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ABSTRACT

Ruthba Yasmin, M. S., University of South Alabama, May 2024. Geomagnetic
Substorms prediction model using combined physics-based and deep learning modeling
techniques. Chair of Committee: Edmund A. Spencer, Ph.D.

This thesis aims to develop a hybrid physics-incorporated neural network model
(PINN) for classifying geomagnetic substorms in the Earth’s Magnetosphere. The model
is trained using a comprehensive list of substorm onsets, ground magnetometer data from
a global network, and solar wind parameters from the Advanced Composition Explorer
(ACE) satellite. Two different neural network architectures are used, and the physics
model used for training is called WINDMI. The magnetic field components on the
ground, which are a function of the ionospheric currents, are captured by the SML index.
The methodology involves using 60-minute data segments preceding an event to train the
hybrid PINN model to predict and classify substorms in the subsequent 30 minutes. A
significant part of this research is predicting substorm occurrences based on substorm
onsets from four distinct lists and an aggregated substorm list. The results, based on the
performance of 16 adopted cases, show that the hybrid model performs significantly

better than the WINDMI model alone. This finding underscores the importance of

scrutinizing the physics model alongside the hybrid model.
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CHAPTER 1

INTRODUCTION

A Geomagnetic Substorm is a complex phenomenon that involves energy transfer
from the magnetotail to the auroral ionosphere and is crucially linked to solar wind,
magnetosphere-ionosphere parameters. Instrumentation, ranging from satellites to
ground-based imagers and magnetometers, captures substorm onset metrics with distinct
phases: growth, expansion, and recovery. Substorm onsets on the nightside manifest as
auroral brightening and poleward expansion, crucially observed through all-sky imaging,
simultaneously as westward auroral electrojet current (Newell et al., 2010).

Extensive research by experts Akasofu (1964), Frey et al. (2004), and McPherron
(2020) among others has utilized space and ground-based instruments, as well as first-
principles models, to understand substorms. Key determinants include the impact of solar
wind and interplanetary magnetic field parameters, with IMF B being a significant factor
affecting energy transfer.

The concept of substorms was first introduced in the 1960s to describe a sudden
release of stored energy in the magnetosphere, resulting in dynamic changes in the
magnetospheric and ionospheric systems (Akasofu, 1981). Substorms have been found to
significantly alter the auroras in the polar region, as well as the magnetospheric magnetic

field and plasma environments. Advancements in satellite observations, ground-based



measurements, and computer simulations have provided valuable insights into the
underlying processes of substorm onset.

Debates exist on the triggers for substorm expansion, whether externally triggered
by solar wind and IMF changes or dominated by internal triggers (Akasofu, 2004). The
sequence of events during the growth phase is also a topic of discussion, questioning
magnetosphere preconditioning and has contributed to our understanding of detailed
measurements of magnetic field variations, particle populations, and plasma dynamics. In
recent decades, satellite reliance has increased, and substorms pose threats to satellite
operations and infrastructure. Prediction efforts, from early neural networks to recent
support vector machines and binary classification, highlight the need for accurate
forecasting.

The goal of this research is to analytically evaluate the substorm onset criteria
based on ground-based magnetic indices, field-aligned currents, auroral observations,
electrojet indices criteria to establish a relationship and lay the foundation for neural
network training and modeling. This is a novel approach in this domain of Space Physics
because neural network training to classification and tuning of the hyperparameters has
never been attempted before across several substorm lists. The model correlated each set
of parameters (input cases) and used different lists. This is the first time this methodology
has been attempted which attests to the novelty of the framework. Substorm lists are key
indicators that were used to enable the model to find a correlation between solar wind,
ground measurements and the lists. The auroral electrojet and the ring current are
compared to AL and Dst respectively. The motive of this thesis is to utilize a

comprehensive substorm list along with pseudo-break up events identified by auroral



brightening signatures from ground-based imagers. The WINDMI model, being the
Physics model incorporated into the bigger architecture is derived by assuming a
magnetospheric configuration (Spencer et al., 2018). Numerically speaking, the hybrid
model attains an accuracy of 77% compared to the 40% accuracy that the physics model

gives.

1.1 Motivation

Understanding geomagnetic substorms and their impact on Earth's
magnetosphere-ionosphere system is crucial for space weather forecasting and mitigating
potential hazards to technological infrastructure and human activities in space. Despite
significant advancements in observational techniques and theoretical models, there
remain several gaps and challenges in accurately predicting substorm occurrences and
their associated effects. This study is motivated by the pressing need to advance our
understanding of geomagnetic substorms and develop more effective predictive models
for space weather forecasting. Geomagnetic substorms can lead to disruptions in satellite
communications, power grids, and GPS navigation systems, posing significant risks to
modern technological infrastructure. By improving our understanding of substorm
dynamics, we aim to enhance space weather forecasting capabilities, ultimately reducing
the impact of substorms on critical systems. Substorms represent fundamental processes
in the interaction between the solar wind and Earth's magnetosphere, offering valuable
insights into plasma physics, magnetospheric dynamics, and space weather phenomena
(Bittencourt, 2013). The integration of advanced machine learning techniques with

observational data offers new opportunities for predictive modeling of substorm events.



Leveraging large datasets from ground-based magnetometers, space-based satellites, and
theoretical models like WINDMI, we can develop more accurate and robust predictive
models for substorm onset and evolution. Comparative analysis of different substorm
onset lists and machine learning models allows us to assess the strengths and limitations
of existing approaches, identifying optimal strategies for substorm prediction, and
highlighting areas for improvement. Integrating data-driven machine learning models
with physics-based models like WINDMI enables a synergistic approach to substorm
prediction, combining insights from observational data with theoretical understanding to
improve the accuracy and reliability of substorm forecasts, ultimately enhancing our
ability to mitigate the impacts of space weather on society and technology.

Our research aims to enhance our understanding of geomagnetic substorms by
integrating advanced data-driven techniques with first-principles physics models. We
seek to investigate the dependencies between substorm occurrences and the current state
of the magnetosphere-ionosphere system, leveraging insights from both observational

data and theoretical models.

1.1.1 Incorporating Comprehensive Data Sources
Our first goal is to incorporate data from the WINDMI model, capturing the
intricate dynamics of the magnetosphere, into our machine learning framework.
Additionally, we aim to utilize SML and SYMH indices, which characterize the
magnetosphere-ionosphere system before substorm occurrences, enhancing the predictive

capabilities of our models.



1.1.2 Exploring Parameter Influences
We aim to explore the influence of various solar wind parameters and ground
magnetometer observations on substorm occurrences. By systematically analyzing
different combinations of these parameters, we seek to identify key factors driving
substorm activity.
1.1.3 Exploring Parameter Influences
Our research involves highlighting the performances of four distinct substorm
onset lists by Forsyth, Newell, Ohtani and Frey, along with an aggregated list. Through
comparative analysis, we aim to understand the strengths and limitations of each list and
assess their suitability for predictive modeling.
1.1.4 Comparing Model Parameters
We aim to compare the performances of different machine learning models, not
necessarily for the purpose of direct comparison, but to understand their individual
strengths and weaknesses. Additionally, we seek to analyze the best and worst-case
scenarios to gain insights into model behavior under varying conditions.
1.1.5 Integration with Physics Models
Finally, we aim to compare the performances of our machine learning models
with those of the WINDMI physics model. By juxtaposing data-driven and physics-based
approaches, we aim to elucidate synergies and discrepancies, ultimately advancing our

understanding of substorm dynamics.



1.2 Contributions and Challenges

This thesis contributes to the field by proposing an enhanced predictive model for
substorm activity incorporating the identified initiation criteria for more accurate
forecasts and two neural network models that can benchmark against the Physics model.
Modeling the substorm onsets using IMF measurements from the ACE spacecraft as
input into a system of 8 nonlinear ordinary differential equations where the state variables
of the differential equations represent the energy stored in the geomagnetic tail, the
central plasma sheet, ring current, and field-aligned currents. The output from the model
is the current (I1) which compares with the real-time measure of geomagnetic activities

and disturbances (SML) (Spencer et al., 2007).

1.3 Organization of the Thesis

This thesis is comprised of five chapters. In Chapter I, the problem statement,
research motivation, and contribution of this research are discussed. Chapter I addresses
the background study of the challenges associated with substorm onset determination, the
motivation behind the adoption of the combined physics-incorporated neural network, the
criteria of the models, and the methodology that is used. Chapter III discusses the
WINDMI model and the neural network. Chapter I'V contains the performance evaluation
of the WINDMI model with the neural network architectures used and has illustrations of
all relevant outputs as well as the comparison of those results. Chapter V states the

conclusion and discusses the future scope of the work of the thesis.



CHAPTER II

GEOMAGNETIC SUBSTORMS

The near-Earth space environment undergoes profound transformations through
the interaction between the solar wind and Earth's magnetosphere. The solar wind, a
continuous stream of charged particles emanating from the sun, shapes the dynamics of
space around our planet. Composed primarily of protons and electrons, with traces of
heavier ions like helium and oxygen, the solar wind carries the Sun's magnetic field,
embedded within its magnetized plasma.

As the solar wind encounters Earth's magnetic field, a complex interplay ensues,
illustrated in Figure 2.1. The red curved line delineates the bow shock, where the high-
speed, low-density solar wind plasma encounters Earth's magnetic field and decelerates,
creating a shockwave. Beyond the bow shock lies the magnetosheath, characterized by
draped magnetic field lines and convected plasma. The magnetosphere, highlighted in
green, forms the region where Earth's magnetic field dominates the solar wind, creating a
protective shield around the planet.

Variations in solar wind speed and density, ranging from 300 km/s to 800 km/s
and 5-10 cm3 respectively, significantly impact the interaction with Earth's
magnetosphere. During heightened solar activity, speeds can surge to several thousand

km/s, intensifying the interaction and potentially leading to geomagnetic storms.
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Figure 2.1. Illustration of the interaction between the solar wind and Earth's
magnetosphere (Tsurutani et al., 2022).
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Figure 2.2. The Magnetosphere, a sketch from Kivelson and Russell (1995).



The magnetosphere (Figure 2.2) itself is a complex, dynamic structure with
numerous energy reservoirs and transitional layers. The solar wind's electric field drives
substantial power through various components of the magnetosphere, with a large
fraction dissipated in the ionosphere and the ring current through charge exchange
collisions with neutral atoms. Transient power influxes into the magnetosphere during
storm times can reach levels up to 1012 W for periods of up to a day. During the main
phases of storms most energy is lost from the closed region due to magnetopause erosion.
However, most energy is gained through the lobe boundary. During stormy periods, the

magnetosphere experiences dynamic energy exchanges:

2.1 External Energy Pathways

As the solar wind conditions change, energy enters the magnetosphere from the
magnetosheath (the region between the magnetopause and the bow shock). This energy
flows into the magnetospheric lobes and escapes through the closed filed region. The
magnetic energy flux in this external pathway contributes to the overall energy dynamics.

Previous work and theory have studied this process extensively.

2.2 Reconnection and Magnetic Field Orientation

The internal circulation pathway is controlled via the reconnected X-lines(s).
Additionally, the interplanetary magnetic field orientation plays a crucial role in

governing this energy flow.



2.3 Energy Dvynamic Summary

During the main phases of storms, most energy is lost from the closed region due
to magnetopause erosion and most energy is gained through the lobe boundary. The lobes
act as an expandable reservoir, adjusting their energy context due to mismatches between
incoming and outgoing energy flux. The findings enhance our understanding of how
energy moves within Earth’s magnetosphere, shedding light on processes with space
weather impacts.

