
University of South Alabama University of South Alabama

JagWorks@USA JagWorks@USA

Theses and Dissertations Theses and Dissertations Graduate School

12-2024

Classifying Supersonic Frequencies for Active Acoustic Side-Classifying Supersonic Frequencies for Active Acoustic Side-

Channel Exploitation Channel Exploitation

Destin Hinkel

Follow this and additional works at: https://jagworks.southalabama.edu/theses_diss

 Part of the Other Computer Sciences Commons

https://jagworks.southalabama.edu/
https://jagworks.southalabama.edu/theses_diss
https://jagworks.southalabama.edu/gradschool
https://jagworks.southalabama.edu/theses_diss?utm_source=jagworks.southalabama.edu%2Ftheses_diss%2F202&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/152?utm_source=jagworks.southalabama.edu%2Ftheses_diss%2F202&utm_medium=PDF&utm_campaign=PDFCoverPages

CLASSIFYING SUPERSONIC FREQUENCIES FOR ACTIVE ACOUSTIC
SIDE-CHANNEL EXPLOITATION

A Thesis

Submitted to the Graduate Faculty of the
University of South Alabama

in partial fulfillment of the
requirements for the degree of

Master of Science

in

Computer Science

by
Destin A. Hinkel

B.M., University of South Alabama, 2018
M.M., University of South Alabama, 2022

December 2024

ACKNOWLEDGEMENTS

I would first like to thank my committee chair, Dr. George Clark. Thank you for

always holding me accountable and pushing me to achieve. I would also like to thank

Dr. J. Todd McDonald and Dr. Arie VandeWaa for serving on my committee and my

Scholarship for Service cohort for being the best support system a student could ask for.

I would also like to thank my former colleagues and continued friends in music

education. Music and education will always have a special place in my heart. The support

of the music faculty and friends I have had during my time at the University of South

Alabama will forever positively impact my life.

Finally, and most importantly, I would like to thank my family: my wife Jessica and

our two puppies, Zoey and Gracie. Thank you, Jessica, for your unwavering love and

support throughout this endeavor. This has been a difficult road at times, but you never

failed to pick me up through the failures and cheer me on through the successes. I am

beyond grateful for the support system that I have been blessed with.

This research was supported in part by the National Science Foundation under grant

DGE-2142948.

ii

TABLE OF CONTENTS

Page

LIST OF TABLES . vi

LIST OF FIGURES . vii

LIST OF ABBREVIATIONS . ix

ABSTRACT . x

CHAPTER I INTRODUCTION . 1

1.1 Research Questions . 3
1.2 Expected Outcome . 4
1.3 Thesis Outline . 5

CHAPTER II BACKGROUND AND RELATED WORK 6

2.1 Cryptographic Acoustic Side-Channel Analysis 7
2.2 Passive Acoustic Attacks . 8

2.2.1 Audio Classification . 10
2.2.2 Keystroke Frequency Capturing . 11
2.2.3 Operations Frequency Capturing . 14

2.3 Developing an Active Acoustic Attack Framework 17
2.4 Proposed Defenses Against Acoustic Attacks 19
2.5 Summary of Acoustic Side-Channel Related Works 20

CHAPTER III METHODOLOGY . 22

3.1 Research Objective . 23
3.2 Research Approach . 23
3.3 Experimental Setup . 25
3.4 Data Collection . 30
3.5 Data Analysis . 34

iii

3.5.1 Keystroke Set for Model Training . 35
3.5.2 Inference . 38
3.5.3 Effectiveness Evaluation . 40

3.6 Limitations . 41

CHAPTER IV RESULTS . 42

4.1 Algorithmic Implementation . 42

4.1.1 Model Optimization . 43

4.2 Model Results and Accuracy . 47
4.3 Password Classification Results . 50

4.3.1 Inference Optimization . 51
4.3.2 Initial Inference Results . 52

4.4 Proof of Concept . 53

4.4.1 Model Optimizations . 54
4.4.2 Coarse-Grained Finger Position . 55

4.5 Discussion . 58

4.5.1 Proposed Defenses . 62

CHAPTER V CONCLUSION . 64

5.1 Conclusions and Key Contributions . 64
5.2 Future Work . 65

REFERENCES . 67

APPENDICES . 75

Appendix A: Password Collection Script . 75
Appendix B: OFDM Signal Generation . 76
Appendix C: Audio Normalization Script . 78
Appendix D: Audio Split Script . 80
Appendix E: Spectrogram Viewer . 82
Appendix F: Deep Learning Model . 87
Appendix G: Infer Script . 100
Appendix H: Final Password List . 103

iv

BIOGRAPHICAL SKETCH . 104

v

LIST OF TABLES

Table Page

1. Acoustic Side-Channel Research by Category 21

2. Steps to Training Data Collection. 33

3. Differentiation in Infer Data Collection. 39

4. Optimization Phase Results. 44

5. Subset Accuracy Inferring ‘a’ Key Sets. 57

6. Key Set Accuracy for Increasing Samples. 58

vi

LIST OF FIGURES

Figure Page

1. Frequencies Produced Pairing with PIN 4562 9

2. High Level Passive Attack Overview . 9

3. Deep Learning Pipeline for Audio Classification 11

4. Overview of Audio Spectrogram Transformer (AST) 12

5. Bits Represented by Sounds from Fan Speed 15

6. Active Acoustic Attack Framework . 25

7. Experimental Setup for Aural Data Collection 27

8. Application for Password Entry to Database for Analysis 29

9. Logic Pro Configured to Record . 32

10. Sample Spectrogram View of Audio File in Audacity 35

11. Comparison of Two Echo Profiles . 36

12. Sample Spectrogram for Lowercase ‘a’ Key Used for Deep Learning 38

13. Supersonic Audio Displayed as a Mel Spectrogram 45

14. Model 1 Using Mel-Scale Spectrogram . 46

15. Model 4 Using Linear Spectrogram . 47

16. Supersonic Audio Displayed as Zoomed Linear Spectrogram 47

17. Model 6 Using Final Set of Major Optimizations 48

18. Model 6 with Only Alphabetic Characters Typed 49

19. Model 6 with Alphanumeric Characters Typed 50

vii

20. Model 6 with All Keys Included . 51

21. Full Model Confusion Matrix . 52

22. Full Model Inference Prediction for “autodiscover” 53

23. Confusion Matrix for abeimp Subset . 56

24. Combined Image of Training Spectrograms for ‘a’ 60

25. Combined Image of Inference Spectrograms for ‘a’ 61

viii

LIST OF ABBREVIATIONS

AST Audio Spectrogram Transformer

CNN Convolutional Neural Network

FFT Fast Fourier Transform

GHz Gigahertz

HMM Hidden Markov Model

Hz Hertz

IFFT Inverse Fast Fourier Transform

kHz Kilohertz

LFCC Linear Frequency Cepstral Coefficient

MHz Megahertz

ML Machine Learning

OFDM Orthogonal Frequency Division Multiplexing

RPM Rotations per Minute

SCA Side-Channel Attack

TDoA Time Difference of Arrival

WPM Words per Minute

ix

ABSTRACT

Destin A. Hinkel, M.S., University of South Alabama, December 2024. Classifying
Supersonic Frequencies for Active Acoustic Side-Channel Exploitation. Chair of
Committee: George Clark, Ph.D.

Computing side-channel research explores the manner in which physical emanations

from systems can be used to reconstruct data. Acoustic side-channels are those physical

emanations that produce a sonic frequency that is subsonic, supersonic, or considered in

the range of human hearing [1]. Acoustic side-channel attacks (SCAs) are typically

performed passively: a listening device captures aural frequencies from a machine via a

microphone that are transmitted to the attacker for analysis [1]–[3]. Machine learning

models have been presented to classify individual keystrokes according to variations in

acoustic frequency [4]. Furthermore, the SonarSnoop framework presents a novel active

approach that involves both generating and recording aural frequencies acting as a type of

sonar system to record physical motion [5].

This research attempts to develop a supervised machine learning model to classify

finger motion to collect login credentials typed on a laptop keyboard. The active acoustic

side-channel has been used to track two-dimensional finger motion, but three-dimensional

finger tracking using active acoustics is novel. The model as trained in this study

incorrectly inferred labels on unseen data; however, we found and demonstrated that

training with more samples per label may result in greater success during inference.

x

CHAPTER I

INTRODUCTION

Side-channels in computing represent potentially devastating avenues through which

physical emanations representing bits of information can be gathered from systems even

when they are air gapped. Clues about specific computer operations can be observed in the

form of thermal, electromagnetic, or acoustic emanations created by user interaction or

operations of the system itself. In recent years, the field of acoustics has represented an

increasingly explored area of side-channel research [1]–[3], [5]. Acoustic side-channels

are typically observed passively by a listening device that introduces a microphone to

capture operating sounds produced by various components of the system, such as keyboard

clicks, coils, printers, or fans [1]–[4]. The exfiltrated data are then analyzed to reconstruct

passwords, a cryptographic key, or other sensitive data whose processing caused the

unique operation and acoustic output of the associated hardware component. For example,

Genkin et al. proposed reconstructing cryptographic keys based on the coil whine of

air-gapped systems while performing encryption operations [1]. Furthermore, supervised

machine learning (ML) has been used in relation to keyboard acoustic emanations where

there is a predictable number of distinct sounds that can be classified, such as by keys or

combinations of keys that are typed [4].

1

In 2019, Cheng et al. proposed a novel active attack framework that, like its

predecessors, collected data through microphones to send to the attacker for analysis [5].

However, the framework diverges on the basis of the function of the generated sound.

Instead of passively listening to the acoustic emanations of the devices, the SonarSnoop

framework assumes control of the speaker system of a device to generate pulses of

supersonic frequencies. These frequencies are recorded by a microphone and continuously

looped to generate a miniature sonar system that can capture physical movement in a

two-dimensional space [5], [6]. The authors applied this framework to capture unlock

patterns for Android smartphones drawn by individual users. They were able to show that

their framework could either retrieve the pattern outright or that the framework could

significantly reduce the number of guesses needed to enter the correct pattern. When

reducing the guesses below a threshold that would result in the phone becoming locked,

the implementation of the SonarSnoop framework was considered successful. Although

this used features of supersonic audio production and analysis that had previously been

proposed, SonarSnoop claims to be the first active acoustic SCA framework [5].

In this thesis, a more generalized attack against a laptop system is proposed using the

SonarSnoop framework introduced by Cheng et al., as well as a supervised ML model

designed to classify the supersonic frequencies produced by keys as they are typed [5].

The goal is to successfully identify typed keys to obtain user login credentials or to reduce

the possible set of passwords by a statistically significant margin. The proposed attack

uses the active SonarSnoop framework, which can take advantage of the speakers and

microphones of a laptop computer to create a miniaturized sonar system that can relay data

2

to the attacker for analysis and reconstruction of physical movements through audio

classification.

1.1 Research Questions

This thesis will explore the application of a classification model first proposed in

passive attack frameworks, as well as active acoustic developments presented by Cheng et

al. in an effort to obtain authentication credentials entered via the keyboard of a laptop

device [4], [5]. To that end, this research will attempt to answer the following question.

How can the SonarSnoop attack framework be combined with an ML model to gather

sensitive information?

There are three sub-questions that have been derived from asking about creating this

attack. The first sub-question asks what specific implementation will allow the capture of

user input login credentials from a laptop computer system. The second sub-question asks

how this attack can be obfuscated in a real-world setting. The final sub-question asks what

defenses could be used to prevent an active acoustic SCA.

Information is collected detailing the methods by which the attack can remain

undetected by the user. This is a critical component mentioned in almost every acoustic

SCA surveyed [1]–[3], [5], [6]. For active acoustic attacks, aural signals must be produced

in the supersonic range that exists outside the typical upper limit of human hearing.

Frequencies greater than 18 kHz are outside the upper limits of human hearing and are

most appropriate for a project of this class [6]. Unlike other physical side-channels, aural

signals are easily perceived if no steps are taken to obfuscate them. This thesis will

3

explore different ideas for obfuscation, such as the production of supersonic frequencies

using the framework.

Several potential defenses against attacks of this class are proposed based on the

original suggestions of Cheng et al. [5]. The approaches considered will include those that

can be applied practically in software, since fundamental changes to hardware and user

interaction are unlikely. For example, a suggestion from the SonarSnoop authors regarding

defense involved completely disabling microphone and speaker devices. However, these

features are widely used by commercial users and disabling them is an unlikely

compromise between security and functionality. Practical improvements are proposed,

starting with the suggestion of the SonarSnoop authors that supersonic audio channels

should be jammed outside the range of human hearing [5].

1.2 Expected Outcome

The SonarSnoop framework’s originally proposed attack was against an Android

smartphone with the goal of capturing user-drawn unlock patterns [5]. The authors were

able to show that this framework could either capture such an unlock pattern or reduce the

number of guesses by a statistically significant amount by leveraging what the data

indicated against known common unlock patterns. Using a similar approach against a

laptop system that leverages known common passwords based on readily available

resources from penetration testing, such as rockyou.txt, a similar result can probably be

produced [7]. Furthermore, the FingerIO and CovertBand frameworks show that physical

motion tracking is possible, and, in the latter, Nandakumar et al. specifically state that

4

extension to three dimensions would be feasible by adding a third microphone [6], [8].

Classification models have also been shown to be successful in identifying keystrokes in

passive analysis, and modern image-based spectrogram classification models for aural

frequencies have been used and applied successfully [4], [9]. Therefore, it would be

reasonable to hypothesize that the attack will be successful in obtaining the appropriate

login credentials that a user enters into a password field on a laptop computer after

inference using a model trained on the active acoustic framework.

1.3 Thesis Outline

The remainder of this document is outlined as follows: Chapter II presents a review

of the related literature on various passive acoustic SCAs, audio classification models used

in passive attacks, the SonarSnoop active acoustic side-channel, projects that implement

miniature sonar development for technological features, and other supporting work.

Chapter III proposes a specific methodology to conduct an experiment to generalize the

SonarSnoop framework and apply an ML model for classification. Chapter IV provides

experimental results and evaluates the accuracy of the audio classification model. Finally,

Chapter V presents conclusions and recommendations for future work in supersonic audio

classification. The relevant code is also provided in the appendices.

5

CHAPTER II

BACKGROUND AND RELATED WORK

The concept of an active acoustic attack framework is relatively new, but is based on

several years of research in acoustic side-channels [1], [4], [5]. The notion of an acoustic

attack against computer systems has long been associated with simply listening to

peripheral devices for emanations, such as the work by Backes et al. or, from 2004,

Asonov and Agrawal [4], [10]. Researchers have explored this area more thoroughly in

recent years, despite some noticeable skepticism mentioned in the surveyed works about

the legitimacy of aural emissions as an attack vector [11]. A large amount of the literature

surveyed represents a passive acoustic framework. The use of passive acoustic

side-channel exploitation involves simply listening to information transmitted by a physical

computing device, exemplified by Genkin et al., Guri et al., and de Gortari Briseno et al.

[1]–[3]. Classification models have been proposed in early keyboard acoustic emanation

work, but are unique to the analysis of passively captured keyboard frequencies [4].

The idea of an active acoustic framework, first described as an attack vector in

SonarSnoop, presents a natural extension to the previously proposed passive acoustic

side-channel, and the related literature shows the development of such an attack vector

rooted in studies aimed at exploring active acoustic capabilities as a set of features for the

6

user [5]. The work most frequently cited by various studies exploring passive attack

frameworks has been that of Genkin et al. [1]. In 2014, they set the stage for further

exploration of acoustic side-channels, and their work is a major step towards proving the

legitimacy of acoustics as a valid and potentially devastating side-channel.

