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Tubulin Interaction with Kinetochore Proteins: 
Analysis by In Vitro Assembly and Chemical Cross-linking 
R. D. Balczon and  B. R.  Brinldey 

Department of Cell Biology and Anatomy, University of Alabama at Birmingham, Birmingham, Alabama 35294 

Abstract. The sera from patients with the CREST 
(calcinosis, Raynaud's phenomenon, esophageal dys- 
motility, sclerodactyly, telangiectasia) variation of the 
autoimmune disease scleroderma contain autoantibod- 
ies that specifically recognize the kinetochore by im- 
munofluorescence. Two major antigens of molecular 
masses 18 and 80 kD are consistently identified by 
Western blotting of proteins of isolated chromosomes 
using CREST sera. In this paper, the possible roles 
that these two proteins play in the interaction of meta- 
phase chromosomes with tubulin and microtubules are 
examined using two different procedures. In one set of 
experiments, Chinese hamster ovary (CHO) chromo- 
somes were extracted with 1-2 M NaCI before incu- 
bating with phosphocellulose-purified tubulin under in 
vitro microtubule assembly conditions. After this treat- 
ment, the kinetochores of the residual chromosome 
scaffolds can still initiate the in vitro assembly of 
microtubules. Immunoblots of the chromosome scaf- 
fold proteins demonstrate that the 18-kD protein has 
been solubilized by the 1-2 M NaCI extraction, sug- 
gesting that this protein is not essential for microtubule 
assembly at the kinetochore. In a second approach, 

tubulin was covalently cross-linked to kinetochores of 
CHO chromosomes using the reversible cross-linking 
reagent dithiobis (succinimidyl propionate). After 
DNase I digestion, the chromosomes were solubilized 
and subjected to anti-tubulin affinity chromatography. 
Tubulin-kinetochore protein complexes were 
specifically eluted and analyzed by PAGE and immu- 
noblotting with scleroderma CREST serum. Only a 
small number of proteins were eluted from the anti- 
tubulin affinity column as shown by Coomassie Blue- 
stained gels. In addition to tubulin, an 80-kD polypep- 
tide, bands at 110 and 24 kD, as well as a faint band 
at 54 kD, can be resolved. Several minor bands can 
also be seen in silver-stained gels. The 80-kD protein 
band from whole metaphase chromosomes reacted 
with scleroderma CREST serum by immunoblotting 
and therefore probably represents the major centro- 
mere antigen CENP-B. This report provides evidence 
for a specific protein complex on metaphase chromo- 
somes that is contiguous with kinetochore-bound tubu- 
lin and may be involved in microtubule-kinetochore 
interactions during mitosis. 

T 
HE kinetochore is a specialized structure, located at 
the primary constriction (centromere) of metaphase 
chromosomes, which functions to attach chromo- 

somes to the mitotic spindle. The kinetochore also serves as 
a focal point through which mitotic forces work to pull chro- 
mosomes to the poles at anaphase. Recent studies of mitosis 
in living cells using immunogold labeling suggest that dy- 
namic assembly and disassembly of tubulin subunits takes 
place at the plus ends of microtubules, which are attached 
to the kinetochore (Mitchison et al., 1986). In addition, mi- 
totic motors or force-producing molecules, which translo- 
cate chromosomes along stable microtubules in the anaphase 
spindle (Gorbsky et al., 1987), may actually be located 
within the structure of the kinetochore (Mitchison et al., 
1986; Mitchison and Kirschner, 1985a, b; Gorbsky et al., 
1987). Before the mechanisms of such complex functions and 
interactions can be determined, however, more information 

is needed concerning the molecular organization of the 
kinetochore-microtubule interface. 

Although ultrastructural features of the kinetochore have 
been extensively investigated in a variety of cell types, rela- 
tively little information is available on the molecular compo- 
sition of this important structure. Using human autoantisera, 
from patients with scleroderma calcinosis, Raynaud's phe- 
nomenon, esophageal dysmotility, sclerodactyly, telangiec- 
tasia (CREST) ~ which bind specifically to the centromere/ 
kinetochore region (Moroi et al., 1980; Brenner et al., 1981), 
several polypeptides have been identified with molecular 
masses ranging from 17 to 140 kD (Cox et al., 1983; Ayer 

1. Abbreviations used in this paper: CREST, calcinosis, Raynaud's phenom- 
enon, esophageal dysmotility, sclerodactyly, telangiectasia; DSP, dithiobis 
(succinimidyl proprionate); PEM, 80 mM Pipes, 1 mM EGTA, I mM 
MgCI~, pH Z2. 
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and Fritzler,  1984; Nishikai  et al . ,  1984; Earnshaw and Roth- 
field, 1985; Valdivia and Brinkley, 1985; McNei lage  et al . ,  
1986). One  of these, an 80-kD peptide designated CENP-B 
(Earnshaw and Rothfield, 1985), has recently been  cloned 
and sequenced (Earnshaw et al . ,  1987). Al though this protein 
is associated with the centromere,  its specific localization in 
the kinetochore and possible  interact ion with microtubules  
has not  been  firmly established. 