The plasma sheet, extending to the distant magnetotail, harbors hot, slow-moving
particles and contributes to the overall energy dynamics of the magnetosphere.
Energetically charged electrons and ions trapped in the Van Allen radiation belts and
their interactions combined with the complex dynamics of the solar wind-magnetosphere
coupling have profound implications for space weather and technological systems,
highlighting the importance of understanding and monitoring these processes for space
exploration and satellite operations. Magnetospheric substorms possess an elemental
process involving the storage and explosive release of solar wind energy (Baker et al.,
1985).

The magnetopause, magnetospheric boundary separating the solar wind and
Earth's magnetic field, represents a critical interface in this interaction. Inside the
magnetopause lies the magnetosphere, where Earth's magnetic field dominates, while
outside lies the magnetosheath, characterized by mixed solar and terrestrial plasmas. The
plasma sheet, extending to the distant magnetotail, harbors hot, slow-moving particles

and contributes to the overall energy dynamics of the magnetosphere.
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Additionally, energetic charged particles, predominantly protons and electrons,
are trapped in the Van Allen radiation belts, executing intricate trajectories along
magnetic field lines and drifting around Earth. These interactions, combined with the
complex dynamics of the solar wind-magnetosphere coupling, have profound
implications for space weather and technological systems, highlighting the importance of
understanding and monitoring these processes for space exploration and satellite
operations.

The Earth's magnetosphere is a dynamic system constantly interacting with the
solar wind, resulting in a variety of phenomena crucial for understanding space weather.
Among these phenomena, magnetospheric substorms stand out as elemental processes
involving the storage and explosive release of solar wind energy. Substorms play a
pivotal role in the dynamics of Earth's magnetosphere and contribute significantly to
magnetic storms, making them a focal point of research in space physics and space
weather applications.

In recent years, significant advancements have been made possible by modern
multi-point space-based and ground-based platforms, providing comprehensive datasets
that have revolutionized our understanding of substorms. These datasets have not only
facilitated a system-wide perspective but have also propelled advancements in modeling
approaches. This introduction reviews recent major advances enabled by these datasets,
with a particular focus on two crucial areas: substorm onset timing and evidence for
current sheet preconditioning, and fast flows and depolarizations within the magnetotail.

Substorm onset, marked by rapid brightening, breakup, and poleward expansion

of the aurora, signifies the explosive development of dissipative processes starting from

11



localized parts of the plasma sheet. Understanding the sequence of key processes leading
to substorm onset has been a long-standing and critical question in near-Earth space
plasma physics. Although auroral observations have traditionally been considered the
most accurate means of timing and locating onset signatures, recent advancements in

observational capabilities have allowed for deeper insights into the underlying physics.

2.4 Geomagnetic Substorm Onset Phases

phase: Energy dissipation

Recovery |phase: Return to quiet

Figure 2.3. A schematic of the magnetospheric substorm. (a) Illustrates the onset of
dayside reconnection (b) Growth phase: energy is loaded into the magnetotail which
leads to the formation of a large-scale thin current sheet. (c) Expansion onset: this marks
the instability formation and is followed by (d) Expansion phase: is where the energy
dissipation occurs characterizing the ejection of the plasmoid at the tail end lastly (e)
Recovery phase: this is where the substorm subsides and reconfigures itself to the quiet
phase (Pulkkinen, 2007).
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Geomagnetic substorms represent crucial mechanisms in the solar wind-
magnetosphere interaction, facilitating the transfer, storage, and release of energy.
Typically, a substorm comprises several events, including changes in aurora brightness,
geomagnetic disturbances in polar regions, disruptions to the magnetotail current sheet,

and injections of energetic particles. The phases of a substorm (Figure 2.3) are as follows:

2.4.1 Substorm Growth Phase

The growth phase initiates the substorm cycle, representing the stage where the
magnetosphere accumulates and stores significant energy from the solar wind. Enhanced
magnetospheric convection facilitates the penetration of solar wind energy into the
magnetosphere, primarily concentrating on the nightside. During this phase, the stored
energy gradually builds up, setting the stage for the subsequent explosive release phase.
This phase is crucial for priming the magnetosphere and preparing it for the dynamic
changes that will follow.

2.4.2 Substorm Onset and Expansion Phase

The expansion phase marks the climax of the substorm event, characterized by the
sudden and explosive release of the stored energy within the magnetosphere. This phase
is associated with intense activity, including disruptions to the magnetotail current sheet
and the formation of field-aligned currents. These disruptions lead to enhancements in
auroral brightness, particularly in polar regions, and manifest as geomagnetic
disturbances across various locations. The injection of energetic particles into the polar
ionosphere further intensifies the auroral displays, highlighting the dynamic and complex

nature of the magnetospheric response during this phase.
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2.4.3 Substorm Recovery Phase

Following the peak of activity during the expansion phase, the magnetosphere
enters the recovery phase, also known as the quiet state. During this phase, the
magnetosphere undergoes a process of reconfiguration, gradually returning to a stable
and steady state. Disruptions such as enhanced auroras and geomagnetic disturbances
weaken and eventually dissipate as the magnetosphere stabilizes. The recovery phase
represents a period of restoration and normalization, where the magnetosphere adjusts
back to pre-substorm conditions, completing the cycle of substorm activity.

Substorm triggering represents a complex and dynamic process involving the
sudden release of stored magnetic energy within the Earth's magnetosphere.
Accompanied by various phenomena such as the expansion and intensification of auroras,
the formation of plasmoids, and the generation of energetic particles, substorm onset
marks the beginning of an active phase within the magnetosphere.

The exact mechanisms triggering substorm onset remain a subject of active
research, reflecting the intricate interplay between solar wind dynamics and
magnetospheric responses. Despite significant progress in understanding substorms, the
precise triggers for the release of stored magnetic energy and the associated energy
transfer processes are still not fully understood. This uncertainty underscores the
complexity of magnetospheric dynamics and the need for ongoing studies to refine
existing models and explore new theories.

During the expansion phase following substorm onset, the released energy
propagates through the magnetosphere, inducing changes in magnetic field configuration

and plasma dynamics. These changes contribute to the dynamic evolution of the
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magnetospheric system, leading to enhancements in auroral activity and geomagnetic
disturbances.

Continued research efforts aim to enhance our understanding of the background
and dynamics of substorm triggering, with the goal of improving our ability to predict
and mitigate the impacts of space weather on technological systems and satellite
communication. By unraveling the mechanisms driving substorm onset, scientists can
develop more accurate models and forecasting tools, enabling better preparedness for

space weather events and their potential impacts on Earth's technological infrastructure.

15



CHAPTER III

SUBSTORM ONSET DETECTION TECHNIQUES

Geomagnetic substorms are fundamental phenomena in space weather,
characterized by sudden and intense releases of energy in Earth's magnetosphere-
ionosphere system. These events play a significant role in shaping the dynamics of the
near-Earth space environment, influencing auroral activity, magnetic disturbances, and
plasma dynamics (Akasofu, 2013). Understanding the onset of substorms is crucial for
space weather forecasting and mitigating potential impacts on technological
infrastructure.

Scientists have developed various techniques to identify and characterize the
onset of geomagnetic substorms. These techniques leverage observational data from
ground-based magnetometers, satellite missions, and theoretical models to detect and
analyze the precursor signals preceding substorm events. Each technique offers unique
advantages and limitations, contributing to our comprehensive understanding of substorm
onset dynamics.

In this chapter, we explore different substorm onset techniques, highlighting their
principles, methodologies, and applications in space weather research. By examining the
strengths and limitations of each technique, we aim to provide insights into the diverse

approaches utilized in the study of geomagnetic substorms. Additionally, we will discuss
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recent advancements and emerging trends in substorm onset detection, paving the way

for future developments in space weather forecasting and predictive modeling.

3.1 Frey et al. (2004) and Mende et al. (2009) onset detection technique

Figure 3.1. Map of North America showing the substorm onset locations in geographic
coordinates regardless of the local time of onset. A geomagnetic grid is given in blue.
The presently planned locations of THEMIS GBO (Pu et al., 2010) are indicated with the
fields of view of their all-sky cameras. Ninety-eight percent of the substorms started
within 600 km of the closest planned GBO. Each substorm onset location is given with a
red asterisk. Those onsets outside of the field of view of the THEMIS all-sky cameras are
marked with green asterisks (Frey et al., 2004).

Frey et al. (2004) devised a method for detecting substorm onsets using data from
the Far Ultraviolet (FUV) instrument onboard the IMAGE spacecraft (Mende et al.,

2009). Substorm onsets have been observed by IMAGE-FUV. For 2.5 years, they
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identified more than 2400 substorm onsets in the Northern Hemisphere, aiming to publish
this list to facilitate further investigation into auroral substorm phenomena.

Their detection technique involved analyzing FUV data, primarily utilizing
Wideband Imaging Camera (WIC) images for their superior spatial resolution. In
instances where WIC data was not optimal, they relied on SI-13 images. Substorms were
identified based on specific criteria: (1) a discernible local brightening of the aurora, (2)
expansion of the aurora to the poleward boundary and azimuthal spreading for at least 20
minutes, and (3) ensuring at least 30 minutes had passed since the previous onset to avoid
closely spaced events.

The resulting list of substorm onsets includes detailed information such as date,
time, instrument used for identification (WIC or SI-13), spacecraft geocentric distance,
and characteristics of the brightest pixel within the onset surge. This dataset allows
researchers to search for onsets based on various criteria, such as high magnetic latitude,
late local time, proximity to specific ground stations, or closeness to the IMAGE
spacecraft for improved spatial resolution (Kistler et al., 2002).

The analysis of the substorm onset locations (Figure 3.1) confirms previous
findings regarding their average distributions in geomagnetic latitude and local time.
Importantly, the dataset exhibits no bias towards specific geomagnetic longitude
locations, as expected for observations from a satellite in a non-locked orbit.

The publication of this substorm onset list serves to facilitate further research in
the field, inviting other researchers to utilize the data for their investigations.

Additionally, the list was used to assess the probability of substorm onset observations
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for the THEMIS Ground-Based Observatories (GBOs) (Mende et al., 2009), which are

expected to capture a significant portion of substorms originating over North America.
Overall, Frey et al. (2004) work contributes valuable insights into the

characteristics and distribution of auroral substorm onsets, providing a comprehensive

dataset for future studies in magnetospheric and auroral physics.

3.2 Newell and Gjerloev (2011) Onset Detection Technique

Newell and Gjerloev (2011) developed a novel substorm onset detection
technique utilizing magnetometer chains in collaboration with SuperMAG, a global
network of magnetometers, to derive a generalized auroral electrojet index called SME
(Substorm Onset Electrojet). This index represents the integrated nightside auroral power,
primarily stemming from the diffuse aurora, with a remarkable correlation to the total
nightside auroral power, reaching an impressive correlation coefficient of r = 0.86.

Their method involves utilizing data from more than 100 magnetometer sites,
providing a more comprehensive view compared to the traditional AE (12) index, which
only uses data from 12 stations. They demonstrated that SME, as well as its
approximation AE, can predict a substantial portion of the variance in nightside auroral
power, indicating a clear geophysical meaning for these indices.

The study also focused on improving the detection of substorm onsets. By using
SME, which has a larger number of contributing stations, they found that their technique
significantly improved the identification of substorm onsets compared to traditional
methods. Specifically, their performance analysis showed that their technique identified

about 30-40% more substorm onsets per year.
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Furthermore, they showed that the onset times detected using SME were much
closer to the epochs inferred from global auroral images, with a median time difference
of about 4 minutes compared to 8 minutes using traditional indices. This suggests a
higher accuracy and temporal resolution in detecting substorm onsets.

Newell and Gjerloev (2011) compiled a comprehensive list of substorms between
January 1, 1997, and December 31, 2002, using their detection technique. This list,
included as auxiliary material, provides detailed information about the detected
substorms during that time interval. They conducted superposed epoch analyses using
DMSP data to characterize the behavior of isolated and recurrent substorms, revealing
distinct differences in their effects on auroral power.