2.1 Cryptographic Acoustic Side-Channel Analysis

Side-channels have been presented as vehicles to obtain physical emanations from a

computer in a manner that allows reconstruction of a cryptographic key. Various

side-channels include electromagnetic, thermal, power, and acoustics [11], [12]. Much of

the related work in the area of side-channel analysis for the purpose of successfully

extracting a cryptographic key deals with the former three in the aforementioned list.

Kocher et al. pointed out that acoustic side-channels are an unlikely source of information

leakage due to the relatively low frequency of emissions compared to higher frequency

operations, such as processor clock rates [11]. Specifically, sonic emission frequencies are

typically measured in hertz (Hz) and kilohertz (kHz), particularly in the 20 Hz to 20 kHz

frequency range. In contrast, processor clocks are typically measured in megahertz (MHz)

and gigahertz (GHz), and this makes a measurement of processor operations from an

acoustic standpoint particularly difficult due to the sheer number of operations that can be

executed in a single cycle at peak aural frequencies around 18 kHz [6].

Although acoustic leakage is considered a less likely source of relevant information,

Genkin et al. presented a method to obtain a cryptographic key in 2014 [1], [11].

Furthermore, they show that their attack is applicable to other side-channels measured in

7

low-bandwidth (Hz-kHz) ranges, and the example that they provide utilizes power

emissions as a side-channel. This paper is cited by nearly every other surveyed work, and

it subsequently sparked an interest in acoustics as a cryptographic side-channel. To our

knowledge, no other surveyed work presented a direct model to obtain a cryptographic

key; however, similar frameworks were proposed to secure, interrupt, or infect

cryptographic processes between computers and peripheral devices. For example, Anand

and Saxena assert that an adversary can easily hijack the aural frequencies used for device

pairing by applying a model proposed by Halevi and Saxena to recover the aural

frequencies produced by vibration motors [13], [14]. A vibration side-channel is

occasionally mentioned in other works such as SoK and Vibreaker [13], [15]. However,

Figure 1 shows the aural frequencies emitted by motor vibrations, and some of these

frequencies are clearly below the upper limit of human hearing [6], [13]. Therefore, it is

reasonable for the purposes of this work to assume that the acoustic side-channel is a

subset of the vibration side-channel. The authors proceed to present a model to defend

against an attack of this class by presenting their Vibreaker model that floods the acoustic

side-channel with noise intended to mask authorized information exchange [13].

2.2 Passive Acoustic Attacks

Passive acoustic attacks have been defined in the surveyed literature as attacks that

involve the use of a microphone to record acoustic frequencies emitted by a computer

system during its normal course of operation [5].

8

Figure 1. Frequencies Produced Pairing with PIN 4562 [13].

The vast majority of the surveyed literature fits within this framework and attacks

typically depend either on the user interaction with the computer or the operation of the

computer itself. Therefore, there is a clear distinction between attacks that specifically

listen for user input using a keyboard and attacks that listen for frequencies emitted by the

computer system itself or peripheral devices. In Figure 2, Backes et al. present a

high-level overview of attacks that use this framework and employ ML techniques [10].

Figure 2. High Level Passive Attack Overview [10].

9

The attacks are broken into a training phase for the neural network ML model to

develop a database of candidate words to cross-reference against features extracted from

raw acoustic data. The Hidden Markov Model (HMM) language component leverages

speech recognition technology to extract the most likely word used [10]. Section 2.2.1

further details ML techniques that involve audio classification.

2.2.1 Audio Classification

Reconstruction of keystrokes, described in further detail in Section 2.2.2, is a subset

of a much larger field in audio classification, with many pre-trained models for such tasks

readily available on the public ML database, HuggingFace [16]. Significant effort has

been made to develop various models for audio classification, particularly in the range of

audible speech. A prime example of a common use case for such a model is speech

recognition software. This is typically accomplished by collecting large amounts of

training data in the form of real speech and converting those data into vectors to run into

the classification model [17]. In many cases, these are vector representations of

spectrogram images generated from raw audio files [18]. Exemplified in Figure 3, deep

learning with convolutional neural networks (CNNs) is applied to the image classification

problem to classify spectrograms based on various labels that match the original audio

files used as training data [19].

Although deep learning models are commonly used to train audio classification

models, a shift toward transformer models has been observed following a proposal by

Google in 2017.

10

Figure 3. Deep Learning Pipeline for Audio Classification [18].

At a high level, these models can learn context around specific instances of data, making

them extremely effective in language and audio classification applications [20]. Coinciding

with an interest in image-based classification, an audio spectrogram transformer model

(AST) was proposed in 2021 by Gong et al. Their model converts aural signals into audio

spectrograms and uses image-based classification, rather than direct vectors based on audio

files. Their model is exemplified in Figure 4, and the authors were able to demonstrate the

ability to classify various audio data sets with extremely high levels of accuracy [9].

2.2.2 Keystroke Frequency Capturing

The first academic work surveyed that directly addresses the ability to passively

monitor keyboard acoustic emissions was presented by Asonov and Agrawal [4]. This

work is heavily referenced by subsequent acoustic attacks that build on its proposed

framework. Acoustic attacks in this area are generally based on ML from neural networks

to categorize various keystrokes, as exemplified in Figure 2 [4], [21], [22].

11

Figure 4. Overview of Audio Spectrogram Transformer (AST) [9].

For example, Asonov and Agrawal proposed an ML model that provided information

on variations in the sound frequencies of 30 different keys on a mechanical keyboard for

training [4]. Once the neural network ML model was trained, it was able to use a parabolic

microphone placed up to 15 meters from a computer to acquire acoustic data representing

individual keystrokes. They introduced a model that was able to reconstruct data to

successfully represent typed passwords, and Halevi and Saxena reconstructed data based

on this model [21], [22].

12

Asonov and Agrawal also addressed more specific questions that arise for specific

implementation, including differences in keyboard and typing styles when classifying

individual letters [4]. Specifically, they conclude that although collecting direct keys being

typed has a lower quality when the model is applied to different types and sizes of

keyboards, there is enough data leakage to be statistically significant. Furthermore, their

experimentation showed that a more resilient model was developed when a variable typing

force was applied during training [4]. Interestingly, one of their suggested

countermeasures to this class of attack was the use of a touchscreen keyboard that can now

be attacked using the active acoustic side-channel, discussed further in Section 2.3 [4], [5].

Halevi and Saxena, further addressing potential issues for analysis of different typing

styles, introduced two common typing styles: “hunt-and-peck” typing and “touch” typing

[21], [22]. In their papers, the “hunt-and-peck” method is defined as requiring the user to

search for each key on a keyboard before typing the key. It is implied that this method is

used by users with little or no formal typing training and is much slower than the

alternative “touch” typing method. In contrast, “touch” typing is traditional typing that is

much more prevalent in today’s world [22]. A gap in the methodology proposed by

Asonov and Agrawal along with Zhuang et al. is the complete omission of the typing style

as a component of the framework [4], [23]. Therefore, the attacks presented within the

methodology may not be feasible in a more realistic setting. Halevi and Saxena were able

to show that typing style was a major component that affected the ability to successfully

obtain data with a 64% success rate using “hunt-and-peck” and only a 40% success rate

using “touch” typing. Thus, their later work proposed an attack that attempts to take into

13

account different typing styles [21], [22]. Although they employ neural network ML as a

baseline for comparison, the authors show that their novel “Time Frequency Decoding”

technique offers a superior rate of detection. The authors also manage to point out

shortcomings of previous works by showing that typing style has a significant effect on the

ability to successfully recover acoustic information that accurately represents keystrokes

[4], [21]–[23].

Passive attacks on keystroke capture continue to cite Asonov and Agrawal’s study as

a seminal work in this area and have proposed important ways to improve the effectiveness

of their proposed framework [4]. Backes et al. apply an ML model similar to that

proposed by Asonov and Agrawal that classifies entire English words rather than

individual letters to reconstruct acoustic side-channel data leaked by printers [10]. Zhu et

al. still use a passive attack framework that records emitted frequencies, but the work

represents an important change in the frameworks from passive to active [24]. The

component “Time Difference of Arrival” (TDoA) uses a smartphone for acoustic tracking

based on differences in signal arrival over time, which begins to approach the development

of an active attack framework [24].

2.2.3 Operations Frequency Capturing

The remaining passive frameworks surveyed typically deal with aural emissions

produced by regular computer component operations or those of peripheral devices, such

as printers. Works such as those presented by Genkin et al. and Guri et al. deal with

acoustic emanations produced by the internal components of computers by addressing

“coil whine” or internal fans, respectively [1], [2]. Genkin et al. define “coil whine” as the

14

vibration of electronic components within a computer chassis that operates at up to 20 kHz

[1]. Guri et al. used system fans to transmit data [2]. Both models require a microphone

that is within 10 meters of the computer chassis, and a primary weakness in the

frameworks is the speed at which data can be transmitted. Both attack frameworks require

data to be consistently sent over a time frame of at least an hour, and Guri et al.

specifically point out that data can only be transmitted at a rate of 900 bits/hour [2]. As

mentioned in Section 2.1, processors and other internal components are typically clocked

in the MHz to GHz range, while acoustic frequencies are in the Hz to kHz range. Thus,

many computations can occur within a single acoustic clock, making single instructions

virtually impossible to obtain [11]. Genkin et al. relies on pattern recognition in many

repeated instructions, while Guri et al. assume access to a key that is simply being

transmitted bit by bit over a time frame measurable in hours [1], [2]. Figure 5 provides an

example of this: a series of bits produced over a period of 60 seconds.

Figure 5. Bits Represented by Sounds from Fan Speed [2].

15

The peaks are sounds produced at 3500 rotations per minute (RPM) representing a

binary “one”, and the valleys are sounds produced at 3000 RPM representing a binary

“zero” [2]. Neither framework lends itself well to real-time data collection or

transmission, but they do show that both acquiring and transmitting a cryptographic key or

password is feasible.

Other passive frameworks focus exclusively on the use of printers as a more efficient

means of transmitting information. Backes et al. provided an excellent breakdown of the

attack process originally proposed by Asonov and Agrawal, as exemplified in Figure 2.

Their model follows a framework similar to that discussed in Section 2.2.2 where ML is

applied to a language model and different sounds that represent printed characters [4], [10].

Most recently, de Gortari Briseno et al. proposed a novel attack with the potential to

decrease the user’s ability to detect more sensitive information being printed [3]. Surveyed

attacks typically capture clear text representations of data, but the authors proposed a

framework that inserted patterns into a printed document that were invisible to the naked

eye. When the documents were printed, the abnormal operating sounds emitted to print

these patterns were captured, and the authors showed that they were able to successfully

reconstruct these frequencies to collect data [3]. Like some other authors of passive attack

frameworks, they assume compromised access to a computer system [2], [10]. The

framework presented by de Gortari Briseno et al. is particularly important because it

emphasizes the importance of adversarial covert action. The authors not only mask the

interception of acoustic data but also manage to mask the transmission of acoustic data

16

through a novel framework that is highly unlikely to alert a typical user to any abnormal

operation [3].

2.3 Developing an Active Acoustic Attack Framework

In contrast to attacks that follow the passive framework detailed in Section 2.2, the

authors of SonarSnoop propose the class of active acoustic attacks [5]. In this study,

Cheng et al. define an “active acoustic attack” as an attack that introduces sound into the

environment to be collected by a microphone [5]. More specifically, the authors propose

the creation of a miniature sonar system that uses system speakers and internal

microphones to collect data based on frequencies and time, as proposed by Zhu et al.,

which represents human-computer interaction in the real world [24]. The SonarSnoop

attack framework claims to be the first attack framework to utilize an active sonar

component [5]. Based on this survey of relevant works, their claim is true, but their work

is not the first to implement sonar as a means to capture and use data representing

movement in the real world.

When considering an active acoustic approach as defined by Cheng et al., the timing

of signal arrival is a critical factor that allows the sonar feature to work as intended [5].

Although technically presented as a passive attack, the notion of detecting keys based on

the “time difference of arrival” proposed by Zhu et al. is a step towards incorporating a

sonar feature [24]. Similar ideas have been proposed to obtain a map of a specific room,

and CovertBand proposes a framework that incorporates an active sonar component to

detect movement in rooms within a building [8], [25]. A malicious threat actor could then

17

draw conclusions about the types of activity that takes place based on the location of

people within a building. This would assist in potential active reconnaissance against an

organization. Furthermore, the differences in time arrival of these audio signals would be

reflected in the audio spectrogram image, so the differences between images is a

potentially lucrative place to gain insight into keystroke patterns [9].

The idea of detecting physical motion using the timing of frequencies detected by a

microphone is only one step short of applying a sonar feature that actively injects

frequencies to detect physical objects and motion. The aforementioned sonar feature is

prominently displayed in FingerIO and CovertBand to show that physical activities can be

tracked at various micro- and macroscales, respectively. Furthermore, they clearly indicate

that the presence of more microphones increases the accuracy of the sonar component in

the detection of movement [6], [8]. For example, three microphones can be used to

triangulate the position of a finger in a three-dimensional space; this cannot be achieved

using only two microphones [6]. Cheng et al. also address this point by mentioning that

the SonarSnoop framework uses two microphones to track finger movement on the

smartphone’s screen: a top microphone and a bottom microphone [5].

CovertBand is the framework closest to SonarSnoop in terms of its potential to be

used as an active attack [5], [8]. The SonarSnoop framework takes CovertBand’s detection

technique a step further by weaponizing the sonar component in order to obtain

authentication credentials to a user’s Android smartphone. Like FingerIO, the SonarSnoop

framework explores aural emissions at the micro level, but Cheng et al. introduce the

feature proposed by Nandakumar et al. as an attack vector [5], [6]. Furthermore, the

18

duality of microphones is built into the smartphone, which lends itself well to the

successful completion of the attack proposed in SonarSnoop. Thus, generalizing this

attack to involve applying active sonar to a laptop system might necessitate the use of

external microphones depending on the number of internal microphones within the laptop.

2.4 Proposed Defenses Against Acoustic Attacks

Prior to the introduction of active sonar, most defensive recommendations against

acoustic attacks involved completely reducing or eliminating acoustic emissions. For

example, Asonov and Agrawal proposed the use of plastic keyboards and the manufacture

of keyboard plates that would cause each key to emit the same sonic frequency [4]. As

technology has advanced, this advice has become less effective due to the ability of a

microphone to perceive minute changes in frequency and spatial awareness features such

as TDoA [23], [24]. A highly recommended countermeasure in the surveyed literature is

acoustic signal jamming [2], [5], [8]. Specifically, various authors recommend emitting

defensive acoustic frequencies in the 18-20 kHz range. However, CovertBand and

SonarSnoop concede that jamming is not a perfect solution [5], [8]. For example,

supersonic frequencies in the aforementioned range may still be audible to young children

or animals and cause discomfort. Furthermore, an attacker could potentially mask

adversarial frequencies in the audible range with music or ambient sounds, bypassing their

need to attack through supersonic frequencies [8].

Hardware solutions are also a popular recommendation of various authors [1], [2],

[4], [5], [8], [23]. One solution is to inject background noise to obfuscate all acoustic

19

emissions. Although this might be effective in a passive attack, active sonar attacks would

be virtually unaffected by this technique [1], [8]. Cheng et al. suggested designing

speakers that do not emit acoustic frequencies in the inaudible supersonic range, but the

authors also acknowledge that this recommendation does not address existing hardware

[5]. Other authors have suggested eliminating all speakers on secure computers or

installing a switch to completely disable audio [2], [5]. Although this might be an effective

recommendation for secure computers, the related literature has shown that many attacks

occur against non-secure computers, against internal components of secure computers, or

against smartphones that virtually always have built-in speakers [1], [2], [5], [23]–[27]. To

the author’s knowledge, no realistic defensive proposal has been made to defend against

active acoustic attacks that is widely applicable.

