no. 1, Art. no. 1, Jan.

1979, doi: 10.1109/TSMC.1979.4310076.

[26] T. Y. Zhang and C. Y. Suen, “A fast parallel algorithm for thinning digital

patterns,” Commun. ACM, vol. 27, no. 3, pp. 236–239, Mar. 1984, doi:

10.1145/357994.358023.

43

[27] K. He, X. Zhang, S. Ren, and J. Sun, “Deep Residual Learning for Image

Recognition.” arXiv, Dec. 10, 2015. doi: 10.48550/arXiv.1512.03385.

[28] T. Dozat, “Incorporating Nesterov Momentum Into Adam,”, International

Conference on Learning Representations Workshop Track. 2016.

44

APPENDIX

Per-Class Precision and Recall Metrics

Table A1. Per-Class precisions and recalls from the evaluation phase of all three experiments.

Writer

Class

Experiment 1 Experiment 2 Experiment 3

precision recall F1 precision recall F1 precision recall F1

Writer0101 0.626 0.739 0.339 0.537 0.493 0.257 0.765 0.811 0.394

Writer0202 0.454 0.36 0.201 0.216 0.114 0.075 0.38 0.543 0.224

Writer0303 0.254 0.286 0.135 0.15 0.073 0.049 0.407 0.464 0.217

Writer0404 0.336 0.237 0.139 0.079 0.303 0.063 0.378 0.402 0.195

Writer0505 0.303 0.13 0.091 0.123 0.079 0.048 0.433 0.358 0.196

Writer0606 0.222 0.09 0.064 0.09 0.053 0.033 0.366 0.178 0.12

Writer0707 0.188 0.147 0.083 0.07 0.065 0.034 0.374 0.228 0.142

Writer0808 0.321 0.166 0.109 0.128 0.148 0.068 0.554 0.361 0.219

Writer0909 0.26 0.293 0.138 0.109 0.173 0.067 0.396 0.344 0.184

Writer1010 0.302 0.159 0.104 0.122 0.13 0.063 0.398 0.263 0.159

Writer1111 0.705 0.793 0.373 0.293 0.498 0.185 0.765 0.751 0.379

Writer1212 0.185 0.171 0.089 0.193 0.026 0.023 0.372 0.216 0.137

Writer1313 0.159 0.082 0.054 0.066 0.022 0.016 0.334 0.27 0.149

45

Table A1 cont.

Writer1414 0.322 0.237 0.136 0.111 0.32 0.082 0.345 0.467 0.198

Writer1515 0.528 0.288 0.186 0.262 0.311 0.142 0.606 0.431 0.252

Writer1616 0.023 0.008 0.006 0.06 0.019 0.014 0.186 0.218 0.1

Writer1717 0.327 0.205 0.126 0.279 0.071 0.057 0.374 0.494 0.213

Writer1818 0.309 0.33 0.159 0.206 0.132 0.08 0.429 0.303 0.178

Writer1919 0.093 0.324 0.073 0.076 0.116 0.046 0.328 0.446 0.189

Writer2020 0.197 0.177 0.093 0.12 0.085 0.05 0.375 0.437 0.202

Writer2121 0.333 0.181 0.117 0.156 0.175 0.083 0.344 0.187 0.121

Writer2222 0.259 0.413 0.159 0.104 0.164 0.064 0.596 0.396 0.238

Writer2323 0.328 0.151 0.103 0.142 0.139 0.07 0.366 0.318 0.17

Writer2424 0.261 0.231 0.122 0.163 0.192 0.088 0.394 0.364 0.189

Writer2525 0.42 0.277 0.167 0.13 0.185 0.076 0.555 0.51 0.266

Writer2626 0.295 0.17 0.108 0.085 0.32 0.067 0.306 0.203 0.122

Writer2727 0.311 0.236 0.134 0.117 0.177 0.07 0.425 0.486 0.227

Writer2828 0.591 0.471 0.262 0.207 0.316 0.125 0.626 0.726 0.336

Writer2929 0.388 0.698 0.249 0.125 0.41 0.096 0.594 0.53 0.28

Writer3030 0.439 0.348 0.194 0.184 0.295 0.114 0.715 0.529 0.304

Writer3131 0.578 0.358 0.221 0.217 0.504 0.152 0.795 0.547 0.324

Writer3232 0.311 0.115 0.084 0.099 0.058 0.036 0.219 0.348 0.134

Writer3333 0.506 0.432 0.233 0.331 0.209 0.128 0.626 0.635 0.315

Writer3434 0.382 0.372 0.188 0.356 0.083 0.067 0.373 0.727 0.247

Writer3535 0.347 0.104 0.08 0.19 0.04 0.033 0.373 0.334 0.176

46

Table A1 cont.