Overall, Newell and Gjerloev (2011) substorm onset detection technique utilizing
SME represents a significant advancement in understanding and characterizing substorm
activity, offering improved accuracy and comprehensiveness compared to traditional
methods.

The Substorm Onset Electrojet (SML) index, devised by Newell and Gjerloev
(2011) exhibits robust correlations with both Polar UVI (Ultraviolet Imager) observations
and DMSP (Defense Meteorological Satellite Program) data regarding substorm
signatures. Comparisons between SML-identified onset times and those observed by
Polar UVI reveal that SML tends to identify substorm onsets slightly after Polar UVI
observations, with a significantly shorter median delay compared to traditional AL (12)
indices. Furthermore, cumulative fraction analyses indicate that SML is substantially
more likely to recognize substorm onsets within the first few minutes compared to AL

(12). Superposed epoch analyses using DMSP data demonstrate significant increases in
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both diffuse and broadband electron precipitation following SML-identified substorm
onsets, aligning with expected substorm characteristics. Distinctions between isolated and
recurrent substorms reveal that while isolated substorms exhibit a lower initial auroral
power but a higher percentage increase, both isolated and recurrent substorms show
comparable absolute changes in auroral power. These findings underscore the utility of
the SML index in capturing geomagnetic disturbances associated with substorms and

elucidating their subsequent auroral activity (Newell et al., 2010).

3.3 Forsyth et al. (2015) Onset Detection Technique

Forsyth et al. (2015) introduce a novel quantitative technique, termed Substorm
Onsets and Phases from Indices of the Electrojet (SOPHIE), designed to identify the
times and durations of substorm expansion, recovery, and possible growth phases based
on percentiles of the rate of change of auroral electrojet indices. This approach allows for
the determination of substorm phases using user-defined percentile values, enabling the
identification of smaller or larger variations in auroral index data or any ground-based
magnetometer time series.

SOPHIE leverages the SuperMAG AL (SML) index data, although it is adaptable
to other auroral zone magnetic indices or ground magnetometer time series. Substorms
are identified in a nonparametric manner based on the exceedance of a percentile
threshold in the rate of change of SML. Negative changes in SML beyond a specified
percentile level indicate expansion phases, while positive changes denote recovery
phases. Additionally, SOPHIE considers possible growth phases between expansion and

recovery phases, allowing for a comprehensive characterization of substorm dynamics.
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The technique is applied in a three-stage process, involving low-pass filtering of data,
calculation of percentiles of the rate of change of SML, and iterative modification of
thresholds to ensure an equal number of expansion and recovery phases are identified.
SOPHIE's effectiveness is demonstrated through comparisons with previous lists of
substorm onsets, showing a high degree of agreement and providing valuable insights
into substorm dynamics over a significant period. The supporting information includes
detailed start times of possible growth phases, expansion phases, and recovery phases,
along with flags indicating enhanced convection events.

Overall, SOPHIE represents an automated, quantitative approach that improves
upon traditional visual identification methods and fixed threshold techniques for

substorm onset detection.

3.4 Ohtani et al. (2020) Onset Detection Technique

Ohtani and Gjerloev (2020) present a technique for identifying the onset of
isolated substorms utilizing the SuperMAG AL (SML) index. Unlike previous methods,
which aimed at capturing all substorm onsets, this technique focuses specifically on
isolating individual substorms with high confidence.

Drawing inspiration from prior work by Newell & Gjerloev (2011), the authors
refine their approach to overcome limitations and enhance accuracy. The methodology
unfolds in three distinct steps, as depicted in Figure 3.2. In the initial step, the SML index
undergoes smoothing via a 9-minute-wide boxcar filter to minimize short-duration

variations, laying the groundwork for subsequent analysis.
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Step 2 comprises the identification of potential onsets based on six rigorous

criteria, ensuring the isolation and gradual progression of substorm events. These criteria

encompass aspects such as the magnitude and duration of SML variations, the slope of

the growth and expansion phases, and the overall intensity and duration of the substorm.

Each criterion is meticulously implemented to capture the distinct signatures associated

with substorm onset while minimizing false positives.

Step 1:
Smooth SML

Y

Step 2:

! Find candidate onsets )

Y

Step 3:

| Refine onset timing )

SML index

A

(1) Isolated Substorm Criterion:
SML>-100nT
for-30<T<-1

Step 2

(5) Duration Criterion:
duration > 30 min
with SML £ 1.1 SML(T = 0)

Onset (T=\0) "

(2) Growth Phase Criterion:
ASML/At > -1.5nT /min
for-30<T<-1

(3) Onset Criterion:
A’SML/At?S — 1.5 0T /min?
atT=0

(4) Expansion Phase Criterion:

ASML/At < -3.0nT/min
for1<T<10

(6) Intensity Criterion:
SML - SML(T = 0) £ -100nT

Figure 3.2. Substorm onsets criterion by Ohtani and Gjerloev (2020).

Step 3 further refines the onset selection process by considering the station

location and the characteristics of the SML-contributing stations, particularly focusing on

their placement within the midnight sector (20 MLT to 30 MLT). This ensures that the

identified onset corresponds to a genuine substorm event and not a spurious artifact. The
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technique's robustness is underscored by its validation through independent visual
inspections by each author, affirming its ability to consistently identify isolated substorms
with a high level of confidence.

Notably, the technique yields a typical annual count of 500—700 substorms,
reflecting its selective nature and emphasis on clarity and precision. The resulting
substorm list, containing detailed onset information, is made readily accessible through
the supporting information and the SuperMAG website, ensuring its widespread

availability for future research endeavors and data analysis.

3.5 Methodology to Create an Aggregated List for Substorm Onsets

To assess the consistency of WINDMI model outputs with substorm onset lists
generated by Frey, Liou, Newell, Forsyth, and Ohtani, the triggering times of the
WINDMI model were compared with a merged substorm onset list from these authors. A
15-minute window was considered, and if any substorm onset coincided with the
WINDMI model triggering within this window, it was deemed a positive result. The
SML index, an improvement over the AL index, was utilized to measure the near-Earth
magnetic field in the polar region. The baseline elimination technique suggested by
Gjerloev involved a three-step process for determining the baseline of a given station and
component, addressing slowly varying offsets mainly attributed to the Earth's main field
and diurnal components largely associated with the solar quiet current system. Substorm
onset data from the SuperMAG website, obtained through methods devised by Frey,

Liou, Newell, Forsyth, and Ohtani, were merged, averaging onset times occurring within
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15 minutes of each other to consider them a single event. This resulted in over 15,000
substorm onsets over a decade.

Figure 3.3 demonstrates the merging of three substorm onsets by different
methods into one. The SML data for January 7, 2000, from 09:00 to 10:30 UT, shows the
index initially slightly negative around 09:00 UT, gradually decreasing starting around
09:20 UT, indicating the growth phase. Around 09:30 UT, the SML value started rapidly
declining for about 30 minutes, indicating the expansion phase. After 10:00 UT, the SML
index began to recover, signifying the substorm's recovery period. Substorm onset,
typically at the beginning of the expansion phase, is detected differently by each method.
For example, Newell's technique identifies an onset whenever the index shows a sharp
change in value <-45 nT/sec, placing it just before the sharpest decline, while Ohtani's
method positions the onset around the curve's inflection point, relying on a knee-like
signature in the SML curve. Forsyth's approach, utilizing changes in percentage
threshold, often detects substorm onsets before other methods.

In terms of data selection, eight years of data were taken (2000-2007) from the four
authors as well as the aggregated list for substorm onsets. The selection criteria were
determined by the following criteria:

. Frey’s list (2000-2005)

. Newell’s list (1970-2021)

. Forsyth’s list (1970-2021)

. Ohtani’s list (1970-2021)

. Aggregated list (2000-2007)

25



Substorm onset merging
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Figure 3.3. Illustration depicting the merging of substorm onset times obtained from
different substorm lists sourced from the SuperMAG website. The figure showcases 1.5
hours, displaying the SML index in nT. Panel (a) exhibits three dotted yellow vertical lines,
situated within approximately 5 minutes of each other, corresponding to substorm onset
times identified by Forsyth, Ohtani, and Newell (from left to right). Panel (b) demonstrates
the merged substorm onset as a single dotted vertical line positioned at the average of the
three times depicted in Panel (a).

Since Frey et al. (2004) provided a list from 2000 to 2005, it was regarded as the
pre-cursor for determining the duration for all the other substorm lists including the
aggregated list, even though some of the lists date back to 1970s (Newell, Forsyth and
Ohtani).

Negative control data incorporation was key in the Neural Network training, it
refers to the sample or data points that do not belong to the target class. It is essential to
incorporate negative control data in neural network training for the following reasons:

1. Specificity Assessment: By including negatives, we can assess the

specificity of the model. A good model should find true positives when they are genuinely
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present (sensitivity), but it should also correctly identify negatives (true negatives or true
negative rate).

2. Balanced Training: Class-balanced data ensures that the model is exposed
to an equal number of examples from each class (substorms and no-substorms). This
prevents bias toward any specific

3. Robustness: Exposure to negative control data helps the model learn to
handle cases where the target class is absent.

While negative control data is essential in experimental design, negative samples
play a distinct role in neural network training. Both contribute to robust and accurate

models, albeit in different contexts.
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CHAPTER IV

WINDMI AND NEURAL NETWORK MODELS

In this chapter, we delve into the description and analysis of two essential
components: the WINDMI model and two distinct neural network architectures, Long
Short-Term Memory (LSTM) and Convolutional Neural Network (CNN).

The WINDMI provides a comprehensive framework for simulating the dynamics
of the Earth's magnetosphere-ionosphere system. Developed through rigorous theoretical
formulations and empirical data assimilation, the WINDMI model offers insights into the
complex interplay between solar wind parameters and geomagnetic activity. By capturing
the fundamental processes governing magnetospheric dynamics, the WINDMI model
serves as a valuable tool for understanding substorms and their evolution.

Complementing the physics-based approach of the WINDMI model, neural
network architectures offer powerful data-driven methodologies for predictive modeling
and pattern recognition. Long Short-Term Memory (LSTM) networks, known for their
ability to capture temporal dependencies and long-range dependencies in sequential data,
have emerged as effective tools for time series forecasting in space weather research.
Their recurrent nature allows for the retention of information over extended periods,

making them well-suited for analyzing dynamic processes such as substorm onset.
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In contrast, Convolutional Neural Networks (CNNs) excel in spatial pattern
recognition tasks, leveraging hierarchical feature extraction to capture complex spatial
relationships in input data. In the context of space weather, CNNs have demonstrated
proficiency in analyzing satellite imagery, magnetic field distributions, and other spatially
distributed datasets. Their ability to automatically learn spatial features makes CNNs
valuable for identifying spatial patterns associated with substorm events. Since a 16 by 5
input sequence is trained by the neural network, the input is an image data incorporated
for training. This approach is also comparable to the work contrasted in Maimaiti et al.
(2019).

In this chapter, we provide a detailed exploration of the underlying principles,
architectures, and applications of the WINDMI model, LSTM networks, and CNNs in the
context of space weather research. Through comparative analysis and case studies, we
aim to elucidate the strengths and limitations of each approach, paving the way for
integrated modeling frameworks and advanced predictive capabilities in the study of

geomagnetic substorms and other space weather phenomena.

4.1 WINDMI Model

The WINDMI model is a low-order nonlinear model of the nightside
magnetosphere that can simulate substorm events based on solar wind input. The paper
discusses the curated equations and parameters that have been derived by careful
examination and research of energy transfer and dissipation between the magnetotail,
plasma sheet, ring current and field-aligned currents (Horton & Doxas, 1996), (Horton &

Doxas, 1998), (Spencer et al., 2007).