2.5 Summary of Acoustic Side-Channel Related Works

Table 1 presents a categorized summary of key research contributions in the field of

acoustic side-channel analysis. Cryptographic studies have demonstrated the feasibility of

extracting cryptographic keys through low-bandwidth acoustic emissions. Audio

classification highlights advancements in techniques that use deep learning models.

Passive attacks encompasses research that uses ambient acoustic emissions to infer

sensitive information. Active attacks involve studies in which acoustic signals are injected

to gather information about the environment.

20

Table 1. Acoustic Side-Channel Research by Category.

Category Authors Significance to Current Work
Cryptographic Genkin et al. [1] Displays the possibility of acquiring a

cryptographic key through low
bandwidth acoustics.

Anand & Saxena [13] Establishes the acoustic side-channel as
a subset of the vibration side-channel.

Walker & Saxena [15] Further references vibration side-
channel in realistic attack success rates.

Classification Salamon & Bello [19] Proposal of CNN for non-speech sound
classification.

Vaswani et al. [20] Proposes the first transformer model for
context-based classification.

Gong et al. [9] Proposes an AST as a highly accurate
method of image-based audio
classification.

Backes et al. [28] Proposes a model to classify n-grams
from supersonic frequencies produced
by dot matrix printers.

Passive Asonov & Agrawal [4] First modern attack aimed at
reconstructing keystrokes.

de Gortari Briseno et al. [3] Acquiring acoustic signals
representative of data from invisible
alterations in printed documents.

Guri et al. [2] Acquiring bits representing data from
system fan acoustic emissions.

Halevi & Saxena [21], [22] Introduction of “hunt & peck” and
“traditional” typing styles for analysis.

Zhuang et al. [23] Review the attack and implement ML for
password identification.

Active Cheng et al. [5] First weaponization of the active
component to capture Android unlock
patterns.

Nandakumar et al. [6] First implementation of active acoustics
for physical tracking.

Zhu et al. [24] Introduction of TDoA component used
later in echo analysis.

Nandakumar et al. [8] Application of FingerIO analysis model
to track location in a large area.

21

CHAPTER III

METHODOLOGY

This study seeks to create an active class attack by expanding the framework

proposed by Cheng et al. in a more generalized setting against a laptop computer [5].

Specifically, the goal is to obtain 12 character passwords typed by a user on a keyboard by

applying classification model trained on active acoustic captures of individual keys. The

approach involves an experimental setup consisting of a laptop computer system and a

two-speaker/three-microphone configuration to modify the active sonar component of the

attack. A local application was developed that displays a simple text box and stores

passwords entered within a database.

Data collection occurs in two steps. First, training/validation data are collected by

creating audio files for each key, while the speaker/microphone setup generates and

captures an orthogonal frequency division multiplexing (OFDM) signal. These data are

converted to spectrogram images and used to train a CNN in audio classification and use a

subset of data to test the accuracy of the model [18]. Second, the small password data set

is entered into the local database, and the audio recordings are run through the trained

model to infer the labels for each typed key. A single user conducts both phases of the data

collection using a variety of approaches to be discussed in Section 3.3. Following initial

22

results, a second experiment was conducted using the same methodology. The second

experiment collected samples for a subset of keys and inferred labels on only a single key

to test the model’s ability to successfully identify single keys with unseen data.

3.1 Research Objective

As stated in Section 1.1, the primary research objective of the study is to extend an

active acoustic SCA to a laptop system. The aim is to generalize an attack of the class

proposed by Cheng et al. and to test its efficacy against laptop systems using ML [5]. This

informs an attempt to answer whether their model can be extended into a

three-dimensional space. In addition, this study attempts to answer what specific

implementation will allow this type of attack by designing an environment consistent with

suggestions by Nandakumar et al. for extending their two-dimensional framework [8].

Furthermore, obfuscation techniques and potential defenses against attacks in this class are

proposed in an effort to answer whether this attack could be performed in a real-world

setting and what steps could be taken to prevent it. By answering these questions, the

study hopes to contribute to the growing body of knowledge on the security vulnerabilities

of laptop systems and to provide insight into how such systems can be better protected

against potential attacks.

3.2 Research Approach

This thesis takes a quantitative approach that reuses the basic framework proposed by

Cheng et al. [5]. However, specific changes in the setup are applied, particularly with the

23

number of microphones and the analysis method, to generalize the active acoustic SCA in

three dimensions to a laptop system. Data are collected using a combination of

microphones that record reverberations of OFDM signals produced by the computer’s

speakers and reflected by moving fingers in the environment. The OFDM signals pulse

sound for 64 samples and are silent for 200 samples, creating a sound frame of 264

samples that lasts, with a sampling frequency of 44.1 kHz, 5.5 milliseconds [5].

FingerIO and SonarSnoop both use OFDM acoustic signals for two main reasons [5],

[6]. First, OFDM signals can effectively combat the effects of environmental obstacles by

using a large number of subcarriers, each with a different frequency, to transmit signals in

parallel. This helps spread the signal energy over a wide frequency range, making the

signal stronger and less susceptible to physical interference. For example, Cheng et al.

recorded a vector of 64 subcarriers that spanned 375 Hz each [5]. Second, OFDM signals

are well suited for use with digital signal processing techniques, making it easier to

implement signal processing algorithms to detect and analyze physical movements. For

example, the Inverse Fast Fourier Transform (IFFT) algorithm is applied to the vector

created by Cheng et al. and is used to generate the waveform [5].

Figure 6 illustrates the proposed active acoustic attack framework divided into (1)

data collection and (2) analysis. Since the attack is an active framework that seeks to apply

miniaturized sonar technology, there is little concern about the acoustic emanations

produced by typing on the keyboard itself; this represents a passive approach that has been

adequately covered in the related literature [1], [4], [23], [24].

24

Figure 6. Active Acoustic Attack Framework.

Figure 6 illustrates that microphones record OFDM signals produced by speakers

and calculate the degree of movement and location on the keyboard using differences in

the signal relative to a static signal without movement after feature extraction [5]. To

quantify the differences in the signals, a classification model is applied via a CNN to learn

spectrogram representations of active acoustic emanations of individual pressed keys [18].

3.3 Experimental Setup

The experimental setting is a sound-controlled environment. As data are collected

for both the training and testing phases, the individual researcher is the only person

present. The physical setup involves a single 2023 MacBook Pro that uses a traditional

scissor mechanism for the keyboard, and the laptop is placed on a desk [29]. The laptop

has left and right internal speakers and both speakers emit a predefined OFDM aural

25

signal, exemplified in Appendix B, which pulsates in the 18-20 kHz range, which is above

the upper limits of human hearing [5], [6]. This file was created using a Python script

following the steps described in FingerIO [6]. There are a single Apple iPhone and Apple

iPad placed on either side of the keyboard to the front and rear of the laptop. The reason

behind using two devices, as Nandakumar et al. point out, is that two microphones allow

tracking movement in two dimensions [8]. The mobile devices record uncompressed

audio, allowing the capture of frequencies above the range of human hearing. For the

purposes of this thesis, an iPhone and an iPad represent common devices that a user may

have at the workstation. The experimental setup is shown in Figure 7.

The microphones are set to sample at 44.1 kHz to support analog sound waves up to

22.05 kHz [5], [6]. Cheng et al. use the Nyquist theorem to justify this sampling

frequency, as it states that a sampling frequency should be double the maximum observed

rate [5]. Although the SonarSnoop framework observed frequencies up to 24 kHz,

recreating the SonarSnoop sampling frequency was not possible due to technical

limitations of the iPhone and iPad. However, a sample rate of 44.1 kHz could be used and

that was sufficient to observe frequencies in the 18-20 kHz range [5].

There is also a Sennheiser MKE 600 supercardioid microphone suspended one foot

above the MacBook Pro that is connected via a third-generation Focusrite Scarlett 2i2

audio interface. There are two reasons for including a third microphone. First, the sonar

component introduced by Nandakumar et al. has an operational distance of 1 meter, so the

distance is theoretically optimal for this experiment [6]. Second, they mention that a

minimum of three microphones are needed to sense movement in three dimensions [8].

26

Figure 7. Experimental Setup for Aural Data Collection.

Unlike the attack proposed in SonarSnoop, where active sonar detects motion in two

dimensions on a screen, the proposed attack will need to detect motion in three dimensions

as the user types on the keyboard [5].

The keyboard plane represents the x and y axes, and the various keystrokes

themselves create a z axis. Despite the likelihood that all three microphones will be

needed to successfully train a model for finger tracking in three dimensions, the

experiment initially uses individual and combined microphone spectrograms for training

[8]. Both mobile devices are connected via cables to the laptop directly, and the

microphone is suspended and connected to the Focusrite, which is connected to the laptop

via a USB-C cable. Using the macOS Audio MIDI Setup utility, an aggregate audio

device is created that combines all three microphones into a single logical device. That

27

logical device is imported into Apple’s Logic Pro digital audio workstation, where three

tracks are created: one for each microphone. The tracks for the iPhone, iPad, and MKE

600 are labeled “01 iPhone”, “02 iPad”, and “03 MKE”, respectively. The audio tracks

are recorded and exported both as individual WAVE files and as an aggregate file

containing all microphone sources.

The reason for using Logic Pro is two-fold. First, Logic Pro enables the completion

of export tasks extremely efficiently, so audio files can be saved quickly between sets of

data collection. Second, Logic Pro is exceptionally stable on macOS. Initially, the free and

open source digital audio workstation Audacity was to be used for data collection.

However, it was quickly discovered that the macOS version of Audacity was particularly

unstable and continuously crashed when the audio input device was imported. To avoid

the additional overhead of having to export audio files from another machine, the decision

was made to use Logic Pro, which proved to be much more stable. All data collection

functions performed using Logic Pro can also be accomplished using GarageBand, Logic

Pro’s free counterpart, or Audacity on a Windows system. Both are particularly stable on

their respective operating systems and are available free of charge.

The experimental interface for collecting data to train the CNN, further discussed in

Section 3.4, is a simple text document that contains reminders about starting the setup and

a field to type a single key for each audio capture. Once the training/validation data set is

complete and the model is trained using those data, a simple local application prompts the

user to enter a password in a text box while the audio setup is recording, shown in Figure

8. When the password is entered, the page refreshes and displays a blank prompt, and the

28

entered password is stored in a database in the order in which it was entered. Those audio

files are entered into the model in order to infer labels and reconstruct passwords.

Figure 8. Application for Password Entry to Database for Analysis.

To comply with the latest NIST recommendations for the minimum length of

passwords and to have a constant value, all entered passwords are exactly twelve characters

long; contain a mixture of uppercase letters, lowercase letters, numbers, and special

characters; and are defined in advance. The passwords entered are pulled, using the Perl

scripts shown in Appendix A, from the readily available word lists rockyou.txt and

common.txt found in default Kali Linux distributions, as long as they meet the

aforementioned requirements [7]. A sample of 20 passwords is selected at random. Ten

29

passwords come from the rockyou.txt file in a fresh Kali Linux installation, and ten come

from the common.txt file in the same distribution. Passwords are stored in a document that

is easily accessible, and the researcher views them as they are being entered into the web

application’s text box.

3.4 Data Collection

Upon execution of the experiment, the MacBook Pro plays an OFDM audio file

configured to emit OFDM signals at 18-20 kHz throughout the course of data collection

[5]. The Python script to generate this file is based on that originally proposed by

Nandakumar et al. and is exemplified in Appendix B [6]. Three microphone inputs are

recording simultaneously in order to capture the OFDM signals as they reverberate off the

fingers in a three-dimensional space. For every key, a five minute recording is created with

the key being pressed every two seconds on each odd second. This process is repeated for

every key on the keyboard, as well as for Shift combinations of keys, to create capital

letters and special characters. In total, (47 * 2) + 1 = 95 recordings are created where 47 is

the number of keys on the keyboard, 2 is the number of variations of keys (without the

Shift key and in combination with the Shift key), and 1 is the space bar.

There also exist sensitive areas for microphone gain and laptop speaker volume

interaction. Too high in both results in feedback, even when dealing with frequencies in

the supersonic range. Too little in one or both results in a severely degraded capture of the

OFDM signals. Thus, some tuning of the microphone gain and speaker volume is

required. Ultimately, setting the MacBook Pro volume level to 75% and the Focusrite gain

30

to 60 dB provide the strongest capture of the OFDM signal, without causing any audio

feedback. The Focusrite gain level can be controlled using the Focusrite Control 2

software (available for macOS and Windows), so consistent volume settings can be applied

even across multiple data collection batches. This problem is eliminated entirely by

changing the audio output device in Logic Pro, but a real attack may not have the

flexibility to reroute the audio as needed.

For each five-minute audio recording, also known as a set of training data, different

modes of key entry are performed. For the first minute, hands are placed in a traditional

typing position and the user attempts to type the single key normally [21], [22]. In the

second minute, the user continues to type the key with the same finger in traditional hand

placement, but noise is introduced by moving the hands over the two-dimensional

keyboard space. For the third minute, a “hunt-and-peck” typing style is applied with one

hand only [21], [22]. For the fourth minute, the user resumes a traditional typing position,

but applies a greater force when typing the key to incorporate the variable typing force that

was part of Asonov and Agrawal’s model [4]. For the last minute, the user resumes a

traditional typing position and types with a passive amount of force as in the first minute.

This process is repeated for all 95 recordings. Table 2 breaks down the data collection

steps for the training data set. Figure 9 shows Logic Pro configured to record a set of data.

Each audio file is in its own folder named for the recorded key, and this serves as the

label for the classification model. Once all the audio files are created, a Python script is

applied to normalize the data. This script first converts the stereo file created by mobile

devices to a 16-bit mono file for storage optimization purposes.

31

Figure 9. Logic Pro Configured to Record.

It also processes the WAVE file into a floating point representation and applies a high-pass

filter to remove frequencies below 16 kHz. The script creates a backup of the normalized

five-minute audio file and saves it in a backup subdirectory. Another Python script is

applied to split the five-minute audio file into a collection of 150 two-second audio files

that are split on even seconds. This makes entering keys on odd numbers during data

collection critical; the user should not be entering data where a split is applied to the larger

file. This process is applied to all four recordings that have been exported, creating 150

iPhone recordings, 150 iPad recordings, 150 MKE 600 recordings, and 150 aggregate

recordings for a total of 600 WAVE files per key. Across all 95 iterations of this process, a

total of 57,000 WAVE files are created over just under eight hours of total data collection.

32

Both Python scripts used to normalize and split are exemplified in Appendices C and D,

respectively.

Table 2. Steps to Training Data Collection.

Step Number Action
Step 1 Open the MIDI setup utility and enable both peripheral

recording devices.
Step 2 Ensure there is a signal from all 3 inputs on the digital audio

platform (either Logic Pro or Audacity).
Step 3 Start OFDM recording from laptop and make sure that the

laptop is not muted.
Step 4 Prime all three tracks. Make sure track slider is at zero and

header is set to “time”. Have a text-box window accessible.
Step 5 Press record, click text-box window, type key every two

seconds where x%2 ̸= 0, if x is the current second.
Step 6 Finish recording, bounce full track, 01, 02, and 03, in that

order. Make sure destination folder is what letter was typed.
Step 7 Navigate to that directory on the command line. Make sure

that the virtual environment is active.
Step 8 Run python3 normalize.py on the four exported tracks.
Step 9 Run python3 split.py on the four normalized tracks.
Step 10 Repeat for each letter until there are 600 samples in each

folder.