Here two procedures were used to further characterize 
kinetochore proteins of  mammal i an  chromosomes.  In  one,  
the in vitro assembly procedure  of  Mitchison and Kirschner  
(1985a) was used to analyze microtubule  nucleat ion f rom 
kinetochores of  isolated chromosomes  after selective ex- 
traction of proteins and nucleic  acids. In  a second approach,  
proteins contiguous to k inetochore-bound tubul in  were iden- 
tified by chemical  cross- l inking with Lomant ' s  reagent (di- 
th iobis[succinimidyl  proprionate];  DSP) according to the 
procedure  of Tuan  and Knowles  (1984), as or iginal ly report- 
ed by Lomant  and Fairbanks (1976). Our  report  provides the 
first direct evidence that the 80-kD CREST antigen (CENP-B) 
is indeed a major  peptide of  the kinetochore and,  in combi-  
nat ion with a protein complex,  is closely associated with 
bound  tubul in .  The  results of  this study also suggest that an- 
other CREST antigen,  a histone-like 18-kD centromeric  pro- 
tein (Valdivia and Brinkley, 1985; Earnshaw et al . ,  1984; 
Earnshaw and Rothfield, 1985; Palmer et al . ,  1987), is not  
associated with tubul in  and is not  essential  for microtubule  
assembly at the kinetochore. 

Materials and Methods 

Cell Culture and Chromosome Isolation 

Chinese hamster ovary (CLIO) cells were grown in McCoy's 5A (Hsu's 

modification) supplemented with 8 % FCS. Indian muntjac cells were grown 
in Ham's F-10 medium supplemented with 10% FCS plus 2 mM glutamine. 

For chromosome isolation, cell cultures were incubated in either 10 Ixg/ 
ml vinblastine sulfate for 12 h or 0.1 Ig/ml eolcemid for 12-16 h. Mitotic 
cells were collected and the chromosomes isolated using the methods de- 
scribed by Mitchison and Kirschner (1985a). The isolated chromosomes 
were coffected and frozen in aliquots at -80°C until use. 

Chromosome Scaffold Preparation 

CHO chromosomes were washed twice in 80 mM Pipes, 1 mM EGTA, 
1 mM MgCI2, pH 7.2 (PEM), and then incubated for 20 rain in 80 mM 
Pipes, 1 mM EGTA, 5 mM MgCI~, 40 ~tg/rnl DNase I, pH 7.2 at 4°C. Af- 
ter rinsing in PEM, the chromosomes were treated for 10 rain at 4°C in PEM 
made 1 M in NaCI followed by a 20-min treatment at 4"C in PEM made 
2 M in NaCI. The residual chromosome scaffolds were then rinsed twice 
in PEM and used immediately. For microtubule assembly experiments, the 
CHO chromosomes were cytocantrifuged onto poly-L-lysine-coated cover- 
slips before DNase I digestion and salt extraction. 

Tubulin Purification 

Tubulin was purified from twice-cycled bovine brain microtubule protein by 
phosphocellulose chromatography as described by Mitchison and Kirschner 
(1984). The critical concentration for spontaneous assembly of this tubulin 
preparation was found to be 1.6 mg/ml (data not shown). 

Microtubule Assembly from Kinetochores 

The assay for microtubule assembly from kinetochores was essentially the 
same as described by Mitchison and Kirschner (1985a). Briefly, chromo- 
somes were cytocentrifuged onto coverslips and the coverslips rinsed in 
PEM to remove residual sucrose. Phosphocellulose-purified bovine brain 
tubulin was added at 1.7-2.0 mg/ml in PEM with 0.5 mM GTP. The cover- 
slips were incubated at 37°C for 10 min and then fixed for 3 rain in 2% 
glutaraldehyde in PEM followed by postfixation for 5 rain in -200C MeOH. 
The coverslips were then processed for either anti-tubulin immunofluores- 
cence or anti-kinetochore immunofluorescence using previously published 
methods (Brinkley et al., 1980, 1984). Coverslips were mounted in Hoechst 
dye 33258 (50 txg/ml in 1:1 PBS/glycerol), photographed with Tri-X (East- 
man Kodak Co., Rochester, NY), and developed with Acufine (Acufine, 

Figure 1. Indian muntjac cells 
were treated with vinblastine 
sulfate for 12 h and the chro- 
mosomes were isolated as de- 
scribed in the Materials and 
Methods section. The chro- 
mosomes were then processed 
for anti-tubulin immunofluo- 
rescence either before or after 
incubation with 1.2 mg/ml tu- 