29



The model outputs the auroral electrojet and the ring current that are compared to
the AL and Dst indices, respectively. The motive of this thesis is to utilize a
comprehensive substorm list along with pseudo-breakup events identified by auroral
brightening signatures from ground-based imagers. The model parameters are precisely
tuned to match the onset times and the AL and SML indices as closely as possible. The
WINDMI model predicts the occurrence of a substorm within a particular framework
which is known as the energy loading and unloading paradigm (Kallio et al., 2000). In
contrast with the recent work on substorm predictions presented by Maimaiti et al.
(2019), this research suggests some possible improvements and future work for the
WINDMI model (Spencer et al., 2007).

The quantities L, C, X, L1, Ci, and X, represent the inductances, capacitances, and
conductance of the magnetospheric and ionospheric components. These parameters play
a crucial role in determining the behavior of the system. Acfr represents an effective
aperture for particle injection into the ring current. The ring current is a flow of charged
particles encircling the Earth in the magnetosphere.

The resistances in the partial ring current and region-2 current (I2) regions are
denoted as Ry and Raz, respectively whereas L represents the inductance of the region-
2 current. The Heat Flux Limiting Parameter is denoted by coefficient uo in equation (7).

The parameters tg and tic refer to the confinement times for the central plasma
sheet and ring current. The transition region magnetic field is given by By and the
effective and the width of the magnetosphere is Ly equation (3). The pressure gradient
driven current is given by Ips = Lx(p/po)""%, and Ly is the effective length of the

magnetotail. The pressure unloading function ©(u) = 1/2 [1+ tanh(u)] where u = % in
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equation (7) is given by an integral parameter known as critical current I and the interval
Al for the transition to loss of plasma along newly opened magnetic field lines. This
unloading function changes from zero to unity based on the current I compared to Ic
(Figure 4.2) (Spencer et al., 2009, 2019). The unloading function follows from current
gradient driven tearing modes or cross-field current instabilities, as described by Yoon
and Lui (2004).

The primary objective of this thesis is to incorporate the substorm list and pseudo-
breakup events that have been cross-referenced with the WINDMI model output to build
the PINN model. The proposed neural network aims to enhance the precision and
accuracy of predicting onset times as obtained by the WINDMI model in Figure 4.3.

The WINDMI model equations are given as follows:

di di
L§=V5W(t)—V+Md—t1 (1)
CS =1 =L =lp =3V ©)
1
3ap _ V2 2 _ _PVAerr 3D
2dt Qcps ,uopK” oW cpsBerly 2T Q)
aKy _ _k
T )
dI di
L1§=V—V1+ME (5)
C1d_t1 =L-I, -,V (6)
dl
L, d_: =V1 = (Rpre + Rax) 1y (7
Dre = Rprclzz + PI%elf W (8)

dt BtrLy Trc

Figure 4.1. The WINDMI model describes the physical parameters of the magnetosphere-
ionosphere system as defined by the 8§ differential equations Spencer et al. (2007).
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WINDMI output: Substorm trigger
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Figure 4.2. WINDMI model outputs with I (Geo-tail current), I; (Field-aligned current), 6
(Trigger function). The figure demonstrates the geo-tail (I) exceeds a threshold (¢, blue
dashed line) when the trigger function 0 is activated. I} shows enhancement.

Methods ~ WINDMI (detect) WINDMI (no detect) Total
Frey/Liou 896 (39%) 1416(61%) 2312
Newell 2109 (45%) 2558(55%) 4667
Forsyth 2230 (40%) 3369(60%) 5599
Ohtani 917 (36%) 1650(64%) 2567

Figure 4.3. WINDMI onset detection results. WINDMI performs 40% across all substorm
lists. WINDMI model detected Frey/Liou’s list 39%, Newell’s list 45%, Forsyth’s list
40% and Ohtani’s list 36% (Adhya et al., 2024).
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4.2 LSTM Architecture

ht.4

Layer Componentwise Copy Concatenate
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Figure 4.4. The Long Short-Term Memory (LSTM) cell, depicted here, can sequentially
process data, and retain its hidden state across multiple time steps.

The Long Short-Term Memory (LSTM) network, a type of recurrent neural
network (RNN), addresses the vanishing gradient problem inherent in traditional RNNs,
offering a solution that is relatively insensitive to gap length. This resilience renders it
advantageous over other RNN variants, hidden Markov models, and sequence learning
methods. The LSTM architecture aims to equip RNNs with a short-term memory capable
of persisting over extended time intervals, hence the moniker "long short-term memory."
Widely applicable across various domains, including handwriting, speech recognition,

machine translation, speech activity detection, robot control, video games, and
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healthcare, LSTM networks excel in classifying, processing, and predicting data based on
time series. Comprising a cell (Figure 4.4) along with input, output, and forget gates, the
LSTM unit orchestrates the flow of information within the network. The cell retains
values across arbitrary time spans, while the gates regulate the inflow and outflow of
information.

Forget gates determine the relevance of past information relative to current inputs,
deciding what to retain or discard. Similarly, input gates select which new information to
integrate into the current state. Output gates control the release of information from the
current state, considering both previous and current states. This selective processing
enables the LSTM network to preserve vital long-term dependencies, facilitating accurate
predictions across current and future time steps.

A flowchart illustrating the processing pipeline for the LSTM Network is given in
Figure 4.5. The pipeline commences with the sequence input layer, which assumes
responsibility for feeding all the input parameters, consisting of 16 layers simultaneously.
Subsequently, these input parameters traverse through the LSTM layer, which facilitates
the modeling of temporal dependencies and sequential patterns within the data.

The architecture incorporates additional layers aimed at enhancing the network's
performance. Batch normalization is employed to standardize and accelerate the training
process by normalizing the input activations, thereby reducing internal covariate shift,
and improving convergence. Following batch normalization, a fully connected layer is
utilized to integrate information from the LSTM layer and prepare it for the final
classification step. This layer serves as a bridge between the LSTM output and the

subsequent classification layer. Before reaching the final classification stage, where the
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network determines whether the output corresponds to a substorm or not, the non-linear
activation function SoftMax is applied. SoftMax normalizes the output scores across
different classes, converting them into probabilities. This normalization process
streamlines the output for classification purposes, facilitating the decision-making

process.

Network Architecture

Figure 4.5. A flowchart of processing pipeline for the LSTM Network, sequence input is
the layer responsible for feeding all the input parameters (16 layers at once) and then
passes it through the LSTM layer. The architecture also has the following layers, batch
normalization, fully connected layer. Before final classification where it classifies
whether the output is a substorm or not a substorm, the non-linear activation function
SoftMax is adopted to streamline the output.

In summary, Figure 4.5 provides an overview of the processing pipeline for the
LSTM Network, delineating the sequence of operations involved in temporal modeling,

feature integration and classification within the network architecture.
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4.3 CNN Architecture

— =10 0000

Figure 4.6. Neurons depicted in blue belong to a convolutional layer, each connected to
their respective receptive field highlighted in red.

A Convolutional Neural Network (CNN) is a specialized form of feed-forward
neural network designed for effective feature extraction from input data, particularly in
tasks involving images and spatial data. CNNs automatically learn feature representations
through the optimization of filters or kernels applied to input data, mitigating issues like
vanishing, and exploding gradients seen in earlier neural network architectures. Unlike
traditional fully connected networks, where each neuron requires a vast number of
weights to process high-dimensional inputs like images, CNNs leverage cascaded
convolutional kernels to dramatically reduce the number of connections needed per
neuron, enabling efficient processing of input tiles Figure 4.6. This architecture
comprises several layers, with the convolutional layer being the fundamental building

block. In the convolutional layer, learnable filters with small receptive fields are applied
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across the input volume to generate activation maps, capturing spatial features. Stacking
these activation maps forms the output volume, where each entry corresponds to the
output of a neuron analyzing a specific region in the input. Through this process, CNNs
can effectively learn hierarchical representations of input data, extracting higher-level
features from wider context windows as the network progresses through deeper layers.
Overall, CNNs excel in tasks such as image classification, object detection, and image
segmentation, owing to their ability to learn complex feature hierarchies directly from
raw data.

A flowchart illustrating the processing pipeline for the Convolution 2D Neural
Network is presented in Figure 4.7. The pipeline begins with the sequence input layer,
responsible for feeding all the input parameters, consisting of 16 layers simultaneously.
These input parameters are then passed through the Convolution 2D layer, initiating the
feature extraction process.

The architecture further incorporates additional layers to enhance the network's
performance. These layers include batch normalization, which aids in stabilizing and
accelerating the training process by normalizing the input activations. The linear
activation function Rectified Linear Unit (RELU) is applied to introduce non-linearity
and increase the model's capacity to learn complex patterns.

Following the RELU activation, the Flatten layer is employed to transform the
multi-dimensional feature maps into a one-dimensional vector, facilitating the transition
from convolutional layers to fully connected layers. Subsequently, a Long Short-Term
Memory (LSTM) layer is incorporated, enabling the network to capture temporal

dependencies and sequential patterns within the data. A fully connected layer follows the
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LSTM layer, serving as a bridge between the LSTM output and the final classification
layer. This layer integrates information from the previous layers and prepares it for the

final classification step.

Network Architecture

Figure 4.7. A flowchart of processing pipeline for the Convolution 2D Neural Network.
The sequence input is the layer responsible for feeding all the input parameters (16 layers
at once) and then passes it through the Convolution 2D layer. The architecture also has
the following layers, batch normalization, linear activation function RELU, Flatten layer,
a LSTM layer, fully connected layer. Before final classification where it classifies
whether the output is a substorm or not a substorm, the non-linear activation function
SoftMax is adopted to streamline the output. The input to the 2D-Convolution is
represented as a sequence. The data can be further processed as a 1D Convolution or
temporal convolution network.

Before reaching the final classification stage, where the network determines
whether the output corresponds to a substorm or not, the non-linear activation function
SoftMax is applied. SoftMax normalizes the output scores across different classes,

converting them into probabilities, thereby streamlining the output for classification

purposes. In summary, Figure 4.7 provides an overview of the processing pipeline for the
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Convolution 2D Neural Network, detailing the sequence of operations involved in feature

extraction, temporal modeling, and classification within the network architecture.

4.4 Data processing and Model Training
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Figure 4.8. An instance of the Solar Wind input data showing 9 parameters (case 13)
segmented into 60 minutes training and 30 minutes prediction window.

Figure 4.8 illustrates an instance of data when the parameters Bx, By, Bz, Vi, Vy,
V2, Np, SML, and SYMH (case 13) were provided as input to the neural network model.
The plot depicts the duration for 1.5 hours, starting at 01:00 and ending at 2:30 on March
06, 2005. These parameters represent solar wind and ground parameters. The data is

segmented into two parts: the first 60 minutes, from 01:00 to 02:00, constitute the input

39



batch sent to the model, while the subsequent 30 minutes, from 02:00 to 02:30, represent
the prediction period. Notably, this data instance captures a substorm onset occurring
within the prediction period, highlighting the model's ability to predict such events based
on the provided input parameters.

In each case, the dataset is partitioned into segments, with each segment spanning
(number of parameters) x 60 minutes. The number of rows in each segment varies based
on the input provided. Within each segment, the columns represent individual time steps.
However, segments containing five or more missing values for each parameter, or a total
of 5 x (number of features) missing values across all parameters, are rejected from the
dataset. This rigorous filtering process ensures data quality and integrity. Additionally,
due to the inherently imbalanced nature of the dataset, where there are more instances of
no substorm onsets compared to substorm onsets, some segments labeled as "no
substorms" are also excluded. This curation methodology aims to maintain a high
standard of data quality and relevance, contributing to the robustness and reliability of
subsequent analyses or model training processes. Given an instance of the data,
comprising 1.5 hours (60 minutes of pre-substorm window for model training and 30
minutes labels. The sampling rate used is 4 min resolution.