After collecting all training/validation data, more normalization is performed to

prepare the data to train the classification model, discussed in more detail in Section 3.5.

Once the data set is input into the model, the trained model is used to infer labels in an

attempt to reconstruct the captured passwords entered into the database. The same

experimental setup is applied for password entry, and recordings are created using the

three microphones. The passwords are in a document that is clearly visible and are entered

33

into the database sequentially. Each password is entered a total of six times. The first three

entries are with traditional hand placement, and the second three use “hunt-and-peck”

typing [21], [22]. The following describes three methods of differentiation in password

entry that are used for both traditional and “hunt-and-peck.” For the first time, the

password is typed with a five-second pause between each key press. The second time, the

password is typed with a two-second pause between each key press. The third time, there

is no pause between key presses, and the password is entered at a medium speed of

approximately thirty words per minute (WPM).

The audio is exported from Logic Pro and stored locally in a manner similar to the

data set used to train the model. After each set of six entries of a password, the microphone

recordings are saved for analysis, the experimental setup is reset, and the process begins

again for the next set of six entries. Each audio file is manually divided into six files for

each password entry. In total, twenty audio files are created that are then divided six ways

to form 120 distinct audio files. Like with the data set for fine-tuning, there are four

individual microphone recordings for each file (iPhone, iPad, MKE 600, and aggregate).

This results in 24 audio files for each password entered and a total of 480 audio files.

3.5 Data Analysis

The first collected data set is used to train a deep learning model using a CNN

architecture, based on the audio classification code proposed by Doshi [18]. The model

converts WAVE files to tensors derived from spectrogram image representations of the

audio and runs those through image-based classification. Several improvements to the

34

model are discussed in more detail in Section 4.1; however, examples of some

preprocessing steps taken in the model include padding/truncating audio files to two

seconds, performing a time shift to diversity samples, converting to a spectrogram focused

on the 16-21 kHz frequency range, and equalizing the spectrogram to emphasize features

[18]. The data set is divided into training data sets (66.66%) and validation data sets

(33.33%), and the model is trained. Once the model is trained, the password data set is

input into the model to infer labels for each entered key to reconstruct the entire password.

The accuracy of the model is computed when reconstructing passwords, and an overall

accuracy score is presented for the reconstructed passwords.

Figure 10. Sample Spectrogram View of Audio File in Audacity.

3.5.1 Keystroke Set for Model Training

Figure 10 shows a spectrogram in Audacity. An Apple iPhone 14 Pro Max was

placed next to a 2023 Apple MacBook Pro to record keystrokes at a sample rate of 44.1

35

kHz. The author typed “The University of South Alabama” with a pause of approximately

one second between each keystroke. When the recorded audio file was imported into

Audacity, the resulting spectrogram clearly displayed the timing of the keystrokes. At the

six-second mark, the space bar is pressed following the entry of “The,” and that feature is

clearly visible. Furthermore, overtones of key press frequencies stretch slightly higher

than 20 kHz, and that covers the range of 18-20 kHz that is explored due to its presence

outside of the upper limits of human hearing. To see features outside the range of human

hearing more clearly, a utility within the program can be used to apply a Hanning window

to filter out frequencies below 18 kHz.

Figure 11. Comparison of Two Echo Profiles.

In previous active acoustic projects, pre-processing involved applying Fast Fourier

Transform (FFT) and IFFT algorithms, applying Hanning windows, and using waveform

and spectrogram views [5], [6], [8]. Between the normalization applied immediately after

36

data collection and in the model, all these functions are applied to the training data set, and

this can be confirmed by applying a custom script, shown in Appendix E, to view the

image representation of the spectrogram before passing it along to the model [9].

The active approach requires sound analysis to find differences in the time arrivals of

the echos. Specifically, the OFDM signals produced by the laptop computer will

reverberate from various objects in the vicinity of the laptop, and those reverberations, or

echos, are picked up by the microphone for analysis. Echoes from any given snapshot in

time of the microphone can be extracted to create an echo profile that displays amplitudes

that correlate with distances. Nandakumar et al. assert that differences in amplitude,

shown by a waveform, represent movement, and their comparison of echo profiles is

shown in Figure 11 [6].

To find the exact location of the fingers on a keyboard, the echo profile matrix is

analyzed to extract the distance of the moving finger from the microphone [6]. Since three

microphones are used, it is theoretically possible to triangulate the location of fingers

moving on a keyboard, and the third, supercardioid, microphone enables the ability to

monitor a z axis to detect actual keystrokes. Note that keystrokes may be identified when

only using the two smartphone microphones on either side of the laptop, so attempts will

also be made to reconstruct passwords using only smartphone microphone audio

recordings. The pre-processing of the model will create spectrograms of these supersonic

audio captures, and the same theoretical analysis is applied. Figure 12 shows an example

of a spectrogram from the data set used for image-based deep learning. The difference in

other modes of analysis and the classification model proposed in this work is an attempt to

37

generalize these time differences in echo profiles and identify these features using

image-based classification with spectrograms [19].

Figure 12. Sample Spectrogram for Lowercase ‘a’ Key Used for Deep Learning.

3.5.2 Inference

Inference on unseen audio spectrograms is performed by inserting files into the

trained classification model. For inference on passwords, they are entered as individual

letters, in the manner specified in Table 3. They are also inputted as individual

microphone recordings and aggregate recordings of all three microphones. In this

scenario, the ability of the model to classify three-dimensional motion is tested, despite

previous statements that such a classification is unlikely to be achievable [5], [8].

Specifically, there are 480 password audio files to be entered: 24 aural files per password

(since each is entered six times and typed differently each time). Each of those files is

broken down into audio files that represent individual letters for each password, and the

38

entire password audio file is retained as well. Thus, for each entry of a password, there are

twelve audio files (one for each individual keystroke). This adds up to 288 audio files for

each of the 20 passwords (12 audio files per password * 6 entries of the password * 4

microphone settings) and a total of 6,240 audio files (288 * 20) input into the trained

model. However, each password is entered as a batch of twelve audio files.

Table 3. Differentiation in Infer Data Collection.

Entry Number Action
Entry 1 Traditional Typing, 5 seconds between keystrokes.

Bounce at 1 minute.
Entry 2 Traditional Typing, 2 seconds between keystrokes.

Bounce at 25 seconds.
Entry 3 Traditional Typing, 30 WPM. Bounce at 10 seconds.
Entry 4 “Hunt & Peck” Typing, 5 seconds between keystrokes.

Bounce at 1 minute.
Entry 5 “Hunt & Peck” Typing, 2 seconds between keystrokes.

Bounce at 25 seconds.
Entry 6 “Hunt & Peck” Typing, 30 WPM.

Bounce at 10 seconds.

To test the effectiveness of the single-key inference model, a subset of keys is also

collected. This subset includes only lowercase letters ‘a’, ‘b’, ‘e’, ‘i’, ‘m’, and ‘p’. These

keys represent distinct areas on the keyboard, and training a model on only these keys

would allow for simpler inference to test the model’s accuracy in a more coarse-grained

setting.

39

3.5.3 Effectiveness Evaluation

Another stated goal of this thesis is to reduce the number of guesses required by an

attacker to brute force a password. In other words, if we assume that a password of length

12 with uppercase letters, lowercase letters, numbers, and special characters is relatively

secure, we would like to see if we can guess values of some password elements in order to

lighten the load on the number of passwords needed for brute force. To evaluate this, we

use the formula for password entropy.

The entropy formula is calculated as follows: H = L ∗ log2N , where H is the

entropy measured in bits, L is the character length of the password, and N is the number of

possible symbols [30]. For our set of passwords, the entropy is 12 ∗ log294 = 78.66 or 79

bits needed to store the password. The brute forcing of a 79-bit password would take 279

attempts or roughly 6.04 ∗ 1023. When considering the slow hashes commonly employed

for password storage without other information, this is well above what could be achieved

with modern computing resources in a reasonable amount of time [31], [32].

However, assuming that we can establish half of the password with a high degree of

confidence using the classification model, our problem now is to crack a 6-character

password. The entropy for a 6-character password, using the same number of possible

symbols, is 6 ∗ log294 = 39.33 or 40 bits needed to store the password. The brute forcing

of a 40-bit password would take 240 attempts or roughly 1.1 ∗ 1012. Although there are still

many attempts needed, brute force becomes much more manageable when only trying to

crack a password of 6 characters [31]. Thus, if we can reduce the number of guesses

needed to brute force a password by a meaningful amount, we will satisfy our goal of

40

making progress towards password leakage by taking advantage of the acoustic side

channel.

3.6 Limitations

There are two main limitations to this study. First, only 14,100 data points are used

to train the deep learning model; that is, 94 labels and 150 samples per label. There would

likely be a higher level of accuracy when evaluating the passwords if there were more data

points to train the model, but this becomes time-consuming since the data set must be

created manually in real-time.

Second, breaking the typed passwords into individual letters to input into the

classification model assumes that there is a capacity to extract information from the aural

range of frequencies because likely keystrokes would need to be identified. For the

purposes of this study, only when a key is typed would be known, and the pilot test, shown

in Figure 10 shows that the overtones of the typed keys can be seen in supersonic ranges.

However, this is not reliable due to the potential for frequency jamming in the aural range.

We will discuss this and other potential defenses against an attack of this class in Section

4.5.1. For the purposes of this study, we assume the ability to successfully break

passwords into separate keys so that a trained model can infer labels on individual keys.

41

CHAPTER IV

RESULTS

In this section, we give an overview of the classification model’s construction

process including details on hyperparameter tuning, testing accuracy, and validation

efforts. We also discuss model inference on password recordings and task correction

results on a subset of lowercase keys to demonstrate a trend towards inference success.

4.1 Classification Model Construction

Several pre-trained models are currently available online through repositories such as

HuggingFace, but much of the ML application to aural data is in sound recognition [16].

Typically, these sounds fall below 8 kHz, so a sampling rate of 16 kHz is used for various

available projects, including those applying more robust transformer models [5], [33].

Originally, the intention was to fine-tune the individual keystroke data set on a pre-trained

model such as the AST, which was shown to have excellent results on data sets such as

AudioSet and Speech Commands V2 [9]. However, like other pre-trained models, the AST

was trained on audio sampled at 16 kHz. Since the supersonic keystroke data set was

sampled at 44.1 kHz, it could not be used to fine-tune AST or any other readily available

audio classification model.

42

Due to the availability of various audio classification models, we decided to

customize the code to train on the supersonic keystroke data set within a CNN framework

[18]. In its raw form, the model selected took a manifest containing audio file paths as

input, applied pre-processing to generate spectrogram images from audio files, split the

data into train/test subsets, trained the model using the data in a CNN, and output results

of the test set in terms of accuracy and loss. Holistically, the final customized model

performed the same actions with significant optimizations to each component to better

train the supersonic keystroke data set.

4.1.1 Model Optimization

For the sake of model optimization, only the supersonic audio files from lowercase

alphabet keystrokes were used. This allowed for faster model convergence over the full

data set to obtain an optimized baseline. Furthermore, the complete audio data set

includes four audio files for each individual keystroke. These files are the iPhone, iPad,

MKE and combined audio from all three sources. Nandakumar et al. assert that

three-dimensional motion should only be possible using a minimum of three microphones

[6]. A validation set was specified following this process to be used with the full keyboard

set, so the loss and accuracy shown in the optimization figures are from the training sets.

Furthermore, optimizations were applied prior to early stopping code being added, so the

models ran for 500 epochs each.

43

Table 4. Optimization Phase Results.

Model Microphones Used Training Accuracy Test Accuracy
1 Individual & Combined ∼40% 34%
2 Combined ∼70% 56%
3 Individual & Combined ∼90% 71.05%
4 Combined ∼97% 90.47%
5 Individual & Combined ∼95% 77.17%
6 Combined ∼98% 88.71%

Since individual microphone recordings could possibly cause significant

misclassification in the full data set, a second supersonic keystroke data set was created

that contained only the combined audio files [8]. The two data sets were applied

alternatively for each set of optimizations made with the full data set used for training first

and the combined data set used for training in the subsequent model. Therefore, Model 1

and Model 2 were trained on the data set without optimizations, Model 3 and Model 4

were trained on the data set with the first round of optimizations, and Model 5 and Model

6 were trained on the data set with the second round of optimizations. Model 6, trained on

the combined microphone data set, was used as the final classification model with only

minor subsequent optimizations applied in attempts to improve the accuracy of inference.

Table 4 shows the results of the optimization process run on the lowercase letter subset.

Humans hear sounds logarithmically rather than linearly. Consequently, a Mel scale

spectrogram is typically used for audio classification tasks due to its emphasis on aural

frequencies below 8 kHz [18]. However, this reduces the emphasis on supersonic ranges,

as shown in Figure 13, which is counterproductive to our goals, since our data set is

entirely composed of frequencies in the 18-20 kHz range.

44

Figure 13. Supersonic Audio Displayed as a Mel Spectrogram.

Figure 14 shows the default model only changed to sample at 44.1 kHz used on the

optimization subset of the supersonic keystroke data. The default number of epochs run

was 500, which was too high for this data set and likely resulted in overfitting. However,

the first model graph shows convergence around the accuracy of 40%, with the test subset

achieving an overall accuracy of 34%.

Model 2, which used only the combined audio files, showed a significant

improvement and converged around the accuracy of 70% during training with the accuracy

of the test set of 56%. At this point, we began making optimizations for Model 3, taking

note of the model’s superior performance on the combined audio data set. The primary

optimization at this stage was to generate linear spectrogram images rather than a Mel

spectrogram from the audio files during model preprocessing. Once again, Model 4, using

the combined audio data set, outperformed Model 3 which used the full data set. Model 3

converged around 90% accuracy with test set accuracy of 71.05%. Model 4, shown in

Figure 15 converged around 97% accuracy with a test set accuracy of 90.47%.

45

Figure 14. Model 1 Using Mel-Scale Spectrogram.

The final set of applied major optimizations consisted of using a filtered linear

spectrogram focusing on the 16 - 21 kHz frequency range (shown in Figure 16), applying

equalization to highlight areas of change over the course of the spectrogram, and adding a

fifth convolution block to double the input features to 128. Model 5 showed a significant

improvement over Model 3, both of which used the full audio data set. Model 5 converged

around the accuracy 95% during training with a test set accuracy of 77.17%. Model 6,

shown in Figure 17, converged around 98% accuracy during training with test set accuracy

of 88.71%. This model was chosen as the primary model moving forward, and its results

were displayed in a graph entitled “Lowercase Model.”

46

Figure 15. Model 4 Using Linear Spectrogram.

Figure 16. Supersonic Audio Displayed as Zoomed Linear Spectrogram.

4.2 Model Results and Accuracy

Model 6 was chosen as the classification model to evolve and only smaller

optimizations were applied once the entire data set was used.

47

Figure 17. Model 6 Using Final Set of Major Optimizations.

Furthermore, due to consistently superior results during the optimization phase, we

decided to use the combined audio file data set going forward rather than the data set also

containing the individual microphone recordings. Checkpoints of the model’s accuracy

were taken with only lowercase letters used, the entire alphabet (incorporating the shift key

for capital letters), alphanumeric keys, and the entire set of alphanumeric keys with special

characters.