• bulin for 10 rain at 37°C. (a) 
Anti-tubulin immunofluores- 
cence of an Indian muntjac 
chromosome that had been 
isolated from a vinblastine 
sulfate-treated cell. The ar- 
rows point to the centromere 
region. (b) Hoechst staining 
of a. (c) Anti-tubulin immu- 
nofluorescence of two Indian 
muntjac chromosomes that 
have been incubated with 1.2 
mg/ml tubulin for 10 min be- 
fore fixation and processing 
for anti-tubulin immunofluo- 
rescence. (d) Hoechst stain- 
ing of c. Bar, 5 Ixm. 
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Figure 2. Characterizat ion of  
scleroderma CREST serum by 
Western blotting. Lane a,  a 
10% SDS-PAGE of  purified 
CHO chromosomes.  Coomas-  
sic Blue staining. Lane b, the 
corresponding Western blot of  
lane a. The blot was treated 
with CREST serum (1:500) in 
PBS followed by peroxidase- 
labeled anti-human (1:500) in 
PBS. The blot  was developed 
with 4-chloro-l-napthol .  The 
apparent  molecular  masses  of  
the standard proteins (in kilo- 
daltons) are indicated to the 
left o f  lane a and the apparent  
molecular  masses  of  the two 
antigens recognized by the 
CREST serum are indicated to 
the fight o f  lane b. 

Inc., Chicago, IL). For some experiments, chromosome scaffolds on cover- 
slips were used and microtubule assembly was assayed using the above pro- 
cedure. 

Tubulin Binding to Kinetochores 
For binding experiments, whole chromosomes or chromosome scaffolds 
were incubated with 1.2 mg/ml tubulin in PEM plus 0.5 mM GTP for 10 min 
at 37°C. The chromosomes were then fixed and processed for immuno- 
fluorescence as described above. 

Tubulin Cross-linking to Kinetochore Proteins and 
Purification of Tubulin Kinetochore Protein Complexes 
Phosphocellulose-purified 6S brain tubulin at 2.0 mg/mi in PEM + 0.5 mM 
GTP was added to CHO chromosomes, and microtubules were assembled 
by incubating the mixture at 37°C for 10 min followed by a 10x dilution 
in PEM at 4"C to disassemble the microtubules. The chromosomes were 
pelleted and the pellet was rinsed three times in PEM. Under these condi- 
tions no assembled microtubules remained although tubulin is still bound 
to the kinetochores (Mitchison and Kirschner, 1985a). The chromosomes 
were resuspended in PEM, and DSP (Pierce Chemical Co., Rockford, IL) 
was added to a final concentration of 0.4 mM from a freshly made 100x 
stock (Lomant and Fairbanks, 1976; Tuan and Knowles, 1984). The chromo- 
somes were incubated with the cross-linker for 10 rain at 4°C, and the reac- 
tion was quenched by the addition of a 50x excess of lysine. The chromo- 
somes were pelleted and rinsed twice in PEM. DNase I (100 Ixg/ml) in 
80 mM Pipes, 1 mM EGTA, 5 mM MgC12, pH 7.2, was added to the 
preparation and the chromosomes digested for 30 rain at 4°C. After two 
rinses in PEM, the digested chromosomes were resuspended in 1% SDS for 
30 rain at room temperature to solubilize the chromosomal proteins. SDS 
was removed from the proteins using a slight modification of the procedure 
of Weber and Kuter (1971) as follows. After dialysis against 6 M urea, the 
chromosomal proteins were passed over a Dowex AG1 X 2Ac column and 
ehted with 6 M urea, 50 mM Tris-acetate, pH 7.8. The protein-containing 
fractions were dialyzed against borate saline buffer and then passed over an 
anti-tubulin affinity column. Tubulin kinetochore protein complexes were 
eluted with 4 M MgC12 in borate saline buffer dialyzed against dl-I20, and 
then lyophilized. The protein complexes were heated to 100*C in sample 
buffer containing 2.5 % I~-mercaptoethanol before SDS-PAGE to disrupt the 
disulfide bonds formed by Lomant's reagent. This procedure has also been 
repeated using chromosome scaffolds as the starting material. 

To demonstrate the specificity of the tubulin kinetoehore protein binding, 
the following controls were performed. First, the above experiment was 
repeated without the addition of cross-linker. Second, the above protocol 
was repeated with human red blood cell ghosts substituted for CHO chro- 
mosomes. Finally, a protein with a similar isoelectric point to tubulin was 

incubated with chromosomes. Specifically, human IgG1 (pI 6.6) was in- 
cubated with CHO chromosomes. Cross-linker was added, the chromo- 
somes solubilized, and the proteins passed over an anti-human IgG affinity 
column. 

PAGE and Immunoblotting 

SDS-PAGE was carried out according to Laemmli (1970). Before elec- 
trophoresis, samples were boiled in either sample buffer with 2.5 mM 
I~-mereaptoethanol (reducing conditions) or sample buffer without I~-mer- 
captoethanoi (nonreducing). Gels were stained either with Coomassie Bril- 
liant Blue or by silver staining using the methods described by Wray et al. 
(1981). 