The number of rows/features varies based on, alongside under sampling is based
on criteria. The number of hidden units used is 120. The number of samples used is
~18,000 based on the number of substorms that occurred over the eight years’ timeframe
between 2000-2007 and a 70/30 split is used for validation. The pre-processing and
cleaning of the data were performed in Excel as well as MATLAB. The data went

through data partitioning as well as class balancing (an instance of equal number of
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“substorm” and “no substorms” samples) before it was provided to the model. The
criteria for “no substorm” selection by the model was randomized. Missing values were
addressed with scaling and normalization. If there were more than 5 missing data points
per input parameter sequence sent to the model, then that entire batch was discarded.

The provided code outlines the process of training different neural network
architectures for a given task. It begins by defining several network architectures using
various types of layers, such as LSTM, and convolutional layers, each aimed at capturing
different aspects of the input data to potentially enhance model performance. Parameters
like the number of hidden units, classes, and features are initialized based on the input
data characteristics. The configurations of these layers are saved for future reference. The
desired network architecture and training options are then selected, and a folder is created
to store the training results. Training options, including the optimization algorithm
(Adam), maximum epochs, initial learning rate, and verbosity, are specified, along with
options for plotting training progress. Subsequently, the selected network architecture is
trained using the specified options, with training data used to iteratively update the
network parameters over multiple epochs, while validation data are employed to evaluate
model performance and prevent overfitting. Overall, the provided code demonstrates a
systematic approach to configuring, training, and evaluating neural network models,
enabling experimentation with different architectures and training parameters to optimize
performance.

Figure 4.9 presents a mind-map illustrating the 16 combinations cases adopted
and sent into the two neural networks as sequence inputs of the time series data. Each

case comprises either a singular or a multiple combination of parameters, including
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ground parameters such as SML and/or SYMH, satellite parameters such as magnetic
field components (Vx, Vy, V, Bx, By, B;), and physics parameters (I; and ©).

The mind-map visually represents the different combinations of parameters used
as input for the neural networks, showcasing the complexity and diversity of input
configurations explored in the study. It provides a comprehensive overview of the
variations in input parameters investigated, offering insights into the impact of different
parameter combinations on the models' performance and predictive capabilities.

Overall, Figure 4.9 serves as a valuable reference for understanding the range of
input configurations examined in the study and their relevance to substorm onset

prediction.
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Figure 4.9. A mind-map illustrating the 16 combinations cases adopted and sent into the
two neural networks as sequence inputs of the time series data. Each case consists of a
singular or a multiple combination of the parameters and they are ground parameters such
as SML and/or SYMH, satellite parameters such as magnetic field components Vx, Vy,
V2, Bx, By, Bz, Np and physics parameters 11 and ©.
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To gauge the performance of the LSTM and CNN neural networks, the following
metrics were employed: Accuracy, Precision, Recall, and the F1 Score. These metrics
serve as fundamental measures in evaluating the efficacy of classification models.

Each metric provides unique insights into the models’ predictive capabilities,
offering valuable information for assessing their strengths and weaknesses.

During testing, the trained neural network model classifies the test data to produce
predicted labels. These labels are then compared with the true labels to evaluate the
model's performance using various accuracy metrics. Accuracy is a measure of the
overall correctness of the model. It is the ratio of correctly predicted instances to the total
instances. While accuracy is a simple and intuitive metric, it might not be sufficient when
dealing with imbalanced datasets, where one class significantly outnumbers the other.
The overall accuracy indicates the proportion of correctly classified instances.

Precision measures the ratio of correctly classified positive instances to the total
instances predicted as positive, while recall calculates the ratio of correctly classified
positive instances to all true positive instances. Precision is important when the cost of
false positives is high. In medical diagnoses, you want to be certain that a positive
prediction is accurate, meaning we want our False Positives to be as low as possible,
giving us a low value for precision.

Recall, also known as Sensitivity or True Positive Rate, measures the ability of
the model to capture all the relevant instances. It is the ratio of correctly predicted
positive observations to all observations in actual class. Recall is crucial when the cost of

false negatives is high. In spam email detection, for e.g. we want to avoid missing any
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actual spam, we want False Negatives to have a desired high value, which renders a high
value for recall.

The F1 Score combines precision and recall providing a balanced assessment of
the model's performance in terms of both false positives and false negatives, also known
as the harmonic mean of precision and recall. F1 Score is especially useful when there is
an uneven class distribution or when both false positives and false negatives are equally
important. These metrics collectively offer insights into the model's ability to accurately
classify substorm onset events without referencing specific code implementations.

Here are the formulae for the metrics:

correct predictions

accuracy (%) = x 1009 9
y(A)) all predictions /o ( )
.. TP
precision = (10)
TP+FP
recall = (112)
TP+FN .
2XprecisionXreca
F; score = prec (12)
precision+recall

1. Accuracy (%): Accuracy (Equation 9) serves as a measure of the overall
correctness of predictions made by a model. It is computed by dividing the number of
correct predictions by the total number of predictions made and then multiplying the
result by 100%.

2. Precision: Precision (Equation 10) evaluates the model's capacity to accurately
identify positive instances among all instances predicted as positive. It is determined by
dividing the number of true positives (TP) by the sum of true positives and false positives
(FP).

3. Recall: Recall (Equation 11), also referred to as sensitivity or true positive rate,

gauges the proportion of actual positive instances correctly identified by the model. It is

45



calculated by dividing the number of true positives (TP) by the sum of true positives and
false negatives (FN).

4. F1 Score: The F1 score (Equation 12) represents the harmonic mean of
precision and recall, providing a single metric that balances both aspects. It proves
particularly useful when dealing with imbalanced datasets.

These metrics collectively offer a comprehensive evaluation of the classification
model's performance, facilitating informed decision-making regarding model selection
and optimization within the thesis framework.

In our study, we integrated data from the SuperMAG substorm lists compiled by
Frey, Newell, Forsyth, and Ohtani to generate a prioritized substorm list, providing
comprehensive insights into substorm occurrences. This prioritized list forms the basis
for our analysis of various parameter cases, encompassing different combinations of input
parameters for a specific study conducted over a time range from the year 2000 to the end
of 2007. The parameter cases include:

1. Single Driver Parameters: These cases involve individual driver parameters,
including velocity components (Vx), magnetic field components (Bx, By, B7), and plasma
number density (Np).

2. Driver Parameters (Combinations): Combinations of different driver
parameters are explored to understand their combined effects, such as Vx with B, or Vx
with By and B..

3. Driver Parameters + Ground Parameters (Single): Single ground
parameters, namely SML (Substorm Onset Electrojet) and SYMH, are added to the driver

parameters to investigate their influence on the study.
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4. Driver Parameters + Ground Parameters (Combination): Like the previous
set, but with a combination of both SML and SYMH added to the driver parameters to
explore their joint effects.

5. Vy or V; Exploration: A specific case is dedicated to exploring the potential
effects of Vy and V (velocity components in the y and z directions, respectively) in
addition to the other parameters considered.

6. WINDMI Parameters: Cases involving parameters specific to WINDMI, such
as I1 (the index I1) and ©.

7. Mixed Parameters: Combinations of driver parameters, ground parameters,
and WINDMI parameters are considered in these cases, providing a comprehensive

exploration of their combined effects on the study.
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Figure 4.10. Description of Parameters and Physics-Incorporated Neural Network Model
observational data and theoretical outputs from the WINDMI model, providing a
comprehensive framework for substorm prediction and analysis. The inference pipeline
encapsulated SML parameters which is our ground truth. The substorm lists are published
volumes of work which serve as the basis for reference.
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Figure 4.10 illustrates the Description of Parameters and Physics-Incorporated
Neural Network Model. It encompasses observational data and theoretical outputs from
the WINDMI model, thereby offering a holistic framework for substorm prediction and
analysis. This integrated approach leverages both observational data and theoretical
insights to enhance the predictive capabilities of the neural network model. The main
instigators are solar wind parameters and forming a novel neural network architecture
including these parameters for substorm onset prediction is the foundation of this thesis
(Johnson et al., 2022). By incorporating physics-based principles into the model
architecture, it facilitates a more comprehensive understanding of substorm dynamics and
improves prediction accuracy. Overall, Figure 4.10 serves as a key component in
advancing substorm prediction methodologies by integrating empirical observations with
theoretical foundations.

The data undergoes preprocessing, cleaning, and time-shifting using MATLAB to
ensure consistency and relevance for neural network training. This model integrates both
the physics-incorporated neural network model and leverages the capabilities of deep
learning, employing one optimizer, such as Adam, to characterize training loss functions
and optimize model performance. By integrating observational data with outputs from the
WINDMI model, our model offers a holistic approach to substorm prediction, combining
empirical observations with theoretical insights into magnetospheric dynamics. Through
rigorous training and optimization, we aim to develop a robust predictive model capable
of accurately forecasting substorm onset, thereby advancing our understanding of space
weather phenomena and improving forecasting capabilities for mitigating potential

impacts on technological infrastructure and human activities in space.
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In our study, we employed confusion matrices and relevant evaluation alongside
data analysis methods to establish the relationship between two proposed deep learning
architectures, namely Long Short-Term Memory (LSTM) and 2D Convolutional Neural
Network (CNN), and the WINDMI model. The primary goal of our research was to train
these deep learning neural networks to serve as benchmarks for improving the WINDMI

model, which defines the underlying physics principles to describe geomagnetic activity.

4.5 Performance Analysis

The performance analysis of substorm onset prediction involved evaluating the
performance of the LSTM and CNN neural networks through various tests and metrics.
Different combinations of ground parameters and drivers from the WINDMI model were
incorporated into the neural networks, totaling sixteen combinations. These combinations
encompassed a wide range of parameters such as SML, SYMH, magnetic field
components, plasma density, ion velocity, and WINDMI model parameters I;, and ©.
Each combination was tested to determine the model's performance in predicting
substorm onset.

Performance metrics including accuracy, precision, recall, and F1-score were
generated to assess the validity and reliability of the trained deep learning models. These
metrics provided insights into how well the models performed in terms of correctly
identifying substorm onsets and distinguishing them from non-substorm periods.
Accuracy measured the overall correctness of the predictions, precision indicated the
proportion of correctly predicted substorm onsets among all predicted onsets, recall

measured the proportion of actual substorm onsets that were correctly predicted, and F1-
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score was the harmonic mean of precision and recall, providing a balanced assessment of
the model's performance.

Furthermore, the Deep Learning Framework incorporated various inputs and
parameters such as velocity components (Vx, Vy, V), magnetic field components (Bx, By,
B;), plasma density (Np), and ground parameters like SML, SYMH, I;, and ©. These
parameters were utilized to train and test the neural networks, and their performance was
evaluated using the performance evaluation metrics.

Additionally, a mind-map illustrated the 16 combinations of cases adopted and
sent into the two neural networks as sequence inputs of the time series data. This
visualization helped in understanding the different parameter combinations tested and
their impact on the model's performance.

Moreover, the confusion matrix served as a crucial tool in the data analysis
methodology, allowing for the extraction of patterns within the data, particularly the
aggregated substorm list. By analyzing the confusion matrix, researchers gained insights
into the model's ability to correctly predict substorm onsets and classify them accurately.
Overall, the performance analysis provided valuable insights into the effectiveness of the
LSTM and CNN neural networks in predicting substorm onset and contributed to further

improvements in the WINDMI model.
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CHAPTER V

MODEL PREDICTIONS AND RESULTS

This section presents the predictions and results obtained from various models
applied to our dataset. We begin by outlining the training progress of a model for a
specific case (one out of the 16 combination cases used for NN), providing insights into
its learning dynamics and performance metrics. Subsequently, we examine the outcomes
of two Long Short-Term Memory (LSTM) cases, followed by an analysis of two
Convolutional Neural Network (CNN) cases.

In some instances, our models encountered challenges in learning, resulting in a
class bias phenomenon. This bias was particularly evident when the models struggled to
discern patterns associated with specific classes, leading to imbalanced predictions.