The model trained on the lowercase subset, shown in Figure 17, converged around

98% accuracy during training with test set accuracy of 88.71%. This model was also

Model 6 during the optimization phase, so it shares its result with that shown in Section

4.1.1. The model trained on the entire alphabetic subset, shown in Figure 18, converged

around 95% accuracy during training with a test set accuracy of 80.23%. The model

trained on the alphanumeric subset, shown in Figure 19, converged around 90% accuracy

48

during training with test set accuracy of 83.71%. Finally, the full model, shown in Figure

20, converged around 95% accuracy during training with test set accuracy of 83.2%.

Figure 18. Model 6 with Only Alphabetic Characters Typed.

Further optimizations were added to the complete model in an effort to improve

accuracy during testing. First, a sixth convolution block was added for a deeper pipeline to

accommodate the increased number of labels in the full data set. Next, a validation set was

defined and its results for each epoch were used to assess accuracy and inform early

stopping training. The split between the training, validation and testing sets was as follows:

70% for the training set, 15% for the validation set, and 15% for the testing set. However,

holistic accuracy, especially with the addition of multiple keystrokes for a character

(capital ‘A’, for instance), does not necessarily indicate how well a model is performing.

49

Figure 19. Model 6 with Alphanumeric Characters Typed.

Therefore, we first added metrics for precision, recall, F1-Score, and support for each class

at the end of the test set. The entire report was included at the end of the model results

along with the complete accuracy of the model in the test set. The confusion matrix for the

final model, showing an optimal training/testing process, is shown in Figure 21.

4.3 Password Classification Results

The environment used for the inference of password files used the original script

model functions and imported the trained model weights. Once the audio files were

captured and stored, a manifest file was created with paths to the files (much like the

training data), but without attached labels.

50

Figure 20. Model 6 with All Keys Included.

The files contained in that manifest are then run through an inference function,

similar to the test function in the original script, that simply outputs the predicted label for

each audio file. The predicted labels are concatenated to create a string, and the predicted

password is output.

4.3.1 Inference Optimization

The inference script required that passwords be split prior to inference. However, the

best known method for determining individual keystrokes was looking at the aural

frequency range to split the audio files based on the actual keystrokes. However, all

frequencies below 18 kHz are eliminated during audio file preprocessing, and looking into

the audible range defeats the purpose of being able to conduct this attack completely in the

supersonic frequency range without detection or obfuscation.

51

Figure 21. Full Model Confusion Matrix.

4.3.2 Initial Inference Results

For inference, the data were prepared similarly to the training/testing data set. As

mentioned in Section 3.5.2, each password was entered in five- and two-second intervals

as well as about 30 WPM. To test that the infer script was working properly, we started

52

with the two-second interval password entry. The reason behind this decision was that it

was the most easily preprocessed data set using the normalize.py and split.py scripts, and

the same preprocessing was applied to the train, validate, and test data sets. Initially, the

infer script test was not promising because the inference did not return the expected results

for the passwords entered, and this is shown in Figure 22. The first password tried was

“autodiscover,” and the trained model did not infer the correct labels for any key positions

in the password. The expected resulting array would have been the following:

[a, u, t, o, d, i, s, c, o, v, e, r]. However, the actual resulting array was the following:

[N, #, *, (, #, z, z, *, #, #, 5, (], shown in Figure 22.

Figure 22. Full Model Inference Prediction for “autodiscover”.

4.4 Proof of Concept

Inference that behaves in this manner is possibly due to inconsistencies in the

gathering of the training data set or not enough samples per label. The confusion matrix

shown in Figure 21 represents a robust model, but inconsistencies in microphone volume

and placement, along with limited samples, probably contributed to the model being robust

only for audio files collected in that batch without any ability to generalize effectively.

53

Following this discovery, steps were taken to adjust the microphone using Focusrite

Control 2 software, which allowed the gain to be consistently set to 75% for each batch of

data collection rather than relying on guesswork when manually turning the gain knob.

Furthermore, marks were made on the desk for the iOS devices as well as on the

microphone stand so that the microphone distance would be consistent for each batch of

data collection. Later steps were taken that included collecting all data at once and training

three models, each with a higher number of samples per label, to serve as a proof of

concept for coarse-grained finger tracking.

Model optimizations and further data collection attempts were made after the

discovery that the labels were not correctly inferred. The data collections were intended to

serve as a proof of concept for the task of reconstructing the position of the finger or hand

on a keyboard using supersonic aural emissions, reverberations, and observances. The

data collected and used to train the model were a subset of the original full set of keys

including only lowercase a, b, e, i, m, and p. These keys were chosen because of their

distinct positions on a QWERTY keyboard. In these instances, the train/validate/test data

set was collected immediately before the inference data set. Each data set was collected in

the same session for consistency.

4.4.1 Model Optimizations

The model optimizations were applied in four major steps. Step one involved

changing the number of convolutions blocks. Step 2 involved a change between the LFCCs

and the optimized spectrograms. Step three involved changing the number of applied FFT

54

points. Step four involved changing the power applied to the spectrograms. After running

optimizations and observing the overall validation accuracy, the following hyperparameter

settings were chosen for the highest accuracy going forward: 4 convolution blocks,

equalized spectrograms, 2048 FFT points, no hop length, and a power of three applied to

all spectrograms. With all of these settings applied, the validation accuracy of the subset

model of just ‘a’, ‘b’, ‘e’, ‘i’, ‘m’, and ‘p’ was around 90%. Figure 23 exemplifies a strong

confusion matrix for the subset model.

4.4.2 Coarse-Grained Finger Position

In order to test the model’s ability to infer the basic finger position, five additional

sets of ‘a’ labels were collected. Each set contained 10 samples that were intended to be

inferred. The idea was to use the base model to infer on all five sets and then note the

accuracy of the model. Then, the first infer set would include in training the model, and all

five sets would again be inferred on by the new model. This process would continue until

four infer sets had been included in the base model training and then the fifth infer set

accuracy would be compared with previous accuracy levels.

When inferred by the base subset model, sets 1-5 infer ‘a’ with an accuracy of 0%,

and this was expected. Inclusion of infer set 1 resulted in the following ‘a’ set accuracies:

2 = 86.67%, 3 = 93.33%, 4 = 93.33%, and 5 = 83.33%. Inclusion of sets 1 and 2 inferred

the following accuracies of the ‘a’ set: 3 = 90%, 4 = 90%, and 5 = 86.67%. Inclusion of

sets 1-3 of the inferred resulted in the following accuracies of the ‘a’ set: 4 = 96.67% and

5 = 93.33%.

55

Figure 23. Confusion Matrix for abeimp Subset.

Finally, the inclusion of sets 1-4 inferred resulted in a 100% precision of ‘a’ set 5.

These trends are shown in Table 5. This pointed towards more data being beneficial for

inference, but was not strong enough to be conclusive due to the possibility of bias in the

model.

56

Table 5. Subset Accuracy Inferring ‘a’ Key Sets.

‘a’ Set Included Set 1 Set 2 Set 3 Set 4 Set 5
None 0% 0% 0% 0% 0%

1 100% 86.67% 93.33% 93.33% 83.33%
1-2 100% 100% 90% 90% 86.67%
1-3 100% 100% 100% 99.67% 93.33%
1-4 100% 100% 100% 100% 100%
1-5 100% 100% 100% 100% 100%

In order to point towards the necessity of more data, a final collection was carried out

in order to collect more data points on the limited number of labels. The labels included in

this new data set collected for training were still ‘a,’ ‘b’, ‘e’, ’i’, ‘m’, and ‘p’, and 450

samples per label were collected. The idea was to collect all of the training and inference

data points in the same session to reduce the likelihood that external factors (such as

microphone placement) impact the results. For training, three models were created. The

first model was trained using the first 150 samples for each label, the second was trained

using the first 300 samples for each label, and the third was trained using all 450 samples

for each label. An inference set of 30 samples was collected for each label. The idea was

to perform inference using each model and compare the accuracies of each label.

All three models had validation accuracies greater than 90%. The inference set ‘a’

had an accuracy of 13.33% for Model 1, 96.67% for Model 2 and 80% for Model 3. The

inference set ‘b’ had an accuracy of 6.67% for Model 1, 40% for Model 2, and 33.33% for

Model 3. The inference set ‘e’ had an accuracy of 96.67% for Model 1, 60% for Model 2,

and 73.33% for Model 3. The inference set ‘i’ had an accuracy of 13.33% for Model 1,

10% for Model 2, and 56.67% for Model 3. The inference set ‘m’ had an accuracy of 40%

57

for Model 1, 26.67% for Model 2, and 46.67% for Model 3. The inference set ‘p’ had an

accuracy of 86.67% for Model 1, 83.33% for Model 2, and 93.33% for Model 3. The

inference set containing five samples each of the six labels had an upward trending

accuracy of 23.33% for Model 1, 33.33% for Model 2 and 46.67% for Model 3. These

trends are exemplified in Table 6.

Table 6. Key Set Accuracy for Increasing Samples.

Infer Set Model 1 Model 2 Model 3
‘a’ Key 13.33% 96.67% 80%
‘b’ Key 6.67% 40% 33.33%
‘e’ Key 96.67% 60% 73.33%
‘i’ Key 13.33% 10% 56.67%

‘m’ Key 40% 26.67% 46.67%
‘p’ Key 86.67% 83.33% 93.33%

Combined (abeimp) 23.33% 33.33% 46.67%

4.5 Discussion

Overall, this thesis shows success in creating an ML model to classify supersonic

audio, but the trained model does not infer labels on unseen data effectively. The

confusion matrix in Figure 21 shows that the model classified the testing data successfully

as expected. This also shows the effectiveness of using an OFDM signal for active acoustic

side-channel analysis, since we are not concerned with the actual frequencies produced

while a user is typing. Were the model to be trained with a user typing on a different

keyboard, assuming the same microphone placement and OFDM signal generation, we

would expect similar results from the model itself. However, the model fails in terms of

58

generalization and is unable to infer labels for unseen data collected as part of a different

batch from the training/testing data set. This initially represented a failure in data

consistency, so microphone volume and distance were standardized throughout the

train/test data collection process to combat this issue.

The combined audio file data set was found to be much more reliable for training

than the larger data set that contained individual microphone recordings. This

corroborated the assertion of Nandakumar et al. that a three-dimensional motion would

require at least three microphones to capture [6]. Furthermore, the revelation that the infer

script was not working initially allowed us to discover that the success of this attack was

also highly affected by microphone variables such as distance and gain level. Keeping

those consistent during training is expected, but inference data sets using this model would

be highly unpredictable in a real-world setting, and the model did not do quite as well as

expected when generalizing to unseen data collected with different microphone settings.

When the trained model was used for the password inference of “autodiscover”, the

returned labels did not match the original labels at any position of the array. Small

optimizations to the model were applied, such as experimentation with using linear

frequency cepstral coefficient images (LFCCs) rather than spectrogram images to train the

model, but only small improvements to the overall validation accuracy were observed.

Furthermore, Figure 21 showed that the validation accuracy was generally acceptable

across labels.

Furthermore, upon inspection of the spectrograms directly, using a Python script

exemplified in Appendix E, inconsistencies were identified between the individual training

59

and the inferred samples. Furthermore, overlaying all training and inference data set

samples for a key in a single image highlights differences holistically. Figure 24 shows the

combined spectrogram of the ‘a’ keys used for training, and Figure 25 shows the combined

spectrogram of all ‘a’ samples in the inference set. Although they appear somewhat

similar, there are differences in frequency bins over time, possibly caused by

environmental variables during data collection. A larger set of data used for training might

help the model generalize to account for these variables. Therefore, the most likely cause

of the inference issues was in the data set rather than the training model used.

Figure 24. Combined Image of Training Spectrograms for ‘a’.

To test this theory, a subset of data was collected using the same methodology on just

six keys. These keys, spaced out to represent discrete areas of the keyboard, were ‘a’, ‘b’,

‘e’, ‘i’, ‘m’, and ‘p’ [8]. Initially, 150 samples per label were collected, and the accuracy of

the validation was consistent with the levels observed in the full data set and the lowercase

letter subset.

60

Figure 25. Combined Image of Inference Spectrograms for ‘a’.

Infer sets were then collected including 10 labels each for five sets of the ‘a’ key. The

results, detailed in Section 4.4, indicated that the model was more able to pick up the

position of the ‘a’ key with a small bias towards that key, which led to a more conclusive

experiment.

Since the presence of more data had an observable affect on a single key, we

hypothesized that we would be able to observe a general increase in inference success

relative to the number of samples per label. Once again, a 6 label subset was collected,

including the keys ‘a’, ‘b’, ‘e’, ‘i’, ‘m’, and ‘p’ were collected. In total, 450 samples were

used in the training, which consisted of three rounds. Round 1 was trained with 150

samples per label, Round 2 was trained with 300, and Round 3 was trained with 450. In

addition, 30 samples per label were collected as inference sets. All of these data were

collected in a single session in an effort to maximize environmental control.

Once the models had been created, the inference on individual keys improved

generally from Round 1 to Round 3 when testing those weighted models on the inference

61

sets, shown previously in Table 6. This indicates that the presence of more data improves

inference accuracy, and we can generalize this to our full set of data and say that we most

likely needed many more samples per label in order to successfully infer labels from the

password sets.

4.5.1 Proposed Defenses

The state of the attack is highly dependent on the control of the microphone variables

and the need for many more varied samples per label. Furthermore, single microphones

did not pose a threat when evaluated in our model. Therefore, the current state of this

attack may be challenging in a real-world environment due to the setup requirements.

Current general recommendations for defense against acoustic SCAs, such as injection of

background noise, may be effective but would interfere only with attack frequencies if

injected at supersonic levels [1], [5]. Injecting movement or abnormal typing movements

into the attack space would also be an adequate defense against this class of attack in its

current state.

If this attack was to be condensed to be performed successfully using only one or two

microphones, it could be possible if the model were trained using a transformer model, the

implications in a real-world setting would be more severe [9]. A single mobile device

microphone is much easier to obfuscate and would not require special placement.

However, this is only a theoretical possibility and requires several more steps to be taken to

generalize the current state of this acoustic SCA.

62

Theoretically, this active acoustic SCA remains resistant to most suggestions

provided in the related literature due to its existence outside the field of audible

frequencies [1], [2], [5], [23]. However, the current state of the attack is vulnerable to infer

set variations in microphone level and hand position, most likely due to the limited number

of samples per label. Therefore, unless a model is trained with many more samples per

label, its potential effectiveness in a real-world situation is limited.

63

CHAPTER V

CONCLUSION

The potential severity of an acoustic side channel attack, although previously

questioned, shows a serious potential to escalate as active attacks become more prevalent

[11]. Active acoustic attacks essentially constitute miniaturized sonar, and the ability to

map three-dimensional motion within a space as small as a keyboard means that any typed

data could be compromised assuming that the attacker has the ability to reconstruct the

acoustic data in some meaningful way.

5.1 Summary of Key Contributions

This work generalizes the SonarSnoop model of active acoustic SCAs to collect data

in the three-dimensional space. Although the experiment was not successful in capturing

and reconstructing entire password strings, the results of the experiment indicate that

tracking individual fingers using an ML model and miniaturized sonar is possible and

likely more successful with more data points. To our knowledge, this is the first study that

attempts to utilize the active acoustic side-channel in a three-dimensional space [5], [8].

This study also shows that creating a deep learning model to classify supersonic

64

frequencies is achievable with a high rate of success, although generalizing the model to

infer on unseen data is still a challenge.

5.2 Future Work

There are opportunities for significant improvements in the ML setup. First, the

amount of data that run through the model could be increased to potentially increase

accuracy. Due to time constraints, only 150 samples per key were used to train the full

model. Based on our later experimentation, a higher number of samples per key would

likely result in higher model accuracy. Another improvement to the model might come

from the whole-word classification. There are several audio classification models that exist

to classify speech to identify emotions, keywords, and whole words [17], [34], [35].