Protein transfer to nitrocellulose was performed according to the methods 
of Towbin et al. (1979). The nitrocellulose blots were probed either with hu- 
man CREST antiserum (1:500 in PBS) followed by peroxidase-labeled anti- 
human (1:500 in PBS) or with anti-tubulin (10 ttg/rni in PBS) followed by 
peroxidase-labeled anti-sheep (1:500 in PBS). The preparations were rinsed 
and developed with 4-chloro-l-napthol. 

AJJinity-Chromatography 
Affinity columns were prepared by coupling either affinity-purified anti- 
tubulin (5 mg) or anti-human IgG (2 mg) to CNBr-activated Sepharose 4B 
(Sigma Chemical Co., St. Louis, MO). The columns were run according 
to the methods of Brinkley et al. (1980). 

Patient Sera 
All patient sera were obtained from the Comprehensive Arthritis Center at 
the University of Alabama at Birmingham. The sera were tested for anticen- 
tromeric staining properties by indirect immunofluorescence and by immu- 
noblotting against proteins of isolated chromosomes before use in these 
experiments. 

Results 

The ability of tubulin to bind to kinetochores is illustrated in 
Fig. 1. When chromosomes are isolated from vinblastine sul- 
fate-treated Indian muntjac cells, the kinetochores contain 
virtually no bound tubulin as demonstrated by anti-tubulin 
immunofluorescence (Fig. 1, a and b). However, when these 
chromosomes are incubated with phosphocellulose-purified 
tubulin, the tubulin binds specifically to the kinetochore as 
shown in Fig. 1, c and d. It is clear as observed in the large- 
sized chromosomes of the muntjac that tubulin binding is in- 
deed confined to the kinetochore and does not include the en- 
tire centromere. Identical results (not shown) were obtained 
when smaller CHO chromosomes were used. It should be 
noted that microtubule nucleation is not observed under the 
conditions of these experiments as reported by Mitchison 
and Kirschner (1985a) (see also Pepper and Brinkley, 1977). 

When the proteins of isolated metaphase chromosomes 
were analyzed by Western blotting using autoimmune sera 
from several patients with scleroderma CREST, two major 
antigens with molecular masses of 18 and 80 kD were consis- 
tently seen (Fig. 2). In the remaining experiments we at- 
tempted to determine (a) the localization of these proteins in 
the kinetochore, and (b) whether they play a role in the at- 
tachment of metaphase chromosomes to the mitotic spindle. 
To achieve these objectives, two types of experiments were 
performed using isolated chromosomes from CHO cells. In 
the first approach, isolated chromosomes were incubated 
with exogenous tubulin and the growth of microtubules from 
kinetochores was analyzed by indirect immunofluorescence 
after selective extraction of chromosomal proteins with 1-2 
M NaCI. In the second experiment, a cleavable, bifunctional 
cross-linking agent (see Materials and Methods) was used 
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Figure 3. (a and b) The growth of 
microtubules from a control CHO 
chromosome. (a) Anti-tubulin im- 
munofluorescence. (b) Hoechst 
staining of a. (c and d) Microtu- 
bule growth from a residual chro- 
mosome scaffold. This chromo- 
some had been digested with 
DNAse I and then extracted with 
2 M NaCl before incubating with 
6S tubulin (1.8 mg/ml). After 
fixation, the preparation was dou- 
ble-labeled with anti-tubulin (fol- 
lowed by F1TC-lal~ed anti-sheep) 
and human CREST serum (fol- 
lowed by RITC-labeled anti-hu- 
man). (c) Anti-tubulin immuno- 
fluorescence. (d) Human CREST 
staining of c. (e and f )  Tubulin 
binding to kinetochores of chro- 
mosome scaffolds. Chromosome 
scaffolds were incubated with 6S 
tubulin (1.2 mg/ml), fixed, and 
processed for both anti-tubu- 
lin immunofluorescence (e) and 
CREST immunofluorescence (at). 
The arrows infpoint to the CREST 
staining residual kinetochores. 
Bar, 5 ttm. 

to chemically couple exogenous tubulin to contiguous ki- 
netochore proteins, which were then solubilized and ana- 
lyzed by tubulin antibody affinity chromatography and SDS 
gel electrophoresis. 

As shown in Fig. 3, a and b, extensive microtubule growth 
occurs from untreated, control CHO chromosomes. In our 
experiments 50-60% of the chromosomes on a coverslip 
supported the growth of microtubules from kinetochores. 
Nonspecific, non-microtubule organizing center associated 
microtubule growth was kept to a minimum (<1%) by in- 
cubating the chromosomes in the presence of tubulin con- 
centrations that were very near to the critical concentration 
necessary for microtubule assembly, as suggested by Mitchi- 
son and Kirschner (1985a). 