After discussing individual cases, we present aggregated statistics summarizing
the performance across all 80 evaluated cases. These statistics offer an overview of the
models' efficacy in capturing underlying patterns within the dataset.

Moreover, to visually represent the model outputs, we present side-by-side
heatmaps comparing the predictions of the LSTM and CNN models. Additionally,
heatmaps illustrating predictions based on five distinct types of lists are presented in

parallel, enabling a comparative analysis of their performance. Accompanying these
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visualizations are accuracy percentages represented as fractions, providing insights into
the predictive capabilities of each model variant and list type.
Overall, this section provides a detailed exploration of model predictions and

results, shedding light on the performance of different models and their ability to capture

complex patterns within the dataset.

5.1 Model Training and Convergence
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Figure 5.1. Training Progress for one case using the LSTM Model. The blue line
represents the accuracy (%) in the top panel, while the black dashed line illustrates the
validation accuracy (%) during training. In the bottom panel, depicting the loss per
iteration, the red line indicates the training loss, and the black dashed line shows the
validation loss as fractions. The plot demonstrates a convergence trend observed after
approximately 20 epochs.
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Figure 5.1 depicts the training progress for a machine learning model using
MATLAB. It provides a detailed overview of the model's performance metrics across
epochs, facilitating an understanding of its learning dynamics.

In the top panel of the figure, the blue line represents the accuracy of the model
over epochs, expressed as a percentage. This metric indicates the proportion of correctly
predicted outcomes relative to the total number of instances in the training set. As
training progresses, the blue line reflects fluctuations in accuracy, providing insights into
the model's ability to learn from the data.

The black dashed line in the top panel illustrates the validation accuracy, also
represented as a percentage. This metric assesses the model's performance on a separate
validation dataset, ensuring that the model generalizes well to unseen data. Monitoring
the validation accuracy helps prevent overfitting, where the model memorizes the training
data but fails to generalize to new instances.

In the bottom panel of the figure, the red line depicts the training loss per
iteration. The training loss quantifies the error between the model's predictions and the
actual target values during training. A decreasing trend in the training loss indicates that
the model is converging towards an optimal solution.

Additionally, the black dashed line in the bottom panel represents the validation
loss, expressed as fractions. Like the training loss, the validation loss measures the error
on the validation dataset. Monitoring both training and validation losses helps assess the
model's performance and identify potential issues such as underfitting or overfitting.

Overall, the figure provides a comprehensive visualization of the model's training

progress, offering insights into its accuracy, validation performance, and convergence
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behavior across epochs. This information is crucial for optimizing model parameters,

improving performance, and ensuring robustness in real-world applications.

5.2 LSTM Cases

Following the processes outlined in the methodology section, two cases of

resulting matrices are represented in the subsequent section after running the LSTM

model for the aggregated list.

Acc: 70.99%, Precision: 0.85, Recall: 0.74, F1: 0.79

No substorm

True Class

Substorm

No substorm Substorm
Predicted Class

Figure 5.2. A confusion matrix resulting from the evaluation of the LSTM model applied
to the aggregated dataset for training case. This specific confusion matrix corresponds to
Case 13, where the input features used for training and testing the model are Vy, Vy, V,,
Bx, By, Bz, Np, SML, and SYMH. The matrix showcases the performance of the model in
predicting the occurrence of substorms (training set).
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Figure 5.2 presents a confusion matrix indicating a 71% accuracy in testing, with
a precision of 0.85, a recall of 0.74, and an F-1 score of 0.79. The rows of the confusion
matrix represent the true class, signifying the true label of the data, while the columns
show the predicted class, indicating the predictions obtained on the test data after training
the LSTM model.

The diagonals in blue denote the correctly predicted data, while the red off-
diagonal components represent the falsely predicted data. In the top left corner, where
there were no substorms, the model correctly predicted all instances as no substorms,
resulting in 2914 instances of true negatives. Conversely, the bottom right corner
signifies the truly predicted substorms, where the model correctly identified instances as
substorms, resulting in 3174 instances of true positives. These two cases correspond to
true negatives and true positives, respectively.

The top right segment represents false positives, indicating instances where there
were no substorms, but the model predicted them as substorms. Similarly, the bottom left
corner signifies false negatives, where there were substorms, but the model predicted
them as no substorms. Higher numbers in the top right and bottom left corners indicate
the precision and recall values for these test cases. A diagonal-heavy confusion matrix
indicates better model performance.

Figure 5.3 shows a confusion matrix that corresponds to the case where the LSTM
model was applied solely on feature I;. Here, a noticeable class bias is observed in
predicting no substorms, indicating that the model struggled to learn the correlation

between I; and predicting substorm onsets within the next 30 minutes.
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Acc: 58.55%, Precision: 0.98, Recall: 0.20, F r 0.33
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Figure 5.3. A confusion matrix resulting from the evaluation of the LSTM model applied
to the aggregated dataset. This specific confusion matrix corresponds to Case 14, where
the input features used for training and testing the model is I1. The matrix showcases the
performance of the model in predicting the occurrence of substorms.

The high number (4239) of instances correctly predicted as no substorms
contributes to a reliable precision score. However, this bias towards predicting no
substorms results in a significant discrepancy in the bottom left corner, where substorms
were incorrectly predicted as no substorms (3485 instances). Consequently, the recall
score is considerably low (0.20) compared to the baseline of 0.50.

Given that the F-1 score is a harmonic mean of precision and recall, the F-1 score

for this case being significantly low indicates the imbalance between precision and recall,
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as well as reflects the model's inability to effectively capture substorm occurrences based

solely on the I; feature.

5.3 CNN Cases

Acc: 74.28%, Precision: 0.90, Recall: 0.72, F1: 0.80

No substorm

True Class

Substorm

No substorm Substorm
Predicted Class

Figure 5.4. A confusion matrix resulting from the evaluation of the 2D-CNN model
applied to the Newell dataset. This specific confusion matrix corresponds to Case 13,
where the input features used for training and testing the model are Vx, Vy, V;, Bx, By, B;,
Np, SML, and SYMH. The matrix showcases the performance of the model in predicting
the occurrence of substorms.

The presented confusion matrix in Figure 5.4 resulted from the evaluation of the
2D Convolutional Neural Network (CNN) model applied to the Newell dataset.

Specifically, this matrix corresponded to Case 13, where the input features utilized for

both training and testing the model included Vyx, Vy, V, Bx, By, Bz, Ny, SML, and SYMH.
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The matrix served to illustrate the performance of the CNN model in predicting
the occurrence of substorms. The values within the matrix indicated the model's
predictions compared to the ground truth labels.

In the top left corner of the matrix, there was a count of 1827, representing
instances where the model correctly predicted the absence of substorms (true negatives).
Conversely, in the top right corner, the count of 536 signified instances where the model
incorrectly predicted the presence of substorms when there were none (false positives).

There was a count of 674 at the bottom left corner of the confusion matrix,
denoting instances where the model failed to predict substorms when they occurred (false
negatives). Finally, in the bottom right corner, the count of 1667 represented instances
where the model accurately predicted the presence of substorms (true positives).

The confusion matrix depicted in Figure 5.5 resulted from the evaluation of the
CNN model applied to the Newell dataset. Specifically, this matrix corresponds to Case
16, where the input features utilized for training and testing the model included Vx, Vy,
V2, Bx, By, Bz, N, SML, and SYMH, I, and ©.

In analyzing this confusion matrix, a noticeable class bias is observed, particularly
in predicting no substorms. The top left corner of the matrix reveals a count of 2374,
representing instances where the model correctly predicted the absence of substorms (true
negatives). Conversely, in the top right corner, the count of 4 signifies instances where
the model incorrectly predicted the presence of substorms when there were none (false

positives).
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However, a significant discrepancy arises in the bottom left corner, where the
count of 1899 denotes instances where the model failed to predict substorms when they
occurred (false negatives). This discrepancy contributes to a considerably low recall
score, reflecting the model's struggle to effectively capture substorm occurrences based

on the given features.

Acc: 59.55%, Precision: 1.00, Recall: 0.20, F1: 0.33

No substorm 4
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Figure 5.5. A confusion matrix resulting from the evaluation of the 2D-CNN model
applied to the Newell dataset. This specific confusion matrix corresponds to Case 16,
where the input features used for training and testing the model are Vy, Bx, By, Bz, N,
SML, SYMH, I, and ©. The matrix showcases the performance of the model in
predicting the occurrence of substorms.

Furthermore, the bottom right corner of the matrix displays a count of 427,

representing instances where the model accurately predicted the presence of substorms
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(true positives). Despite this, the imbalance between precision and recall leads to a

notably diminished F-1 score for this case.

5.4 Model Performance

Figure 5.6 presents a heatmap illustrating the accuracies obtained from both the
LSTM and CNN models across 16 different parameter cases. These cases include
variations in driver parameters, combinations of driver parameters, driver parameters
combined with ground parameters, as well as cases involving additional parameters such
as I1, ©, and combinations thereof. The substorm list used for these cases was the
aggregated list.

The heatmap showcases an overall better performance of the LSTM model
compared to CNN. Notably, both models exhibit significant improvements in accuracy
when parameters Bx and B; are utilized. Conversely, parameters Nj, By, and Bx do not
contribute to enhanced model performance for either model.

Furthermore, the addition of I; and/or © as parameters does not improve model
performance; rather, it leads to a reduction in accuracy for both LSTM and CNN models.
This suggests a lack of correlation between these parameters and the occurrence of
substorm onsets.

The top-performing cases for the LSTM model include combinations of
parameters such as Vy, Bx, By, B,, Np, SML, and SYMH, with accuracies peaking in
configurations including these parameters. Specifically, cases involving Vx, By, By, B,
Np, SML, and SYMH, as well as those including By, By, B;, N,, SML, and SYMH, yield

the highest accuracies.
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Similarly, the CNN model achieves high accuracy, particularly in cases involving
parameters By, By, Bz, Ny, SML, and SYMH. The configuration with these parameters
consistently performs best for CNN.

Additionally, single parameters such as Vy and B, demonstrate relatively high
accuracy for both LSTM and CNN models when predicting substorm onsets for the
aggregated list.

In summary, the heatmap analysis highlights the importance of specific
parameters, such as Bx and B, in predicting substorm onsets accurately. It also
underscores the limited impact of certain parameters like Np, By, and single parameters
such as I;, and ©. The findings suggest that careful selection and combination of
parameters are crucial for improving the predictive performance of both LSTM and CNN
models for substorm onset prediction.

Upon closer examination of the heatmap, it is evident that the LSTM model
generally outperforms the CNN model in most cases. In particular, the LSTM model
consistently achieves higher accuracy scores compared to CNN, as indicated by the

prevalence of warmer colors in the LSTM column relative to the CNN column.
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Figure 5.6. Heatmap depicting the comparison of LSTM and CNN model accuracies for
the aggregated substorm list across 16 cases. The heatmap illustrates the accuracy scores
obtained for each model, with the rows representing the individual cases evaluated and
the columns corresponding to LSTM and CNN, respectively. The color gradient within
the heatmap provides a visual representation of the accuracy scores, with warmer colors
indicating higher accuracy and cooler colors indicating lower accuracy. The comparison
highlights the nuanced differences in performance between the LSTM and CNN models,
with LSTM demonstrating marginally higher accuracy across most cases, underscoring
its relatively stronger predictive capability for substorm onset prediction with the
aggregated list.
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Across the various cases, the LSTM model consistently maintains accuracy scores
above 60%, with some cases reaching accuracy levels of 70% or higher. In contrast, the
CNN model demonstrates slightly lower accuracy scores overall, with many cases falling
below the 60% accuracy threshold.

Furthermore, there are noticeable fluctuations in accuracy scores across different
cases for both models. While some cases yield relatively high accuracy for both LSTM
and CNN, others result in lower accuracy, indicating the sensitivity of model

performance to specific input parameters or configurations.