Theoretically, running spectrogram or vector-based representations of an active acoustic

capture of these words could be classified in a similar manner, and they may return the

same high level of success seen in the aforementioned studies. However, it is also possible

that this approach would be less effective for randomized passwords due to its dependence

on whole words rather than individual letters.

Another potential area of improvement is the adaptation of the CNN architecture to a

transformer model. Gong et al. shared a transformer model for classifying aural

frequencies with consistent accuracies of more than 90% when fine-tuned on various other

data sets [9]. A transformer model might be particularly beneficial for the task of

supersonic audio classification because it is a foundation model in that it can generalize

learned patterns to recognize trends and adapt to specific downstream tasks [33]. This may

65

also allow the individual recordings (iPhone, iPad, MKE 600) to train a more effective

model and even be successful in reconstructing passwords when used as the only

microphone source for inference. Using a transformer model would also likely make the

model effective in recognizing passphrases if such a data set were created [20]. The

available AST code was pre-trained on audio at 16 kHz, and thus incompatible with the

supersonic data set created. Developing such a model for supersonic audio classification

from scratch requires much more specific expertise in transformers and is left as a task for

future work in this area.

Another weakness in the ML setup is the extension of the use of individual letters

rather than keywords. To divide the inference data set to input into the trained model, it

was necessary to examine the aural frequency to observe when the actual keystrokes were

being performed. Generally, if the attacker knows a user’s typing speed, they could

automate splitting the file appropriately. However, users occasionally pause while typing,

and this would require manual inspection of the audio files in order to split into individual

letters. It is possible that a transformer model could account for this by taking the entire

password as input, but more training data (as well as the experience to develop such a

model) would be required [9]. Obfuscation against attacks operating at an audible

frequency is well documented, so this may be a critical factor that affects the ability of the

attack to be recreated outside of a laboratory setting [4], [5].

66

REFERENCES

[1] D. Genkin, A. Shamir, and E. Tromer, “RSA Key Extraction via Low-Bandwidth

Acoustic Cryptanalysis,” en, in Advances in Cryptology – CRYPTO 2014,

J. A. Garay and R. Gennaro, Eds., vol. 8616, Series Title: Lecture Notes in

Computer Science, Berlin, Heidelberg: Springer Berlin Heidelberg, 2014,

pp. 444–461, isbn: 978-3-662-44370-5 978-3-662-44371-2. doi:

10.1007/978-3-662-44371-2 25. [Online]. Available:

http://link.springer.com/10.1007/978-3-662-44371-2 25 (visited on 02/16/2023).

[2] M. Guri, Y. Solewicz, A. Daidakulov, and Y. Elovici, “Fansmitter: Acoustic data

exfiltration from (speakerless) air-gapped computers,” arXiv preprint

arXiv:1606.05915, 2016.

[3] J. de Gortari Briseno, A. D. Singh, and M. Srivastava, “InkFiltration: Using Inkjet

Printers for Acoustic Data Exfiltration from Air-Gapped Networks,” en, ACM

Transactions on Privacy and Security, vol. 25, no. 2, pp. 1–26, May 2022, issn:

2471-2566, 2471-2574. doi: 10.1145/3510583. [Online]. Available:

https://dl.acm.org/doi/10.1145/3510583 (visited on 02/16/2023).

[4] D. Asonov and R. Agrawal, “Keyboard acoustic emanations,” en, in IEEE

Symposium on Security and Privacy, 2004. Proceedings. 2004, Berkeley, CA, USA:

67

IEEE, 2004, pp. 3–11, isbn: 978-0-7695-2136-7. doi:

10.1109/SECPRI.2004.1301311. [Online]. Available:

http://ieeexplore.ieee.org/document/1301311/ (visited on 02/18/2023).

[5] P. Cheng, I. E. Bagci, U. Roedig, and J. Yan, “SonarSnoop: Active acoustic

side-channel attacks,” en, International Journal of Information Security, vol. 19,

no. 2, pp. 213–228, Apr. 2020, issn: 1615-5262, 1615-5270. doi:

10.1007/s10207-019-00449-8. [Online]. Available:

http://link.springer.com/10.1007/s10207-019-00449-8 (visited on 02/16/2023).

[6] R. Nandakumar, V. Iyer, D. Tan, and S. Gollakota, “FingerIO: Using Active Sonar

for Fine-Grained Finger Tracking,” en, in Proceedings of the 2016 CHI Conference

on Human Factors in Computing Systems, San Jose California USA: ACM, May

2016, pp. 1515–1525, isbn: 978-1-4503-3362-7. doi: 10.1145/2858036.2858580.

[Online]. Available: https://dl.acm.org/doi/10.1145/2858036.2858580 (visited on

02/16/2023).

[7] P. Rabadia and C. Valli, “Finding evidence of wordlists being deployed against SSH

honeypots – implications and impacts,” en, 12th Australian Digital Forensics

Conference. Held on the 1-3 December, vol. 2014 at Edith Cowan University,

Western Australia. 2014, Medium: PDF Publisher: Security Research Institute

(SRI), Edith Cowan University. doi: 10.4225/75/57B3E7D5FB882. [Online].

Available: http://ro.ecu.edu.au/adf/141 (visited on 02/22/2023).

68

[8] R. Nandakumar, A. Takakuwa, T. Kohno, and S. Gollakota, “CovertBand: Activity

Information Leakage using Music,” en, Proceedings of the ACM on Interactive,

Mobile, Wearable and Ubiquitous Technologies, vol. 1, no. 3, pp. 1–24, Sep. 2017,

issn: 2474-9567. doi: 10.1145/3131897. [Online]. Available:

https://dl.acm.org/doi/10.1145/3131897 (visited on 02/16/2023).

[9] Y. Gong, Y.-A. Chung, and J. Glass, Ast: Audio spectrogram transformer, 2021.

arXiv: 2104.01778 [cs.SD].

[10] M. Backes, M. Dürmuth, S. Gerling, M. Pinkal, C. Sporleder, et al., “Acoustic

side-channel attacks on printers.,” in USENIX Security symposium, vol. 9, 2010,

pp. 307–322.

[11] P. Kocher, J. Jaffe, B. Jun, and P. Rohatgi, “Introduction to differential power

analysis,” en, Journal of Cryptographic Engineering, vol. 1, no. 1, pp. 5–27, Apr.

2011, issn: 2190-8508, 2190-8516. doi: 10.1007/s13389-011-0006-y. [Online].

Available: http://link.springer.com/10.1007/s13389-011-0006-y (visited on

02/19/2023).

[12] G. Joy Persial, M. Prabhu, and R. Shanmugalakshmi, “Side channel attack-survey,”

Int. J. Adv. Sci. Res. Rev, vol. 1, no. 4, pp. 54–57, 2011.

[13] S. A. Anand and N. Saxena, “Vibreaker: Securing Vibrational Pairing with

Deliberate Acoustic Noise,” en, in Proceedings of the 9th ACM Conference on

Security & Privacy in Wireless and Mobile Networks, Darmstadt Germany: ACM,

Jul. 2016, pp. 103–108, isbn: 978-1-4503-4270-4. doi: 10.1145/2939918.2939934.

69

[Online]. Available: https://dl.acm.org/doi/10.1145/2939918.2939934 (visited on

02/18/2023).

[14] T. Halevi and N. Saxena, “On pairing constrained wireless devices based on secrecy

of auxiliary channels: The case of acoustic eavesdropping,” in Proceedings of the

17th ACM Conference on Computer and Communications Security, ser. CCS ’10,

Chicago, Illinois, USA: Association for Computing Machinery, 2010, pp. 97–108,

isbn: 9781450302456. doi: 10.1145/1866307.1866319. [Online]. Available:

https://doi-org.libproxy.usouthal.edu/10.1145/1866307.1866319.

[15] P. Walker and N. Saxena, “SoK: Assessing the threat potential of vibration-based

attacks against live speech using mobile sensors,” en, in Proceedings of the 14th

ACM Conference on Security and Privacy in Wireless and Mobile Networks, Abu

Dhabi United Arab Emirates: ACM, Jun. 2021, pp. 273–287, isbn:

978-1-4503-8349-3. doi: 10.1145/3448300.3467825. [Online]. Available:

https://dl.acm.org/doi/10.1145/3448300.3467825 (visited on 02/16/2023).

[16] Huggingface, https://huggingface.co/, Accessed: 2024-04-17.

[17] A. Baevski, H. Zhou, A. Mohamed, and M. Auli, Wav2vec 2.0: A framework for

self-supervised learning of speech representations, 2020. arXiv: 2006.11477

[cs.CL].

[18] K. Doshi, Audio deep learning made simple (part 1): State-of-the-art techniques,

May 2021. [Online]. Available: https://towardsdatascience.com/audio-deep-

learning-made-simple-part-1-state-of-the-art-techniques-da1d3dff2504.

70

[19] J. Salamon and J. P. Bello, “Deep Convolutional Neural Networks and Data

Augmentation for Environmental Sound Classification,” en, IEEE Signal

Processing Letters, vol. 24, no. 3, pp. 279–283, Mar. 2017, issn: 1070-9908,

1558-2361. doi: 10.1109/LSP.2017.2657381. [Online]. Available:

http://ieeexplore.ieee.org/document/7829341/ (visited on 03/10/2024).

[20] A. Vaswani, N. Shazeer, N. Parmar, et al., Attention is all you need, 2023. arXiv:

1706.03762 [cs.CL].

[21] T. Halevi and N. Saxena, “A closer look at keyboard acoustic emanations: Random

passwords, typing styles and decoding techniques,” en, in Proceedings of the 7th

ACM Symposium on Information, Computer and Communications Security, Seoul

Korea: ACM, May 2012, pp. 89–90, isbn: 978-1-4503-1648-4. doi:

10.1145/2414456.2414509. [Online]. Available:

https://dl.acm.org/doi/10.1145/2414456.2414509 (visited on 02/18/2023).

[22] T. Halevi and N. Saxena, “Keyboard acoustic side channel attacks: Exploring

realistic and security-sensitive scenarios,” en, International Journal of Information

Security, vol. 14, no. 5, pp. 443–456, Oct. 2015, issn: 1615-5262, 1615-5270. doi:

10.1007/s10207-014-0264-7. [Online]. Available:

http://link.springer.com/10.1007/s10207-014-0264-7 (visited on 02/16/2023).

[23] L. Zhuang, F. Zhou, and J. D. Tygar, “Keyboard acoustic emanations revisited,”

ACM Transactions on Information and System Security (TISSEC), vol. 13, no. 1,

pp. 1–26, 2009.

71

[24] T. Zhu, Q. Ma, S. Zhang, and Y. Liu, “Context-free Attacks Using Keyboard

Acoustic Emanations,” en, in Proceedings of the 2014 ACM SIGSAC Conference on

Computer and Communications Security, Scottsdale Arizona USA: ACM, Nov.

2014, pp. 453–464, isbn: 978-1-4503-2957-6. doi: 10.1145/2660267.2660296.

[Online]. Available: https://dl.acm.org/doi/10.1145/2660267.2660296 (visited on

02/18/2023).

[25] O. Shih and A. Rowe, “Can a phone hear the shape of a room?” en, in Proceedings

of the 18th International Conference on Information Processing in Sensor

Networks, Montreal Quebec Canada: ACM, Apr. 2019, pp. 277–288, isbn:

978-1-4503-6284-9. doi: 10.1145/3302506.3310407. [Online]. Available:

https://dl.acm.org/doi/10.1145/3302506.3310407 (visited on 02/16/2023).

[26] A. Hamed and N. Abdelbaki, “Acoustic Attacks in IOT Era: Risks and Mitigations,”

en, in Proceedings of the 2020 5th International Conference on Cloud Computing

and Internet of Things, Okinawa Japan: ACM, Sep. 2020, pp. 13–19, isbn:

978-1-4503-7527-6. doi: 10.1145/3429523.3429530. [Online]. Available:

https://dl.acm.org/doi/10.1145/3429523.3429530 (visited on 02/16/2023).

[27] I. Shumailov, L. Simon, J. Yan, and R. Anderson, Hearing your touch: A new

acoustic side channel on smartphones, en, arXiv:1903.11137 [cs], Mar. 2019.

[Online]. Available: http://arxiv.org/abs/1903.11137 (visited on 02/16/2023).

[28] M. Backes, M. Durmuth, S. Gerling, M. Pinkal, and C. Sporleder, “Acoustic

Side-Channel Attacks on Printers,” en,

72

[29] P. Dempsey, “The tear down: 2018 macbook pro touch bar keyboard,” Engineering

& Technology, vol. 13, no. 11/12, pp. 78–79, Dec. 2018, issn: 1750-9637. doi:

10.1049/et.2018.1127.

[30] C. E. Shannon, “A mathematical theory of communication,” in Claude E. Shannon:

Collected Papers. 1993, pp. 5–83. doi: 10.1109/9780470544242.ch1.

[31] A.-D. Vu, J.-I. Han, H.-A. Nguyen, Y.-M. Kim, and E.-J. Im, “A homogeneous

parallel brute force cracking algorithm on the gpu,” in ICTC 2011, 2011,

pp. 561–564. doi: 10.1109/ICTC.2011.6082661.

[32] J. Galbally, I. Coisel, and I. Sanchez, “A new multimodal approach for password

strength estimation—part i: Theory and algorithms,” IEEE Transactions on

Information Forensics and Security, vol. 12, no. 12, pp. 2829–2844, 2017. doi:

10.1109/TIFS.2016.2636092.

[33] R. Bommasani, D. A. Hudson, E. Adeli, et al., On the opportunities and risks of

foundation models, 2022. arXiv: 2108.07258 [cs.LG].

[34] S. R. Livingstone and F. A. Russo, “The ryerson audio-visual database of emotional

speech and song (ravdess): A dynamic, multimodal set of facial and vocal

expressions in north american english,” PLOS ONE, vol. 13, no. 5, pp. 1–35, May

2018. doi: 10.1371/journal.pone.0196391. [Online]. Available:

https://doi.org/10.1371/journal.pone.0196391.

73

[35] W.-N. Hsu, B. Bolte, Y.-H. H. Tsai, K. Lakhotia, R. Salakhutdinov, and

A. Mohamed, Hubert: Self-supervised speech representation learning by masked

prediction of hidden units, 2021. arXiv: 2106.07447 [cs.CL].

[36] D. Hinkel, A. Buie, A. Surles, and G. Clark, “Attack vectors against ics: A survey,”

in 2023 Congress in Computer Science, Computer Engineering, & Applied

Computing (CSCE), 2023, pp. 2494–2501. doi: 10.1109/CSCE60160.2023.00401.