Surprisingly, digestion of chromosomes with DNase I fol- 
lowed by extensive extraction with 1-2 M NaC1 has no appar- 
ent effect on the growth of microtubules from chromosomes 
(Fig. 3, c and d). This treatment, which results in the 
production of chromosome scaffolds, solubilizes much of the 

DNA and many of the chromosomal proteins (Fig. 4). That 
microtubule growth is occurring from residual kinetochores 
and not from contaminating centrosomes can be inferred 
from the following evidence. First, Mitchison and Kirschner 
(1984) have demonstrated that salt extraction abolishes the 
nucleating capacity of centrosomes. In addition, double im- 
munofluorescent staining of these samples using tubulin anti- 
bodies followed by the CREST anti-kinetochore staining 
procedure demonstrates that microtubule growth is focused 
on the residual kinetochore (Fig. 3 d). 

Chromosome scaffolds, like whole chromosomes, can 
also bind tubulin at their kinetochores, as shown in Fig. 3, 
e and f. As with whole chromosomes, kinetochore binding 
is accomplished at concentrations of tubulin below the criti- 
cal concentration needed for microtubule nucleation. 

The results shown in Fig. 4 demonstrate that the 18-kD 
protein is solubilized by extracting chromosomes with 2 M 
NaC1, and that the 18 kD component is not associated with 
the chromosome scaffold. In Fig. 4, lanes b and c are 
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Coomassie-stained SDS gels of whole chromosomes and re- 
sidual scaffolds, respectively. Lanes d and e are the corre- 
sponding Western blots of lanes b and c probed with CREST 
serum. In lane d, both the 18- and the 80-kD antigens can 
be seen, whereas in lane e only the 80-kD antigen can be 
identified. This result, taken together with the results shown 
in Fig. 3, further supports the notion that the 18-kD antigen 
is a histone-like chromatin protein (Earnshaw et al., 1985; 
Valdivia and Brinkley, 1985; Palmer et al., 1987), and is not 
an essential intermediate in the interaction of kinetochores 
with microtubules. Apparently the proteins that are essential 
for chromosome-microtubule nucleation are part of the re- 
sidual chromosome scaffold. 

The specificity of the binding reaction of tubulin to kineto- 
chore proteins (Fig. 1) was incorporated into a procedure to 
directly identify tubulin-binding proteins present in the 
kinetochore. After incubating chromosomes with exogenous 
tubulin, the tubulin was covalently cross-linked to the ki- 
netochore using the reversible, disulfide cross-linker DSP 
(Lomant's reagent). The chromosome proteins were then 
solubilized and passed over an anti-tubulin affinity column. 
Tubulin-kinetochore protein complexes were elnted from 
the column and analyzed by PAGE and Western blotting with 
CREST serum. Lomant's reagent was chosen as the cross- 
linker in this experiment for two reasons. First, disulfide 
bonds formed between contiguous proteins using this reagent 
can be cleaved by treating the protein complex with fl-mer- 
captoethanol before PAGE. Second, Lomant's reagent works 
well as physiological pH, whereas other cross-linkers re- 
quire either acidic or basic pH's, which may denature tubulin 
and alter its interaction with kinetochore proteins. 

The results of the cross-linking experiments are shown in 
Fig. 5. Lane b shows that treatment of chromosomes with 1% 
SDS results in the solubilization of numerous proteins. When 
these proteins are passed over an anti-tubulin affinity col- 
umn, only a small number of proteins are specifically eluted 
(lane c). In addition to tubulin, there is an 80-kD band, a 
band of 110 kD, a faint band at 54 kD, and a less prominent 
band between the 80-kD component and the ll0-kD band. 

Figure 4. A 10% SDS gel of CHO chromosomes and CHO chromo- 
some scaffolds and the corresponding Western blot with CREST se- 
rum. Lane a, molecular mass standards (in kilodaltons). Lane b, 
CHO chromosomes. Lane c, CHO chromosome scaffolds. Lane d, 
Western blot of whole CHO chromosomes. Lane e, Western blot 
of CHO chromosome scaffolds. The apparent molecular masses of 
the CREST antigens are given in kilodaltons to the right of lane e. 