Writer3636 0.066 0.067 0.033 0.046 0.026 0.016 0.273 0.246 0.129

Writer3737 0.119 0.093 0.052 0.16 0.054 0.04 0.219 0.309 0.128

Writer3838 0.449 0.448 0.224 0.275 0.217 0.121 0.489 0.552 0.259

Writer3939 0.152 0.243 0.094 0.142 0.049 0.036 0.237 0.332 0.138

Writer4040 0.196 0.21 0.101 0.117 0.06 0.04 0.325 0.3 0.156

Writer4141 0.167 0.203 0.092 0.124 0.023 0.02 0.335 0.256 0.145

Writer4242 0.7 0.6 0.323 0.338 0.321 0.165 0.488 0.675 0.283

Writer4343 0.252 0.37 0.15 0.213 0.111 0.073 0.319 0.428 0.183

Writer4444 0.473 0.245 0.161 0.207 0.235 0.11 0.639 0.52 0.287

Writer4545 0.542 0.438 0.242 0.236 0.208 0.111 0.672 0.486 0.282

Writer4646 0.248 0.29 0.134 0.149 0.115 0.065 0.331 0.328 0.165

Writer4747 0.269 0.186 0.11 0.186 0.135 0.078 0.48 0.451 0.233

Writer4848 0.488 0.466 0.238 0.348 0.232 0.139 0.694 0.497 0.29

Writer4949 0.149 0.092 0.057 0.122 0.091 0.052 0.228 0.208 0.109

Writer5050 0.71 0.635 0.335 0.47 0.48 0.238 0.703 0.649 0.337

Writer5151 0.704 0.568 0.314 0.44 0.425 0.216 0.593 0.609 0.3

Writer5252 0.373 0.324 0.173 0.165 0.147 0.078 0.482 0.494 0.244

Writer5353 0.265 0.276 0.135 0.242 0.152 0.093 0.369 0.532 0.218

Writer5454 0.223 0.389 0.142 0.17 0.178 0.087 0.404 0.605 0.242

Writer5555 0.303 0.525 0.192 0.212 0.182 0.098 0.619 0.477 0.269

Writer5656 0.42 0.243 0.154 0.236 0.169 0.098 0.018 0.007 0.005

Writer5757 0.453 0.661 0.269 0.278 0.308 0.146 0.551 0.725 0.313

47

Table A1 cont.