5.5 Model Performance for different lists

Figure 5.7 illustrates a heatmap depicting the performance of the LSTM model
across five types of substorm lists for the 16 cases that were run. In this heatmap, warmer
colors represent higher accuracy values, while cooler colors indicate lower accuracy
values.

The analysis reveals that the LSTM model achieves the highest accuracies when
provided with the Newell list as the substorm list. This indicates that the Newell list
contains features or characteristics that enable the model to make more accurate
predictions of substorm onset.

Conversely, when Frey's list is used as the substorm list, the accuracies are
observed to be the lowest. This suggests that the features or patterns present in Frey's list

may pose challenges for the LSTM model in accurately predicting substorm onsets.
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Figure 5.7. Performance heatmap illustrating the results of the LSTM network across 16
different cases for predicting substorm onset with Frey, Forsyth, Newell, Ohtani, and the
aggregated substorm lists. The numbers in fraction show accuracy corresponding to each
case and list. Cooler colors represent low and warmer colors represent higher accuracy.
The aggregated list also demonstrates significantly high performance (77%)
which is higher than Maimati’s performance which we selected to be our reference
performance indicator, indicating that combining data from multiple sources enhances

our model's predictive capabilities. Interestingly, for Ohtani's list, the accuracies vary

across different cases. Some cases exhibit high accuracies, while others show lower

65



accuracies. This variability suggests that Ohtani's list may contain certain features that are
conducive to accurate predictions in some cases but not in others.

Notably, despite the challenges observed with other lists, the LSTM model
performs well when provided with Newell's list for the last case. This suggests that
Newell's list may contain unique features or patterns that enable the model to learn
accurately, even when other lists present difficulties.

Overall, the heatmap analysis provides valuable insights into the performance of
the LSTM model across different types of substorm lists. It highlights the importance of
list selection and underscores the potential impact of list-specific features on model
performance.

The results obtained from the LSTM network analysis provide detailed insights
into the predictive performance of various parameter combinations. Initial examinations
reveal that cases focusing solely on velocity parameters, such as Vx and Vy, exhibit
accuracies ranging from 0.57 to 0.63. This suggests a moderate predictive capability
when considering only velocity-related data. However, the addition of magnetic field
components, including Bx, By, and B, alongside velocity parameters notably improves
predictive performance. Cases incorporating these magnetic field components display
accuracies spanning from 0.54 to 0.68, indicating a significant enhancement in predictive
power. Interestingly, the inclusion of environmental parameters such as Np, SML, and
SYMH demonstrates varied impacts on prediction accuracy, with accuracies fluctuating
between 0.52 and 0.64. This highlights the nuanced influence of environmental factors on
predictive outcomes. Moreover, the incorporation of interaction parameters like I1 and ©

yields mixed results, with accuracies ranging from 0.54 to 0.59, suggesting a complex
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relationship between these parameters and the predicted outcomes. Overall, these detailed
findings underscore the importance of meticulous parameter selection and model
optimization in maximizing predictive accuracy within the LSTM framework, providing

valuable insights for future model refinement and application in forecasting scenarios.
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08
Vx

Bz
Np 075
By

Bx

Vx,Bz
Vx,By,Bz
Vx,Bx,By,Bz

0.65
Vx,Bx,By,Bz,Np

Parameters

Vx,Bx,By,Bz,Np,SML
Vx,Bx,By,Bz,Np,SymH
Vx,Bx,By,Bz,Np,SML,SymH
Vx,Vy,Vz,Bx,By,Bz,Np,SML,SymH
M 0.55

11, Theta

Vx,Bx,By,Bz,Np,SML,SymH,11,Theta

0.5

Frey Forsyth Newell Ohtani Aggregated
Substorm lists

Figure 5.8. Performance heatmap illustrating the results of the CNN network across 16
different cases for predicting substorm onset with Frey, Forsyth, Newell, Ohtani, and the
aggregated substorm lists. The numbers in fraction show accuracy corresponding to each
case and list. Cooler colors represent low and warmer colors represent higher accuracy.
Figure 5.8 displays a heatmap representing the performance of the Convolutional

Neural Network (CNN) across five types of substorm lists for the 16 cases that were
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executed. In this heatmap, warmer colors indicate higher accuracy values, while cooler
colors signify lower accuracy values.

The analysis reveals that the CNN model achieves its highest accuracies when
provided with the Newell list as the substorm list. This suggests that the Newell list
contains features or characteristics that enable the CNN model to make more accurate
predictions of substorm onset compared to other lists.

Conversely, when Frey's list is utilized as the substorm list, the accuracies are
observed to be the lowest. This implies that the features or patterns present in Frey's list
may pose challenges for the CNN model in accurately predicting substorm onsets.

Like the LSTM model, the aggregated list demonstrates notably high performance for the
CNN model as well. This indicates that aggregating data from multiple sources enhances
the CNN model's predictive capabilities.

For Ohtani's list, the accuracies vary across different cases, with some cases
exhibiting high accuracies and others showing lower accuracies. This variability suggests
that Ohtani's list may contain certain features that are conducive to accurate predictions in
some cases but not in others.

The analysis of the CNN model's performance provides a detailed understanding
of how different parameter combinations influence predictive accuracy. When
considering individual parameters, accuracies range from 0.52 for By to 0.64 for By,
indicating variations in predictive power based on the specific parameter under
consideration. Combining velocity and magnetic field parameters in different
configurations yields accuracies ranging from 0.61 to 0.63, showcasing the potential

synergy between these features for enhanced predictions.
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However, the introduction of environmental parameters (Np, SML, SYMH)
exhibits mixed effects on prediction accuracy, with accuracies spanning from 0.51 to 0.67
across various cases. Interestingly, the inclusion of interaction parameters (11, ©)
showcases a moderate impact, with accuracies ranging from 0.53 to 0.54. These nuanced
findings emphasize the intricate interplay between different parameters and highlight the
need for meticulous parameter selection to optimize predictive performance within the
CNN framework. The insights gained from these results serve as valuable guidance for
refining model architecture and enhancing predictive capabilities in future applications of

CNN-based predictive analytics.
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CHAPTER VI

SUMMARY AND CONCLUSION

This research evaluates the substorm onset criteria based on ground-based
magnetic indices SML, field-aligned currents I1, auroral observations, electrojet indices
criteria to establish a relationship and lay the foundation for neural network training and
modeling. In the field of Space Physics, this research introduces a solution for substorm
onset detection by combining neural network training for classification with
hyperparameter tuning—a novel approach that has not been previously explored across
multiple substorm datasets. All the onset detection techniques used the SML index to
indicate the onset of substorms. This is also true for the WINDMI model.

Derived from assumptions about magnetospheric configuration, the hybrid model
demonstrates remarkable accuracy, achieving a highest 77% predictive performance
(with parameters Vx, Bx, By, Bz, Np, SML, and SYMH) with the LSTM architecture
significantly surpassing the 40% accuracy attained by the WINDMI model (See Tables
Al to AS and B1 to BS). The aggregated list performs consistently well across both
architectures (average value of LSTM 70% and CNN 69%). This is the first time this
methodology has been attempted which attests to the novelty of the framework. Substorm
lists are integral indicators since they found a sound correlation between solar wind,

ground measurements and the Newell as well as aggregated lists.
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The goal of this research was to delve into an in-depth exploration of the
predictive capacities of Long Short-Term Memory (LSTM) and Convolutional Neural
Network (CNN) models in forecasting substorm onsets. Leveraging a diverse range of
input parameters derived from satellite observations and the WINDMI model, the study
meticulously analyzed the performance of each model across various scenarios. LSTM
emerged as the more proficient model, excelling in capturing intricate temporal
dependencies within the dataset. The significance of key parameters such as solar wind
speed (Vx) and interplanetary magnetic field strength (B,) was underscored, with their
inclusion leading to notable enhancements in predictive accuracy. However, the
introduction of the physics parameter I; yielded only marginal improvements, suggesting
its limited influence on the models' predictive capabilities. The performance of the
models varied across different substorm onset lists, with Forsyth's list consistently
yielding reasonable accuracies while Frey and Ohtani's lists, characterized by fewer
substorms, posed challenges for effective model learning. Newell's list emerged as the
most reliable predictor, showcasing its efficacy in forecasting substorm onsets with the
highest average accuracies. Furthermore, the CNN model demonstrated optimal
performance when incorporating a comprehensive set of nine solar wind parameters,
emphasizing the importance of meticulous parameter selection for accurate predictions.
CNN Model also performed well with the aggregated list. The Newell substorm list and
model combinations performed well as demonstrated by performance evaluation metrics
such as confusion matrix and heatmaps.

In our study, we compared the performance of two neural network architectures:

LSTM and CNN. Surprisingly, LSTM outperformed CNN overall. The highest accuracy
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achieved was an impressive 77%, which occurred when we used specific parameters—
Vi, Bx, By, and B,—alongside Newell’s substorm onset list. However, the addition of the
physics parameter I; didn’t enhance accuracy, suggesting a lack of correlation with
substorm occurrences. Interestingly, when we looked at the aggregated list, CNN
performed well than LSTM. Convolutional layers seemed effective in learning patterns
when all lists were combined. Key parameters contributing to improved performance
were solar wind speed (V) and interplanetary magnetic field (B). On the other hand,
parameters like Bx, By, and N, didn’t significantly enhance accuracy.

We also explored different substorm lists. Forsyth’s list yielded relatively good
performance, averaging around 65% accuracy. However, sparse data posed challenges for
Frey and Ohtani’s lists, resulting in lower accuracies. Individual impact analysis revealed
that Vx and B, were crucial, with accuracies around 63% when input individually.
Newell’s list consistently achieved the highest accuracies (ranging from 74% to 75%) for
both models. For CNN, the case with nine solar wind parameters performed best across
all lists, including the aggregated one. Interestingly, adding SYMH didn’t significantly
drop model accuracy. In summary, our findings highlight the importance of specific
parameters and the effectiveness of different neural network architectures in predicting

substorm occurrences.
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APPENDICES

Appendix A: LSTM Results

Table Al. Performance Evaluation Metrics for Aggregated Substorm List using LSTM

Case Parameters Accuracy Precision Recall F1
Score
1 Vx 0.65 0.83 0.59 0.69
2 Bz 0.63 0.80 0.62 0.69
3 Np 0.52 0.72 0.60 0.66
4 By 0.57 0.76 0.52 0.62
5 Bx 0.55 0.78 0.62 0.69
6 Vx, Bz 0.70 0.85 0.46 0.61
7 Vx, By, Bz 0.63 0.84 0.73 0.79
8 Vx, Bx, By, Bz 0.64 0.85 0.61 0.72
9 Vx, Bx, By, Bz, Np 0.53 0.85 0.14 0.24
10 Vx, Bx, By, Bz, Np, SML 0.73 0.81 0.70 0.77
11 Vx, Bx, By, Bz, Np, SYMH 0.69 0.80 0.80 0.82
12 Vx, Bx, By, Bz, Np, SML, SYMH  0.71 0.88 0.51 0.67
13 Vx, Vy, Vz, Bx, By, Bz, Np, SML, 0.69 0.86 0.61 0.74
SYMH
14 I 0.60 0.99 0.29 0.34
15 I,© 0.62 0.99 0.24 0.39
16 Vx, Vy, Vz, Bx, By, Bz, Np, SML, 0.59 0.99 0.82 0.38
I, ©
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Table A2. Performance Evaluation Metrics for Forsyth Substorm List using LSTM