Figure 5. SDS-PAGE and immunoblotting of tubulin-kinetochore 
protein complexes. Lanes a-e, from 10% SDS gels; lanes f- i ,  from 
12.5% SDS gels. Lanes a-c and f-i ,  Coomassie stained. Lanes d 
and e, Western blots with CREST serum and anti-tubulin, respec- 
tively. Lane a, molecular mass standards (in kilodaltons). Lane b, 
SDS-solubilized proteins from CHO chromosomes that have been 
cross-linked with 6S tubulin. Lane c, chromosomal proteins eluted 
from an anti-tubulin affinity column after cross-linking of tubulin 
to kinetochores. Lane d, Western blot of lane c using CREST serum 
and peroxidase-labeled anti-human at a dilution of 1:500 in PBS. 
Lane e, immunoblot of lane c with anti-tubulin. Anti-tubulin was 
used at 10 Ixg/ml and peroxidase-labeled anti-sheep at a dilution of 
1:500 in PBS. Lane f, molecular mass standards (in kilodaltons). 
Lane g, an SDS gel of the eluate from an anti-tubulin affinity 
column after tubulin was cross-linked to human red blood cell 
ghosts. No proteins can be detected. Lane h, proteins eluted from 
an anti-human IgG affinity column after human IgGl was cross- 
linked to CHO chromosomes. Only the heavy chain of IgG can be 
resolved. Lane i, proteins eluted from an anti-tubulin affinity 
column after tubulin was added to chromosomes without cross- 
linker (Lomant's reagent). 

Bands corresponding to the 140 (CENP-C) and the 17-18-kD 
(CENP-A) peptides were not seen. The proteins present in 
the Coomassie-stalned bands in lane c were purified from the 
chromosomes isolated from three T-175 flasks of CHO cells. 

To determine whether the protein bands present in lane c 
are actually derived from the kinetochore, a Western blot was 
performed using the scleroderma CREST serum. As lane d 
demonstrates, the CREST serum recognizes the 80-kD re- 
gion. In addition, a different CREST serum also recognized 
the same 80-kD band as well as the faint band at 54 kD (re- 
sult not shown). These results demonstrate that the kineto- 
chore proteins contiguous to tubulin can be purified by cross- 
linking them to pure tubulin. Unfortunately, since there are 
multiple bands in lane c and because of the nature of the 
cross-linker, we are still unable to definitively identify the 
protein(s) of the kinetochore that bind directly to tubulin. For 
example, it cannot be determined whether all of the bands 
present in lane c bind to tubulin or whether tubulin binds to 
only one of the proteins which, in turn, is further cross- 
linked to its nearest neighbor. We have shown by immuno- 
blotting that both tubulin and the CREST-positive protein co- 
migrate in the same high molecular mass band when the 
kinetochore protein complex is run on nonreducing SDS- 
PAGE. Moreover, when the unreduced complex was excised, 
reduced with I~-mercaptoethanol and run on reducing SDS 
gels, a banding pattern identical to that shown in Fig. 5 c was 
observed (data not shown). Experiments are currently un- 
derway to characterize the binding of tubulin to kinetochore 
proteins by nearest neighbor analysis according to the proce- 
dure of Wang and Richards (1974). 
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Figure 6. Silver staining of 
the tubulin-kinetochore pro- 
tein complexes. Lane a, molec- 
ular mass standards (in kilo- 
daltons). Lane b, the chro- 
mosome proteins eluted from 
an anti-tubulin affinity col- 
umn after cross-linking of tu- 
bulin to kinetochores. This 
preparation is different from 
the one in Fig. 5 c and shows 
a prominent band at 24 kD in 
addition to the bands at 80 and 
54 kD. The band at 110 kD 
cannot be resolved in this prep- 

aration. Lanes a and b are Coomassie stained. Lane c, Western blot 
of lane b. CREST serum and peroxidase-labeled anti-human were 
both used at a dilution of 1:500 in PBS. The 80-kD CREST antigen 
is prominent. Lane d, silver staining of the tubulin-kinetochore 
protein complex. The same amount of protein was loaded in this 
lane as in lane b. Because of this overloading of protein, the bands 
that are prominent in the Coomassie-stained lane (b) appear nega- 
tively stained in this preparation. Other minor components of the 
kinetochore complex that become apparent in the silver-stained 
preparation are bands that migrate in the molecular mass range of 
the histones as well as a few bands in the 120-150-kD range. 

These experiments support the notion that the 80-kD 
CREST antigen is a kinetochore protein that is closely as- 
sociated with and possibly bound to tubulin. The absence of 
an 18-kD band in lanes c and d suggests that this CREST anti- 
gen is not contiguous to tubulin and provides additional evi- 
dence that the 18-kD CREST antigen is probably not in- 
volved in microtubule interaction with the kinetochore. It 
should be noted that some variability occurs when kineto- 
chore proteins are extracted by this procedure. Although the 
80-kD band was seen consistently in six out of six prepara- 
tions, the ll0-kD band was seen in only three out of six sam- 
pies. In addition, a discrete band at 24 kD (Fig. 6) was pres- 
ent in approximately half of our preparations. 