74

APPENDICES

Appendix A: Password Collection Script

perl -ne `print if /\b.{12}\b/' common.txt

75

Appendix B: OFDM Signal Generation

ofdm.py

Destin Hinkel

Classifying Supersonic Frequencies for Active Acoustic Side-Channel Exploitation

Run: python3 ofdm.py within .venv

Script to generate a 1-hour long OFDM signal

import numpy as np

from scipy.io.wavfile import write

Constants

SAMPLE_RATE = 44100

NUM_SUBCARRIERS = 64

SUBCARRIER_SPACING = 375 # Subcarrier spacing in Hz

OFDM_SIZE = int(SAMPLE_RATE / SUBCARRIER_SPACING) # Adjusted OFDM size

Parameters for the desired signal

START_FREQ = 18000

END_FREQ = 20000

START_INDEX = int(START_FREQ / SUBCARRIER_SPACING)

END_INDEX = int(END_FREQ / SUBCARRIER_SPACING)

Time duration

DURATION = 60 * 60 # 1 hour

Generate OFDM symbols

num_symbols = int(DURATION * SAMPLE_RATE / OFDM_SIZE)

ofdm_symbols = np.zeros((num_symbols , OFDM_SIZE), dtype=complex)

For each OFDM symbol, randomly set subcarriers in the 18-20kHz range to +1 or -1

for i in range(num_symbols):

ofdm_symbols[i, START_INDEX:END_INDEX] = np.random.choice([1, -1], size=(END_INDEX - START_INDEX))

Create a Hermitian symmetric signal to ensure the output is real-valued

for i in range(num_symbols):

ofdm_symbols[i, -END_INDEX:-START_INDEX] = np.conj(ofdm_symbols[i, START_INDEX:END_INDEX][::-1])

Compute IFFT for each symbol to get time-domain samples

time_domain_samples = np.fft.ifft(ofdm_symbols , axis=1)

Convert to real values (due to the conjugate symmetry, the output should be real)

time_domain_samples = time_domain_samples.real

Apply a Hanning window to each symbol

window = np.hanning(OFDM_SIZE)

76

time_domain_samples = time_domain_samples * window

Flatten to create the final signal

final_signal = time_domain_samples.flatten()

Save as an audio file

filename = "ofdm_signal.wav"

write(filename, SAMPLE_RATE , (final_signal * 32767).astype(np.int16))

print(f"OFDM signal saved to {filename}")

77

Appendix C: Audio Normalization Script

normalize.py

Destin Hinkel

Classifying Supersonic Frequencies for Active Acoustic Side-Channel Exploitation

Run: python3 normalize.py within .venv

Script to rechannel and strip unneeded audio frequencies from .wav files. Also creates backups.

import sys

import os

import warnings

import numpy as np

from scipy.io import wavfile

from scipy.signal import butter, sosfilt

def highpass_filter(data, cutoff, fs, order=5):

nyquist = 0.5 * fs

normal_cutoff = cutoff / nyquist

sos = butter(order, normal_cutoff , btype='high', analog=False, output='sos')

filtered_data = sosfilt(sos, data)

return filtered_data

def convert_to_mono(data):

if data.ndim == 2:

data = data.mean(axis=1)

return data

def get_next_backup_filename(directory , base_filename , ext):

backup_directory = os.path.join(directory , "Backup")

if not os.path.exists(backup_directory):

os.makedirs(backup_directory)

counter = 0

while True:

backup_filename = f"{base_filename}_backup_{counter:03d}{ext}"

backup_filepath = os.path.join(backup_directory , backup_filename)

if not os.path.exists(backup_filepath):

return backup_filepath

counter += 1

def process_wav_file(filepath , cutoff_frequency=18000):

directory , filename = os.path.split(filepath)

base_filename , ext = os.path.splitext(filename)

with warnings.catch_warnings():

warnings.simplefilter("ignore")

78

sample_rate , data = wavfile.read(filepath)

Convert to mono if stereo

data = convert_to_mono(data)

Apply high-pass filter

filtered_data = highpass_filter(data, cutoff_frequency , sample_rate)

No scaling back to int16, keeping the output as float32

filtered_data = filtered_data.astype(np.float32)

Create backup file in the Backup directory

backup_filepath = get_next_backup_filename(directory , base_filename , ext)

os.rename(filepath , backup_filepath)

Save the filtered audio with the original filename

wavfile.write(filepath, sample_rate , filtered_data)

if __name__ == "__main__":

if len(sys.argv) != 2:

print("Usage: python3 normalize.py <filename >")

sys.exit(1)

filepath = sys.argv[1]

if not os.path.isfile(filepath):

print("Error: The specified file does not exist.")

sys.exit(1)

process_wav_file(filepath)

79

Appendix D: Audio Split Script

split.py

Destin Hinkel

Classifying Supersonic Frequencies for Active Acoustic Side-Channel Exploitation

Run: python3 split.py within .venv

Script to split combined audio files into two second individual files

import os

import sys

import numpy as np

from scipy.io import wavfile

def get_next_available_prefix(directory , base_filename):

existing_files = [f for f in os.listdir(directory) if f.endswith('_' + base_filename + '.wav')]

highest_number = -1 # Start from -1 so that the first available will be 0

for file in existing_files:

try:

number = int(file.split('_')[0])

highest_number = max(highest_number , number)

except ValueError:

continue

return f"{highest_number + 1:03d}"

def split_wav_file(filepath , segment_length=2, max_prefix=999): # Changed segment_length to 2

directory , filename = os.path.split(filepath)

if not directory:

directory = '.' # Set to current directory if empty

base_filename = os.path.splitext(filename)[0]

sample_rate , data = wavfile.read(filepath)

file_length = data.shape[0] / sample_rate

num_segments = int(np.ceil(file_length / segment_length))

prefix = int(get_next_available_prefix(directory , base_filename))

available_segments = max_prefix - prefix + 1

num_segments = min(num_segments , available_segments)

for i in range(num_segments):

start_sample = int(i * segment_length * sample_rate)

end_sample = int((i + 1) * segment_length * sample_rate)

segment_data = data[start_sample:end_sample]

new_filename = f"{prefix + i:03d}_{base_filename}.wav"

new_filepath = os.path.join(directory , new_filename)

wavfile.write(new_filepath , sample_rate , segment_data)

80

Delete the original file after splitting

os.remove(filepath)

if __name__ == "__main__":

if len(sys.argv) != 2:

print("Usage: python split_wav.py <filename >")

sys.exit(1)

filepath = sys.argv[1]

if not os.path.isfile(filepath):

print("Error: The specified file does not exist.")

sys.exit(1)

directory , filename = os.path.split(filepath)

if not directory:

directory = '.' # Set to current directory if empty

if filename not in os.listdir(directory):

print("Error: File not found in the directory (case-sensitive check).")

sys.exit(1)

split_wav_file(filepath)

81

Appendix E: Spectrogram Viewer

spectrogram.py

Destin Hinkel

Classifying Supersonic Frequencies for Active Acoustic Side-Channel Exploitation

Run: python3 spectrogram.py within .venv

Script to output a collection of spectrograms , given a manifest of .wav files

CHANGEME Line 197 to specify a manifest

CHANGEME Line 206 to specify an output directory

import os

import random

import torch

import torchaudio

import pandas as pd

import numpy as np

import matplotlib.pyplot as plt

from torchaudio import transforms

from torch.utils.data import Dataset

Class to Load in Audio Files from CSV & Return Tensor/SR

class AudioUtil():

Function to Load in Audio File

@staticmethod

def open(audio_file):

sig, sr = torchaudio.load(audio_file)

return (sig, sr)

Convert the Input Audio to a Single Channel

@staticmethod

def rechannel(aud):

sig, sr = aud

if (sig.shape[0] == 0):

Nothing to do

return aud

else:

Convert from Stereo (or more) to Mono by Selecting First Channel

resig = sig[:1, :]

return ((resig, sr))

Function to Pad Audio to Two Seconds

@staticmethod

82

def pad_trunc(aud, max_ms):

sig, sr = aud

num_rows , sig_len = sig.shape

max_len = sr//1000 * max_ms

If Signal Needs to be Truncated

if (sig_len > max_len):

sig = sig[:,:max_len]

If Signal Needs to be Padded

elif (sig_len < max_len):

pad_begin_len = random.randint(0, max_len - sig_len)

pad_end_len = max_len - sig_len - pad_begin_len

Pad with 0s

pad_begin = torch.zeros((num_rows, pad_begin_len))

pad_end = torch.zeros((num_rows, pad_end_len))

sig = torch.cat((pad_begin , sig, pad_end), 1)

return (sig, sr)

Function to Shift Signal to Left/Right w/ Wrapping

@staticmethod

def time_shift(aud, shift_limit):

sig,sr = aud

_, sig_len = sig.shape

shift_amt = int(random.random() * shift_limit * sig_len)

return (sig.roll(shift_amt), sr)

Function to Generate a Spectrogram

@staticmethod

def spectro_gram(aud, n_fft, hop_length , power, freq_min=18000, freq_max=20000):

sig, _ = aud

sr = 44100

Calculate Frequency Resolution

freq_res = sr / n_fft

Calculate Indices for Min & Max Frequencies

idx_min = int(freq_min / freq_res)

idx_max = int(freq_max / freq_res)

Generate Linear Spectrogram

spec = transforms.Spectrogram(n_fft=n_fft, hop_length=hop_length , power=power)(sig)

Filter Frequencies Outside the 18000-20000 Hz Range

spec_filtered = spec[:, idx_min:idx_max, :]

83

return spec_filtered

Function to Perform Histogram Equalization on Linear Spectrogram

@staticmethod

def histogram_equalization(spec):

Convert spectrogram to numpy for processing

spec_np = spec.numpy()

Flatten the spectrogram to 1D

spec_flat = spec_np.flatten()

Calculate the histogram

histogram , bin_edges = np.histogram(spec_flat , bins=256, range=(spec_np.min(), spec_np.max()),

density=True)

Compute the cumulative distribution function (CDF)

cdf = np.cumsum(histogram) * np.diff(bin_edges)

Normalize the CDF

cdf_normalized = (cdf - cdf.min()) / (cdf.max() - cdf.min()) * 255

Use linear interpolation of the CDF to find new pixel values

spec_equalized = np.interp(spec_flat , bin_edges[:-1], cdf_normalized)

Reshape back to the original shape

spec_eq_reshaped = spec_equalized.reshape(spec_np.shape)

Convert back to tensor

spec_eq_tensor = torch.from_numpy(spec_eq_reshaped).float()

return spec_eq_tensor

Function to Calculate LFCCs

@staticmethod

def lfcc(aud, n_fft, hop_length , power, f_min=18000, f_max=20000):

sig, _ = aud

lfcc_transform = transforms.LFCC(

sample_rate = 44100,

f_min = f_min,

f_max = f_max,

speckwargs={"n_fft": n_fft, "hop_length": hop_length , "center": False, "power": power}

)

Apply LFCC Transformation

lfcc = lfcc_transform(sig)

return lfcc

84

Class to Define the Sound Dataset

class SoundDS(Dataset):

def __init__(self, df, data_path):

self.df = df

self.data_path = str(data_path)

self.duration = 2000

self.sr = 44100

self.channel = 1

self.shift_pct = 0.4

def __len__(self):

return len(self.df)

def __getitem__(self, idx):

audio_file = self.data_path + self.df.loc[idx, 'filepath ']

if 'label' in self.df.columns:

class_id = self.df.loc[idx, 'label']

else:

class_id = None

Variables for Tuning

n_fft = 2048

hop_length = None

power = 3

aud = AudioUtil.open(audio_file)

aud = AudioUtil.rechannel(aud)

dur_aud = AudioUtil.pad_trunc(aud, self.duration)

shift_aud = AudioUtil.time_shift(dur_aud, self.shift_pct)

sgram = AudioUtil.spectro_gram(shift_aud , n_fft, hop_length , power)

equalized = AudioUtil.histogram_equalization(sgram)

#lfcc = AudioUtil.lfcc(shift_aud , n_fft, hop_length , power)

return equalized , class_id

Function to Save Spectrogram Images

def save_spectrograms(dataset, output_dir):

os.makedirs(output_dir , exist_ok=True)

for i in range(len(dataset)):

spectrogram_tensor , label = dataset[i]

spectrogram_np = spectrogram_tensor.detach().cpu().numpy()

plt.figure(figsize=(10, 4))

plt.imshow(spectrogram_np[0], cmap='hot', aspect='auto')

plt.title(f'Spectrogram (Label: {label})')

plt.xlabel('Time Frames ')

plt.ylabel('Frequency Bins')

plt.colorbar(format='%+2.0f dB')

output_path = os.path.join(output_dir , f'spectrogram_{i}.png')

85

plt.savefig(output_path)

plt.close()

print(f'Saved spectrogram: {output_path}')

Read in Manifest

manifest = '/home/destin/Documents/Programming/Thesis/Datasets/PATH/GOES/HERE/manifest.csv' # CHANGEME

to specify a manifest

df = pd.read_csv(manifest)

data_path = ''

df = df[['filepath ', 'label ']]

Create Dataset

myds = SoundDS(df, data_path)

Save Spectrogram Images

output_dir = '/home/destin/Documents/Programming/Thesis/Spectro_Images/Training_PATH/GOES/HERE' #

CHANGEME to specify where images should be output (preferably a preconfigured directory)

save_spectrograms(myds, output_dir)

86

Appendix F: Deep Learning Model

model.py

Destin Hinkel

Classifying Supersonic Frequencies for Active Acoustic Side-Channel Exploitation

Run: python3 model.py within .venv

Script to train deep learning models and output model weights

CHANGEME Line 289 to specify number of convolution layers

CHANGEME Line 572 to specify a manifest of training files

Optimized code is based on original source code published in Towards Data Science by Ketan Doshi

https://towardsdatascience.com/audio-deep-learning-made-simple-sound-classification -step-by-step-

cebc936bbe5

import random, torch, torchaudio , os

import pandas as pd

import numpy as np

import torch.nn as nn

import matplotlib

matplotlib.use('Agg')

import matplotlib.pyplot as plt

import seaborn as sns

from torchaudio import transforms

from torch.utils.data import Dataset, random_split

from torch.nn import init

from sklearn.metrics import classification_report , confusion_matrix , ConfusionMatrixDisplay

Function to Calculate Mean & Std for All Datasets

def statistics(train_dl):

device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")

Initialize Values

sum = 0

sum_sq = 0

count = 0

for data in train_dl:

inputs, _ = data[0].to(device), data[1].to(device)

sum += torch.sum(inputs)

sum_sq += torch.sum(inputs ** 2)

count += np.prod(inputs.size())

Compute the Mean and Std

mean = sum / count

std = (sum_sq / count - mean ** 2) ** 0.5

return mean.cpu().numpy(), std.cpu().numpy()

87

Function to Convert Subset Label IDs to Key Names (for inference)

def id_to_min_label(id):

ids = {

0: 'a',

1: 'b',

2: 'e',

3: 'i',

4: 'm',

5: 'p',

}

if id in ids:

return ids[id]

else:

raise ValueError(f"ID '{id} is not in the defined label map.")

Function to Convert Label IDs to Key Names (for inference)

def id_to_label(id):

Mapping for the additional labels, inverted from `label_to_id `

id_to_additional_label = {

52: "`", 53: "1", 54: "2", 55: "3", 56: "4",

57: "5", 58: "6", 59: "7", 60: "8", 61: "9",

62: "0", 63: "-", 64: "=", 65: "[", 66: "]",

67: "\\", 68: ";", 69: "'", 70: ",", 71: ".",

72: "/", 73: "˜", 74: "!", 75: "@", 76: "#",

77: "$", 78: "%", 79: "ˆ", 80: "&", 81: "*",

82: "(", 83: ")", 84: "_", 85: "+", 86: "{",

87: "}", 88: "|", 89: ":", 90: "\"", 91: "<",

92: ">", 93: "?"

}

Check if the id is in the additional mappings

if id in id_to_additional_label:

return id_to_additional_label[id]

Convert numerical id back to character (a-z, A-Z)

if id < 26:

Convert numerical id to lowercase (0=a, 1=b, ..., 25=z)

return chr(97 + id)

elif id < 52:

Convert numerical id to uppercase (26=A, 27=B, ..., 51=Z)

return chr(65 + id - 26)

else:

Raise an error if the ID is not in the map

raise ValueError(f"ID '{id}' is not in the defined label map.")