Case Parameters Accuracy Precision Recall F1
Score
1 Vx 0.61 0.80 0.59 0.68
2 Bz 0.61 0.78 0.73 0.75
3 Np 0.51 0.72 0.64 0.68
4 By 0.54 0.74 0.59 0.66
5 Bx 0.52 0.75 0.36 0.49
6 Vx, Bz 0.65 0.82 0.67 0.74
7 Vx, By, Bz 0.66 0.82 0.69 0.75
8 Vx, Bx, By, Bz 0.65 0.82 0.68 0.75
9 Vx, Bx, By, Bz, Np 0.64 0.81 0.70 0.75
10 Vx, Bx, By, Bz, Np, SML 0.63 0.85 0.46 0.60
11 Vx, Bx, By, Bz, Np, SYMH 0.64 0.80 0.71 0.76
12 Vx, Bx, By, Bz, Np, SML, SYMH 0.65 0.85 0.55 0.67
13 Vx, Vy, Vz, Bx, By, Bz, Np, SML, 0.67 0.84 0.70 0.76
SYMH

14 I 0.58 0.99 0.18 0.31
15 I, © 0.58 0.99 0.18 0.31
16 Vx, Vy, Vz, Bx, By, Bz, Np, SML, I, 0.59 0.99 0.19 0.32

S)
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Table A3. Performance Evaluation Metrics for Newell Substorm List using LSTM

Case Parameters Accuracy Precision Recall F1
Score
1 Vx 0.67 0.85 0.68 0.75
2 Bz 0.68 0.84 0.71 0.77
3 Np 0.51 0.73 0.38 0.50
4 By 0.59 0.77 0.58 0.66
5 Bx 0.61 0.81 0.53 0.64
6 Vx, Bz 0.75 0.89 0.74 0.81
7 Vx, By, Bz 0.75 0.91 0.72 0.81
8 Vx, Bx, By, Bz 0.74 0.87 0.80 0.83
9 Vx, Bx, By, Bz, Np 0.73 0.86 0.82 0.84
10 Vx, Bx, By, Bz, Np, SML 0.75 0.908 0.69 0.78
11 Vx, Bx, By, Bz, Np, SYMH 0.73 0.87 0.77 0.81
12 Vx, Bx, By, Bz, Np, SML, SYMH  0.74 0.90 0.72 0.80
13 Vx, Vy, Vz, Bx, By, Bz, Np, SML, 0.73 0.85 0.86 0.86
SYMH

14 I 0.56 0.99 0.15 0.25
15 I,© 0.56 0.99 0.14 0.24
16 Vx, Vy, Vz, Bx, By, Bz, Np, SML, 0.59 0.99 0.19 0.33

I1,©
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Table A4. Performance Evaluation Metrics for Ohtani Substorm List using LSTM

Case Parameters Accuracy Precision Recall F1
Score
1 Vx 0.52 0.76 0.40 0.53
2 Bz 0.62 0.82 0.71 0.76
3 Np 0.52 0.76 0.62 0.69
4 By 0.52 0.75 0.48 0.59
5 Bx 0.52 0.75 0.40 0.52
6 Vx, Bz 0.57 0.76 0.92 0.83
7 Vx, By, Bz 0.56 0.78 0.39 0.52
8 Vx, Bx, By, Bz 0.59 0.78 0.91 0.84
9 Vx, Bx, By, Bz, Np 0.53 0.75 0.57 0.64
10 Vx, Bx, By, Bz, Np, SML 0.72 0.83 0.93 0.88
11 Vx, Bx, By, Bz, Np, SYMH 0.54 0.76 0.65 0.70
12 Vx, Bx, By, Bz, Np, SML, SYMH 0.75 0.85 0.92 0.88
13 Vx, Vy, Vz, Bx, By, Bz, Np, SML, 0.71 0.83 0.97 0.89
SYMH

14 I 0.59 0.99 0.19 0.32
15 I, © 0.59 0.99 0.19 0.32
16 Vx, Vy, Vz, Bx, By, Bz, Np, SML, 0.60 0.99 0.22 0.36

I1,©
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Table AS. Performance Evaluation Metrics for Frey Substorm List using LSTM

Case Parameters Accuracy Precision Recall F1
Score
1 Vx 0.58 0.83 0.53 0.65
2 Bz 0.61 0.84 0.62 0.71
3 Np 0.60 0.83 0.47 0.60
4 By 0.52 0.78 0.48 0.59
5 Bx 0.55 0.78 0.63 0.70
6 Vx, Bz 0.59 0.84 0.48 0.61
7 Vx, By, Bz 0.63 0.84 0.75 0.79
8 Vx, Bx, By, Bz 0.64 0.86 0.63 0.72
9 Vx, Bx, By, Bz, Np 0.53 0.86 0.15 0.24
10 Vx, Bx, By, Bz, Np, SML 0.63 0.82 0.73 0.77
11 Vx, Bx, By, Bz, Np, SYMH 0.58 0.80 0.84 0.82
12 Vx, Bx, By, Bz, Np, SML, SYMH  0.65 0.87 0.55 0.67
13 Vx, Vy, Vz, Bx, By, Bz, Np, SML, 0.66 0.86 0.65 0.74
SYMH

14 I 0.59 0.99 0.21 0.35
15 I, © 0.62 0.99 0.24 0.39
16 Vx, Vy, Vz, Bx, By, Bz, Np, SML, 0.59 0.99 0.23 0.38

I1,©
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Appendix B: CNN Results

Table B1. Performance Evaluation Metrics for Aggregated Substorm List using CNN

Case Parameters Accuracy Precision Recall F1
Score
1 Vx 0.65 0.85 0.57 0.69
2 Bz 0.64 0.80 0.71 0.75
3 Np 0.53 0.71 0.55 0.62
4 By 0.57 0.78 0.50 0.61
5 Bx 0.56 0.75 0.46 0.57
6 Vx, Bz 0.69 0.85 0.68 0.76
7 Vx, By, Bz 0.69 0.85 0.70 0.77
8 Vx, Bx, By, Bz 0.70 0.86 0.70 0.77
9 Vx, Bx, By, Bz, Np 0.70 0.86 0.70 0.78
10 Vx, Bx, By, Bz, Np, SML 0.71 0.86 0.73 0.79
11 Vx, Bx, By, Bz, Np, SYMH 0.70 0.85 0.71 0.77
12 Vx, Bx, By, Bz, Np, SML, SYMH  0.71 0.85 0.71 0.78
13 Vx, Vy, Vz, Bx, By, Bz, Np, SML, 0.71 0.85 0.74 0.79
SYMH

14 I 0.59 0.98 0.19 0.33
15 I1,© 0.58 0.98 0.20 0.33
16 Vx, Vy, Vz, Bx, By, Bz, Np, SML, 0.58 0.78 0.34 0.48
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Table B2. Performance Evaluation Metrics for Forsyth Substorm List using CNN

Case Parameters Accuracy Precision Recall F1
Score
1 Vx 0.62 0.83 0.58 0.68
2 Bz 0.60 0.77 0.72 0.75
3 Np 0.54 0.74 0.60 0.66
4 By 0.54 0.74 0.51 0.61
5 Bx 0.54 0.74 0.50 0.61
6 Vx, Bz 0.65 0.82 0.68 0.75
7 Vx, By, Bz 0.66 0.83 0.70 0.76
8 Vx, Bx, By, Bz 0.65 0.83 0.67 0.74
9 Vx, Bx, By, Bz, Np 0.65 0.82 0.70 0.75
10 Vx, Bx, By, Bz, Np, SML 0.67 0.84 0.72 0.78
11 Vx, Bx, By, Bz, Np, SYMH 0.64 0.82 0.67 0.74
12 Vx, Bx, By, Bz, Np, SML, SYMH 0.67 0.83 0.72 0.77
13 Vx, Vy, Vz, Bx, By, Bz, Np, SML, 0.67 0.84 0.69 0.76
SYMH

14 I 0.55 0.72 0.99 0.84
15 I, © 0.58 0.96 0.19 0.32
16 Vx, Vy, Vz, Bx, By, Bz, Np, SML, 0.57 0.96 0.17 0.30

I1,©

84



Table B3. Performance Evaluation Metrics for Newell Substorm List using CNN

Case Parameters Accuracy Precision Recall F1
Score
1 Vx 0.67 0.86 0.66 0.75
2 Bz 0.68 0.82 0.79 0.81
3 Np 0.52 0.76 0.50 0.60
4 By 0.59 0.80 0.53 0.63
5 Bx 0.61 0.83 0.51 0.63
6 Vx, Bz 0.75 0.89 0.76 0.82
7 Vx, By, Bz 0.75 0.90 0.76 0.83
8 Vx, Bx, By, Bz 0.76 0.89 0.79 0.84
9 Vx, Bx, By, Bz, Np 0.76 0.89 0.78 0.83
10 Vx, Bx, By, Bz, Np, SML 0.75 0.89 0.76 0.82
11 Vx, Bx, By, Bz, Np, SYMH 0.75 0.89 0.77 0.83
12 Vx, Bx, By, Bz, Np, SML, SYMH 0.75 0.90 0.76 0.82
13 Vx, Vy, Vz, Bx, By, Bz, Np, SML, 0.75 0.88 0.77 0.82
SYMH

14 I 0.59 0.96 0.21 0.34
15 I, © 0.58 0.94 0.22 0.36
16 Vx, Vy, Vz, Bx, By, Bz, Np, SML, 0.67 0.91 0.45 0.60
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Table B4. Performance Evaluation Metrics for Ohtani Substorm List using CNN

Case Parameters Accuracy Precision Recall F1
Score
1 Vx 0.54 0.80 0.41 0.54
2 Bz 0.63 0.83 0.65 0.73
3 Np 0.54 0.77 0.68 0.72
4 By 0.53 0.76 0.60 0.67
5 Bx 0.50 0.74 0.46 0.57
6 Vx, Bz 0.65 0.83 0.79 0.81
7 Vx, By, Bz 0.65 0.82 0.75 0.78
8 Vx, Bx, By, Bz 0.65 0.82 0.75 0.79
9 Vx, Bx, By, Bz, Np 0.64 0.82 0.77 0.79
10 Vx, Bx, By, Bz, Np, SML 0.77 0.89 0.85 0.87
11 Vx, Bx, By, Bz, Np, SYMH 0.67 0.84 0.78 0.81
12 Vx, Bx, By, Bz, Np, SML, SYMH  0.77 0.89 0.85 0.87
13 Vx, Vy, Vz, Bx, By, Bz, Np, SML, 0.76 0.87 0.84 0.86
SYMH

14 I 0.58 0.76 0.99 0.87
15 I, © 0.59 0.77 0.99 0.87
16 Vx, Vy, Vz, Bx, By, Bz, Np, SML, 0.60 0.78 0.97 0.86
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Table BS5. Performance Evaluation Metrics for Frey Substorm List using CNN

Case Parameters Accuracy Precision Recall F1
Score
1 Vx 0.57 0.80 0.72 0.75
2 Bz 0.63 0.86 0.65 0.74
3 Np 0.57 0.80 0.56 0.67
4 By 0.54 0.81 0.41 0.54
5 Bx 0.57 0.82 0.52 0.64
6 Vx, Bz 0.62 0.85 0.59 0.70
7 Vx, By, Bz 0.61 0.83 0.67 0.74
8 Vx, Bx, By, Bz 0.66 0.87 0.70 0.78
9 Vx, Bx, By, Bz, Np 0.65 0.86 0.67 0.75
10 Vx, Bx, By, Bz, Np, SML 0.62 0.83 0.68 0.75
11 Vx, Bx, By, Bz, Np, SYMH 0.64 0.85 0.65 0.73
12 Vx, Bx, By, Bz, Np, SML, SYMH  0.62 0.82 0.68 0.75
13 Vx, Vy, Vz, Bx, By, Bz, Np, SML, 0.60 0.83 0.60 0.69
SYMH

14 I 0.59 0.78 0.99 0.87
15 I, © 0.57 0.96 0.23 0.37
16 Vx, Vy, Vz, Bx, By, Bz, Np, SML, 0.62 0.82 0.89 0.85
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