Three controls were performed to demonstrate the spec- 
ificity of the binding between tubulin and the kinetochore 
proteins as well as to demonstrate the importance of the 
cross-linker in this purification scheme. Fig. 5 g shows the 
results of an experiment in which tubulin was cross-linked 
to human red blood cell ghosts. Red blood cells were chosen 
because they have no tubulin cytoskeleton and they are anu- 
cleate, and hence do not have kinetochores. As shown in Fig. 
5, lane g, no erythrocyte proteins were bound to the 
anti-tubulin affinity column. Lane h shows the results of a 
control experiment in which a protein with a similar isoelec- 
tric point to tubulin (IgG1, pI 6.6) was incubated with chro- 
mosomes before the addition of cross-linker. This experi- 
ment was performed to determine whether the binding of 
tubulin to the kinetochore proteins was a specific reaction 
and not simply a charge interaction between tubulin and ad- 
jacent chromosomal proteins. The only identifiable band in 
lane h is the heavy chain of IgG. Finally, lane i shows the 
results of a control experiment in which Lomant's reagent 
was not used. Chromosomes were incubated with tubulin, 
but no cross-linker was added before SDS solubilization. 

Figure 7. Tubulin cross-link- 
ing to chromosome scaffolds. 
Lane a, molecular mass stan- 
dards (in kilodaltons). Lane 
b, the scaffold proteins eluted 
from an anti-tubulin affinity 
column after tubulin was cross- 
linked to chromosome scaf- 
folds using Lomant's reagent. 
Note the appearance of a prom- 
inent band at 65 kD. Lane 
c, an immunoblot of lane b. 
CREST serum and pemxidase- 
labeled anti-human were both 
used at 1:500 in PBS. 

The only identifiable bands in lane i are faint tubulin bands. 
The other protein bands that are seen in lane c are absent. 

To identify minor protein species that eluted with the 
kinetochore protein complex, more sensitive silver-stained 
gels were prepared using the same material. A comparison 
between a Coomassie-stained gel and a silver-stained prepa- 
ration is shown in Fig. 6. Several additional bands can be 
seen in the silver-stained gels, including lower molecular 
mass proteins that probably correspond to histones and a few 
bands at a higher molecular mass range (120-150 kD). Typi- 
cally, proteins in greater abundance, such as the 80-kD band, 
appeared as negative bands in the silver-stained gels. 

Chromosome scaffold preparations were also analyzed for 
a tubulin-kinetochore protein complex by using the same 
cross-linking procedure as for tubulin-associated proteins of 
whole chromosomes. As shown in Fig. 7 b, a protein com- 
plex was extracted from chromosome scaffolds that was simi- 
lar to that of whole chromosomes, except that a prominent 
band appears at 65 kD. Although an 80-kD band was still 
present in the complex, the CREST autoantibody recognized 
the 65-kD band in immunoblots of scaffold preparations 
(Fig. 7 c). 

Discussion 

The kinetochore has long been recognized as a site for the 
attachment of spindle fibers to the centromere and as " . . .  an 
element of fundamental importance in the movement of chro- 
m o s o m e s . . .  "(Schrader 1953). Although the ultrastructural 
and cytochemical properties of the kinetochore have been de- 
scribed in a variety of cells (see reviews by Rieder, 1982; 
Godward, 1985; Brinkley et al., 1985), relatively little is 
known about the molecular composition of this structure. 
Our experiments address the question of which proteins 
make up the kinetochore and how they interact with tubulin 
and microtubules. 

Current knowledge of the proteins that are associated with 
the centromere/kinetochore region comes from earlier cyto- 
chemical studies (Pepper and Brinkley, 1977; see review by 
Rieder, 1982), and more recently from the use of human au- 
toantibodies from scleroderma CREST patients (Cox et al., 
1983; Guldner et al., 1984; Ayer and Fritzler, 1984; Nishikai 
et al., 1984; Earnshaw and Rothfield, 1985; Earnshaw et al., 
1986; Valdivia and Brinkley, 1985; McNeilage et al., 1986). 
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Collectively these investigations have identified several pro- 
teins that may be directly or indirectly associated with the 
kinetochore or play some role in its activity. 

Pepper and Brinldey (1977, 1979) used antitubulin antibod- 
ies to identify tubulin in the kinetochore and showed that 
kinetochore-associated tubulin was essential for microtubule 
nucleation from chromosomes. Recently improved methods 
have been developed for investigating the interaction of exog- 
enous tubulin with the kinetochore (Mitchison and Kirsch- 
ner, 1985a). The latter study suggested that kinetochore- 
associated tubulin was probably not a structural component 
of the kinetochore, but was bound tightly to the kinetochore 
in close proximity to the fibrous corona, a series of fine hair- 
like projections on the outer face of the kinetochore. As sug- 
gested in earlier studies, tubulin binding to the kinetochore 
was found to be correlated with the enhanced nucleation ca- 
pacity of the kinetochore in vitro (Mitchison and Kirschner, 
1985a; Pepper and Brialdey, 1977). Whether tubulin binding 
to the kinetochore relates to other functions such as microtu- 
bule capture and stability (Mitchison and Kirschner, 1985b; 
Pickett-Heaps et al., 1982) or the dynamic assembly-dis- 
assembly of spindle microtubules at their kinetochore ends 
(Mitchison et al., 1986; Gorbsky et al., 1987) requires fur- 
ther investigation of the molecular composition of the kineto- 
chore. 