Writer5858 0.485 0.217 0.15 0.253 0.157 0.097 0.488 0.565 0.262

Writer5959 0.315 0.372 0.171 0.177 0.104 0.065 0.48 0.362 0.206

Writer6060 0.452 0.399 0.212 0.429 0.137 0.104 0.606 0.372 0.23

Writer6161 0.437 0.485 0.23 0.237 0.176 0.101 0.799 0.58 0.336

Writer6262 0.802 0.455 0.29 0.449 0.427 0.219 0.742 0.788 0.382

Writer6363 0.453 0.674 0.271 0.464 0.365 0.204 0.504 0.65 0.284

Writer6464 0.833 0.95 0.444 0.651 0.673 0.331 0.886 0.82 0.426

Writer6565 0.459 0.518 0.243 0.4 0.198 0.132 0.71 0.379 0.247

Writer6666 0.185 0.307 0.116 0.12 0.094 0.053 0.391 0.557 0.23

Writer6767 0.143 0.242 0.09 0.161 0.149 0.078 0.254 0.157 0.097

Writer6868 0.253 0.485 0.166 0.18 0.207 0.096 0.415 0.55 0.237

Writer6969 0.273 0.129 0.088 0.146 0.336 0.102 0.399 0.315 0.176

Writer7070 0.153 0.069 0.047 0.131 0.186 0.077 0.323 0.142 0.099

Writer7171 0.416 0.069 0.059 0.22 0.181 0.099 0.498 0.581 0.268

Writer7272 0.327 0.31 0.159 0.245 0.144 0.091 0.276 0.318 0.148

Writer7373 0.284 0.224 0.125 0.215 0.098 0.067 0.483 0.298 0.184

Writer7474 0.351 0.593 0.221 0.252 0.269 0.13 0.469 0.734 0.286

Writer7575 0.223 0.456 0.15 0.194 0.231 0.105 0.345 0.435 0.192

Writer7676 0.379 0.42 0.199 0.117 0.215 0.076 0.637 0.529 0.289

Writer7777 0.464 0.438 0.225 0.274 0.288 0.14 0.553 0.639 0.296

Writer7878 0.665 0.617 0.32 0.566 0.308 0.199 0.737 0.805 0.385

Writer7979 0.135 0.114 0.062 0.075 0.128 0.047 0.34 0.351 0.173

48

Table A1 cont.

Writer8080 0.221 0.398 0.142 0.152 0.164 0.079 0.404 0.335 0.183

Writer8181 0.523 0.691 0.298 0.319 0.294 0.153 0.421 0.665 0.258

Writer8282 0.373 0.354 0.182 0.185 0.162 0.086 0.319 0.22 0.13

Writer8383 0.325 0.472 0.193 0.192 0.219 0.102 0.462 0.472 0.234

Writer8484 0.824 0.871 0.423 0.57 0.622 0.297 0.804 0.841 0.411

Writer8585 0.667 0.355 0.232 0.236 0.289 0.13 0.492 0.335 0.199

Writer8686 0.286 0.136 0.092 0.12 0.04 0.03 0.415 0.319 0.18

Writer8787 0.491 0.693 0.288 0.464 0.118 0.094 0.499 0.645 0.281

Writer8888 0.434 0.521 0.237 0.216 0.304 0.126 0.647 0.553 0.298

Writer8989 0.518 0.551 0.267 0.35 0.342 0.173 0.609 0.73 0.332

Writer9090 0.619 0.866 0.361 0.469 0.449 0.229 0.687 0.794 0.368

Writer9100 0.856 0.884 0.435 0.576 0.538 0.278 0.836 0.851 0.422

Writer9101 0.107 0.015 0.013 0.023 0.021 0.011 0.504 0.404 0.224

Writer9102 0.426 0.504 0.231 0.332 0.17 0.112 0.583 0.676 0.313

Writer9103 0.412 0.491 0.224 0.371 0.153 0.108 0.557 0.724 0.315

Writer9104 0.517 0.269 0.177 0.212 0.361 0.134 0.516 0.551 0.266

Writer9105 0.671 0.661 0.333 0.391 0.38 0.193 0.7 0.764 0.365

Writer9191 0.327 0.199 0.124 0.129 0.164 0.072 0.381 0.4 0.195

Writer9292 0.278 0.185 0.111 0.179 0.132 0.076 0.448 0.343 0.194

Writer9393 0.358 0.662 0.232 0.314 0.406 0.177 0.527 0.581 0.276

Writer9494 0.296 0.515 0.188 0.154 0.166 0.08 0.484 0.617 0.271

Writer9595 0.593 0.716 0.324 0.453 0.31 0.184 0.609 0.752 0.336

49

Table A1 cont.

Writer9696 0.475 0.266 0.171 0.256 0.16 0.098 0.537 0.415 0.234

Writer9797 0.511 0.156 0.12 0.181 0.328 0.117 0.411 0.687 0.257

Writer9898 0.309 0.493 0.19 0.232 0.187 0.103 0.455 0.465 0.23

Writer9999 0.312 0.411 0.177 0.276 0.241 0.129 0.485 0.352 0.204

50

BIOGRAPHICAL SKETCH

Name of Author: Joshua Jude Thomas

Graduate and Undergraduate Schools Attended:

Coastal Alabama Community College, Bay Minette, Alabama

University of South Alabama, Mobile, Alabama

Degrees Awarded:

 Bachelor of Science in Computer Science, 2021, Mobile Alabama

 Associate in Science, 2018, Bay Minette, Alabama

	Multi-Script Handwriting Identification by Fragmenting Strokes
	MULTI-SCRIPT HANDWRITING IDENTIFICATION BY FRAGMENTING STROKES
	TABLE OF CONTENTS
	LIST OF TABLES
	LIST OF FIGURES
	LIST OF ABBREVIATIONS
	ABSTRACT
	CHAPTER I
	1.1 Verification and Identification Model
	1.2 Multi-Script Writer Identification
	1.3 Convolutional Neural Networks
	1.4 Goal of Study

	CHAPTER II
	2.1 Handwriting Identification
	2.1.1 Single-Script Handwriting Identification
	2.1.2 Multi-Script Handwriting Identification

	2.2 Stroke Decomposition

	CHAPTER III
	3.1 Stroke Fragmentation
	3.1.1 Stroke Fragmentation Process
	3.1.1.1 Preprocessing.
	3.1.1.2 Skeletonization.
	3.1.1.3 Graph Conversion.
	3.1.1.4 Stroke Fragment Skeleton Labeling.
	3.1.1.5 Mask Segmentation.
	3.1.1.6 Filtering.
	3.1.1.7 Feature Extraction.
	3.1.1.8 Summary.

	3.2 Training and Evaluation
	3.2.1 Model and Method of Analysis

	CHAPTER IV
	4.1 Visual Examination of Stroke Fragments
	4.2 CERUG Evaluation Results
	4.2.1 Per Class Metrics

	CHAPTER V
	5.1 Future Work

	REFERENCES
	APPENDIX
	BIOGRAPHICAL SKETCH

Accessibility Report

		Filename:

		Joshua Thomas thesis.pdf

		Report created by:

		

		Organization:

		

[Enter personal and organization information through the Preferences > Identity dialog.]

Summary

The checker found no problems in this document.

		Needs manual check: 0

		Passed manually: 2

		Failed manually: 0

		Skipped: 1

		Passed: 29

		Failed: 0

Detailed Report

		Document

		Rule Name		Status		Description

		Accessibility permission flag		Passed		Accessibility permission flag must be set

		Image-only PDF		Passed		Document is not image-only PDF

		Tagged PDF		Passed		Document is tagged PDF

		Logical Reading Order		Passed manually		Document structure provides a logical reading order

		Primary language		Passed		Text language is specified

		Title		Passed		Document title is showing in title bar

		Bookmarks		Passed		Bookmarks are present in large documents

		Color contrast		Passed manually		Document has appropriate color contrast

		Page Content

		Rule Name		Status		Description

		Tagged content		Passed		All page content is tagged

		Tagged annotations		Passed		All annotations are tagged

		Tab order		Passed		Tab order is consistent with structure order

		Character encoding		Passed		Reliable character encoding is provided

		Tagged multimedia		Passed		All multimedia objects are tagged

		Screen flicker		Passed		Page will not cause screen flicker

		Scripts		Passed		No inaccessible scripts

		Timed responses		Passed		Page does not require timed responses

		Navigation links		Passed		Navigation links are not repetitive

		Forms

		Rule Name		Status		Description

		Tagged form fields		Passed		All form fields are tagged

		Field descriptions		Passed		All form fields have description

		Alternate Text

		Rule Name		Status		Description

		Figures alternate text		Passed		Figures require alternate text

		Nested alternate text		Passed		Alternate text that will never be read

		Associated with content		Passed		Alternate text must be associated with some content

		Hides annotation		Passed		Alternate text should not hide annotation

		Other elements alternate text		Passed		Other elements that require alternate text

		Tables

		Rule Name		Status		Description

		Rows		Passed		TR must be a child of Table, THead, TBody, or TFoot

		TH and TD		Passed		TH and TD must be children of TR

		Headers		Passed		Tables should have headers

		Regularity		Passed		Tables must contain the same number of columns in each row and rows in each column

		Summary		Skipped		Tables must have a summary

		Lists

		Rule Name		Status		Description

		List items		Passed		LI must be a child of L

		Lbl and LBody		Passed		Lbl and LBody must be children of LI

		Headings

		Rule Name		Status		Description

		Appropriate nesting		Passed		Appropriate nesting

Back to Top