Studies using human autoantibodies from scleroderma 
CREST patients that bind to the centromere/kinetochore re- 
gion (Moroi et al., 1980; Brenner et al., 1981) provided evi- 
dence for a family of proteins that may be related to the struc- 
ture and function of the kinetochore. Earnshaw and Rothfield 
(1985) identified by immunoblotting three major CREST an- 
tigens associated with the centromere. Because of their as- 
sociation with the centromere, these proteins were identified 
as CENP-A (17-18 kD), CENP-B (80 kD), and CENP-C (140 
kD). As mentioned previously, other investigators have used 
similar procedures to identify peptides ranging in molecular 
mass from 17 to 140 kD. Two distinct proteins of 18 and 80 
kD were identified in an isolated kinetochore fraction (Val- 
divia and Brinkley, 1985). Recently Earnshaw et al. (1987) 
cloned and sequenced a cDNA corresponding to CENP-B. 
This protein was found to be highly acidic and to have an ac- 
tual molecular mass of 65 kD. This major centromeric anti- 
gen contained two large domains enriched in glutamic and 
aspartic acid. 

Before the present study, very little was known about the 
function or localization of the CREST antigen family. Our 
study strongly indicates that the 80-kD protein is contiguous 
with and possibly bound to kinetochore-associated tubulin, 
which itself is localized on the outer layer of the trilaminar 
plate as shown by electron microscopic immunogold local- 
ization (Mitchison and Kirschner, 1985a). If, in fact, the 
80-kD antigen is a tubulin-binding protein it will be useful 
to identify the amino acid sequences involved, especially 
since both proteins are highly acidic. However, we cannot 
rule out the possibility that other members of the protein 
complex are involved in tubulin binding. 

The identity of the other tubulin-associated proteins ex- 
tracted by our procedure remains to be determined, as does 
their spatial association with tubulin and the 80-kD compo- 
nent. One of these, a peptide of '~54 kD, was recognized by 
a CREST serum from one patient in our study (but not by 
the serum from another patient) and may also be an antigen 

in this family of proteins. KingweU and Rattner (1987) have 
reported that a 50-kD protein is present in both human and 
Indian muntjac kinetochores and a 50-kD antigen has been 
found in the kinetochores of rat chromosomes (Earnshaw et 
al., 1985). 

The variability in the detection of some polypeptides in the 
kinetochore-protein complex, including the 110- and 24-kD 
bands, cannot be explained from our data but is under further 
investigation. Cox et al. (1983) described major centromere 
antigens in the 20-25-kD range, but these were not identified 
as proteins of the kinetochore by Earnshaw et al. (1984) or 
Guldner et al. (1984). Using immunoblotting procedures, 
Earnshaw and Rothfield (1985) identified antigens in the 
20-25-kD range as components of the metaphase chromo- 
some scaffold. 

Presently, we cannot explain why the kinetochore pro- 
tein complex from chromosome scaffolds displays a major 
CREST-positive band at 65 kD and not at 80 kD as seen in 
whole chromosomes. It is possible that the 65-kD band is a 
proteolytic fragment of the 80-kD protein produced during 
the preparation of chromosome scaffolds. Equally perplex- 
ing is the existence of an 80-kD band in the scaffold prepara- 
tion, which does not bind the CREST antibody. Obviously, 
the variations observed between tubulin-linked kinetochore 
proteins of scaffolds and whole chromosomes require further 
study. 

It has not escaped our attention that the ll0-kD peptide is 
within the molecular mass range of kinesin, the major micro- 
tubule translocation molecule found in squid axoplasm and 
bovine brain (Vale et al., 1985). Kinesin, with a molecular 
mass of 110-120 kD, powers organelles along microtubules. 
A similar translocator molecule could be involved in ana- 
phase chromosome movement. Further studies are underway 
to determine possible homologies between the two proteins. 

Another CREST antigen, CENP-A (17-18 kD), was not 
eluted by our purification procedure. Since it can be ex- 
tracted from chromosomes by heparin or 1-2 M NaC1, we 
support the notion that it is a histone-like component of cen- 
tromeric chromatin as suggested by others (Earnshaw et al., 
1984, 1985; Vaidivia and Brinkley, 1985; Palmer et al., 
1987). Its absence from chromosome scaffold preparations, 
which are fully capable of binding tubulin and initiating the 
assembly of microtubules at the residual kinetochore, sug- 
gests that the 18-kD antigen, and perhaps centromeric chro- 
matin, is not required for either microtubule binding or 
assembly. 

In summary, this investigation has provided new insight 
into tubulin-linked proteins of the kinetochore, which may 
be involved in binding of spindle microtubules to the centro- 
mere. Further investigations are underway to characterize 
this kinetochore protein complex. 
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