Function to Save Models Iteratively

def save_model(model, save_directory):

88

Ensure Save Directory Exists

os.makedirs(save_directory , exist_ok=True)

Combine Save Path with Model.pth

model_save_path = os.path.join(save_directory , f"Model.pth")

Save the Trained Model's State Dictionary

torch.save(model.state_dict(), model_save_path)

print(f"Model saved as {model_save_path}")

Class to Stop Training Early if No Improvement is Happening

class EarlyStopper:

def __init__(self, patience=1, min_delta=0):

self.patience = patience

self.min_delta = min_delta

self.counter = 0

self.min_loss = float('inf')

def early_stop(self, loss):

if loss < self.min_loss:

self.min_loss = loss

self.counter = 0

elif loss > (self.min_loss + self.min_delta):

self.counter += 1

if self.counter >= self.patience:

return True

return False

Class to Load in Audio Files from CSV & Return Tensor/SR

class AudioUtil():

Function to Load in Audio File

@staticmethod

def open(audio_file):

sig, sr = torchaudio.load(audio_file)

return (sig, sr)

Convert the Input Audio to a Single Channel

@staticmethod

def rechannel(aud):

sig, sr = aud

if (sig.shape[0] == 0):

Nothing to do

return aud

else:

Convert from Stereo (or more) to Mono by Selecting First Channel

89

resig = sig[:1, :]

return ((resig, sr))

Function to Pad Audio to Two Seconds

@staticmethod

def pad_trunc(aud, max_ms):

sig, sr = aud

num_rows , sig_len = sig.shape

max_len = sr//1000 * max_ms

If Signal Needs to be Truncated

if (sig_len > max_len):

sig = sig[:,:max_len]

If Signal Needs to be Padded

elif (sig_len < max_len):

pad_begin_len = random.randint(0, max_len - sig_len)

pad_end_len = max_len - sig_len - pad_begin_len

Pad with 0s

pad_begin = torch.zeros((num_rows, pad_begin_len))

pad_end = torch.zeros((num_rows, pad_end_len))

sig = torch.cat((pad_begin , sig, pad_end), 1)

return (sig, sr)

Function to Shift Signal to Left/Right w/ Wrapping

@staticmethod

def time_shift(aud, shift_limit):

sig,sr = aud

_, sig_len = sig.shape

shift_amt = int(random.random() * shift_limit * sig_len)

return (sig.roll(shift_amt), sr)

Function to Generate a Spectrogram

@staticmethod

def spectro_gram(aud, n_fft, hop_length , power, freq_min=18000, freq_max=20000):

sig, _ = aud

sr = 44100

Calculate Frequency Resolution

freq_res = sr / n_fft

Calculate Indices for Min & Max Frequencies

idx_min = int(freq_min / freq_res)

idx_max = int(freq_max / freq_res)

90

Generate Linear Spectrogram

spec = transforms.Spectrogram(n_fft=n_fft, hop_length=hop_length , power=power)(sig)

Filter Frequencies Outside the 18000-20000 Hz Range

spec_filtered = spec[:, idx_min:idx_max, :]

return spec_filtered

Function to Perform Histogram Equalization on Linear Spectrogram

@staticmethod

def histogram_equalization(spec):

Convert spectrogram to numpy for processing

spec_np = spec.numpy()

Flatten the spectrogram to 1D

spec_flat = spec_np.flatten()

Calculate the histogram

histogram , bin_edges = np.histogram(spec_flat , bins=256, range=(spec_np.min(), spec_np.max()),

density=True)

Compute the cumulative distribution function (CDF)

cdf = np.cumsum(histogram) * np.diff(bin_edges)

Normalize the CDF

cdf_normalized = (cdf - cdf.min()) / (cdf.max() - cdf.min()) * 255

Use linear interpolation of the CDF to find new pixel values

spec_equalized = np.interp(spec_flat , bin_edges[:-1], cdf_normalized)

Reshape back to the original shape

spec_eq_reshaped = spec_equalized.reshape(spec_np.shape)

Convert back to tensor

spec_eq_tensor = torch.from_numpy(spec_eq_reshaped).float()

return spec_eq_tensor

Function to Calculate LFCCs

@staticmethod

def lfcc(aud, n_fft, hop_length , power, f_min=18000, f_max=20000):

sig, _ = aud

lfcc_transform = transforms.LFCC(

sample_rate = 44100,

f_min = f_min,

f_max = f_max,

91

speckwargs={"n_fft": n_fft, "hop_length": hop_length , "center": False, "power": power}

)

Apply LFCC Transformation

lfcc = lfcc_transform(sig)

return lfcc

Class to Define the Sound Dataset

class SoundDS(Dataset):

def __init__(self, df, data_path):

self.df = df

self.data_path = str(data_path)

self.duration = 2000

self.sr = 44100

self.channel = 1

self.shift_pct = 0.4

Map Labels to Indices so Subsets Work

self.label_to_id = {label: idx for idx, label in enumerate(sorted(df['label '].unique()))}

Function to Return the Number of Dataset Items

def __len__(self):

return len(self.df)

Function to Get the i'th Dataset Item

def __getitem__(self, idx):

Concatenate the audio directory with the relative path

audio_file = self.data_path + self.df.loc[idx, 'filepath ']

Check if Label Exists (training/testing/validation) or Not (inference)

class_id = self.label_to_id.get(self.df.loc[idx, 'label'], None)

Variables for Tuning

n_fft = 2048

hop_length = None

power = 3

Load Audio File & Apply Preprocessing Steps

aud = AudioUtil.open(audio_file)

aud = AudioUtil.rechannel(aud)

dur_aud = AudioUtil.pad_trunc(aud, self.duration)

shift_aud = AudioUtil.time_shift(dur_aud, self.shift_pct)

sgram = AudioUtil.spectro_gram(shift_aud , n_fft, hop_length , power)

equalized = AudioUtil.histogram_equalization(sgram)

#lfcc = AudioUtil.lfcc(shift_aud , n_fft, hop_length , power) # CHANGEME if you want to try

classifying with LFCCs, but this was not originally effective

92

return equalized , class_id

Audio Classification Model

class AudioClassifier (nn.Module):

Function to Define the Model Architecture

Use only four layers if running on a,b,e,i,m,p subset

Use only five layers if running on lowercase subset

Use all six layers if running on full dataset

def __init__(self, num_classes):

super().__init__()

conv_layers = []

conv_features = 8

First Convolution Block with Relu and Batch Norm & Use Kaiming Initialization

self.conv1 = nn.Conv2d(1, 8, kernel_size=(5, 5), stride=(2, 2), padding=(2, 2))

self.relu1 = nn.ReLU()

self.bn1 = nn.BatchNorm2d(8)

init.kaiming_normal_(self.conv1.weight, a=0.1)

self.conv1.bias.data.zero_()

conv_layers += [self.conv1, self.relu1, self.bn1]

Second Convolution Block

self.conv2 = nn.Conv2d(8, 16, kernel_size=(3, 3), stride=(2, 2), padding=(1, 1))

self.relu2 = nn.ReLU()

self.bn2 = nn.BatchNorm2d(16)

init.kaiming_normal_(self.conv2.weight, a=0.1)

self.conv2.bias.data.zero_()

conv_layers += [self.conv2, self.relu2, self.bn2]

conv_features *= 2

Third Convolution Block

self.conv3 = nn.Conv2d(16, 32, kernel_size=(3, 3), stride=(2, 2), padding=(1, 1))

self.relu3 = nn.ReLU()

self.bn3 = nn.BatchNorm2d(32)

init.kaiming_normal_(self.conv3.weight, a=0.1)

self.conv3.bias.data.zero_()

conv_layers += [self.conv3, self.relu3, self.bn3]

conv_features *= 2

Fourth Convolution Block

self.conv4 = nn.Conv2d(32, 64, kernel_size=(3, 3), stride=(2, 2), padding=(1, 1))

self.relu4 = nn.ReLU()

self.bn4 = nn.BatchNorm2d(64)

init.kaiming_normal_(self.conv4.weight, a=0.1)

self.conv4.bias.data.zero_()

conv_layers += [self.conv4, self.relu4, self.bn4]

conv_features *= 2

93

Fifth Convolution Block

self.conv5 = nn.Conv2d(64, 128, kernel_size=(3, 3), stride=(2, 2), padding=(1, 1))

self.relu5 = nn.ReLU()

self.bn5 = nn.BatchNorm2d(128)

init.kaiming_normal_(self.conv5.weight, a=0.1)

self.conv5.bias.data.zero_()

conv_layers += [self.conv5, self.relu5, self.bn5]

conv_features *= 2

Sixth Convolution Block

self.conv6 = nn.Conv2d(128, 256, kernel_size=(3, 3), stride=(2, 2), padding=(1, 1))

self.relu6 = nn.ReLU()

self.bn6 = nn.BatchNorm2d(256)

init.kaiming_normal_(self.conv6.weight, a=0.1)

self.conv5.bias.data.zero_()

conv_layers += [self.conv6, self.relu6, self.bn6]

conv_features *= 2

Linear Classifier

self.ap = nn.AdaptiveAvgPool2d(output_size=1)

self.lin = nn.Linear(in_features=conv_features , out_features=num_classes)

Wrap the Convolutional Blocks

self.conv = nn.Sequential(*conv_layers)

Function to Perform Forward Pass Computations

def forward(self, x):

Run the convolutional blocks

x = self.conv(x)

Adaptive pool and flatten for input to linear layer

x = self.ap(x)

x = x.view(x.shape[0], -1)

Linear Layer

x = self.lin(x)

Final Output

return x

Function for Training Loop

def training(model, train_dl , val_dl, num_epochs):

Calculate Global Statistics & Convert to Tensors

global_mean , global_std = statistics(train_dl)

global_mean = torch.from_numpy(global_mean).float()

global_std = torch.from_numpy(global_std).float()

94

Loss Function, Optimizer and Scheduler

criterion = nn.CrossEntropyLoss()

optimizer = torch.optim.Adam(model.parameters(),lr=0.001)

scheduler = torch.optim.lr_scheduler.OneCycleLR(optimizer , max_lr=0.001,

steps_per_epoch=int(len(train_dl)),

epochs=num_epochs ,

anneal_strategy='linear ')

Early Stopper

early_stopper = EarlyStopper(patience=10, min_delta=0.01)

Lists to store validation metrics for plotting

val_losses = []

val_accuracies = []

epochs_list = []

Repeat for Each Epoch

for epoch in range(num_epochs):

model.train()

running_loss = 0.0

correct_prediction = 0

total_prediction = 0

Training Phase

for i, data in enumerate(train_dl):

Get Input Features and Target Labels, & Put Them on GPU (if available)

inputs, labels = data[0].to(device), data[1].to(device)

Normalize Inputs with Global Values

inputs = (inputs - global_mean) / global_std

Zero Parmeter Gradients

optimizer.zero_grad()

Calculate Loss & Step

outputs = model(inputs)

loss = criterion(outputs, labels)

loss.backward()

optimizer.step()

scheduler.step()

Keep Stats for Loss and Accuracy

running_loss += loss.item()

Get the Predicted Class with Highest Score

_, prediction = torch.max(outputs ,1)

95

Count of Predictions that Matched Target Label

correct_prediction += (prediction == labels).sum().item()

total_prediction += prediction.shape[0]

Validation Phase

model.eval()

val_loss = 0.0

val_correct = 0

val_total = 0

with torch.no_grad():

for i, data in enumerate(val_dl):

Get Input Features and Target Labels, & Put Them on GPU (if available)

inputs, labels = data[0].to(device), data[1].to(device)

Normalize Inputs with Global Values

inputs = (inputs - global_mean) / global_std

Calculate Loss

outputs = model(inputs)

loss = criterion(outputs, labels)

Keep Stats for Loss and Accuracy

val_loss += loss.item()

Get the Predicted Class with Highest Score

_, prediction = torch.max(outputs, 1)

Count of Predictions that Matched Target Label

val_correct += (prediction == labels).sum().item()

val_total += prediction.shape[0]

Calculate Statistics at the End of Each Epoch

avg_loss = running_loss / len(train_dl)

avg_acc = correct_prediction / total_prediction

val_avg_loss = val_loss / len(val_dl)

val_avg_acc = val_correct / val_total

Store validation metrics for plotting

val_losses.append(val_avg_loss)

val_accuracies.append(val_avg_acc)

epochs_list.append(epoch)

#Print Statistics at the End of Each Epoch

print(f'*** Epoch {epoch} ***\nTraining Loss: {avg_loss:.4f}\t\t\tValidate Loss: {val_avg_loss:.4f

}\nTraining Accuracy: {avg_acc:.4f}\t\tValidate Accuracy: {val_avg_acc:.4f}\n')

Stop Early if Model Has Converged

96

if early_stopper.early_stop(val_avg_loss):

print("No improvement in validation loss detected. Stopping.")

break

Plot validation loss and accuracy

fig, ax1 = plt.subplots(figsize=(10, 6))

Plot Validation Accuracy

color = 'tab:red'

ax1.set_xlabel('Epoch ')

ax1.set_ylabel('Validation Accuracy ', color=color)

ax1.plot(epochs_list , val_accuracies , label='Validation Accuracy ', color=color)

ax1.tick_params(axis='y', labelcolor=color)

ax1.set_ylim([min(val_accuracies), 1.0])

Create a second y-axis for validation loss

ax2 = ax1.twinx()

color = 'tab:blue'

ax2.set_ylabel('Validation Loss', color=color)

ax2.plot(epochs_list , val_losses , label='Validation Loss', color=color)

ax2.tick_params(axis='y', labelcolor=color)

ax2.set_ylim([0, max(val_losses)])

Final plot adjustments

fig.tight_layout(pad=3.0)

plt.title('Validation Loss and Accuracy over Epochs ')

plt.savefig('validation_plot.png')

print('Finished Training ')

Function to Perform Testing

def testing(model, test_dl, class_names):

Calculate Global Statistics & Convert to Tensors

global_mean , global_std = statistics(test_dl)

global_mean = torch.from_numpy(global_mean).float()

global_std = torch.from_numpy(global_std).float()

num_classes = len(class_names)

model.eval()

all_predictions = []

all_labels = []

Disable Gradient Updates

with torch.no_grad():

for data in test_dl:

Get Input Features and Target Labels, & Put Them on GPU

97

inputs, labels = data[0].to(device), data[1].to(device)

Normalize Inputs with Global Values

inputs = (inputs - global_mean) / global_std

Get Predictions

outputs = model(inputs)

Get the Predicted Class with Highest Score

_, prediction = torch.max(outputs ,1)

Store Predictions and Labels for Later Analysis

all_predictions.extend(prediction.cpu().numpy())

all_labels.extend(labels.cpu().numpy())

Print Classification Report for Individual Labels

print("Classification Report:")

print(classification_report(all_labels , all_predictions , target_names=class_names , digits=4))

Compute the confusion matrix

cm = confusion_matrix(all_labels , all_predictions , labels=range(num_classes))

Convert Numeric Labels to Character Labels

display_labels = [name for name in class_names]

Create the plot

if num_classes == 6: # using subset

plt.figure(figsize=(6, 6))

elif num_classes == 26: # using lowercase

plt.figure(figsize=(14, 14))

elif num_classes == 94: # using full set

plt.figure(figsize=(20, 20))

else:

plt.figure(figsize=(20, 20))

Save and display the CM

disp = ConfusionMatrixDisplay(confusion_matrix=cm, display_labels=class_names)

disp.plot(cmap='Blues', ax=plt.gca())

plt.savefig('confusion_matrix.png')

plt.close()

Main Model Script

if __name__ == "__main__": # prevents infer.py from also training

Read in Manifest

manifest = '/home/destin/Documents/Programming/Thesis/Datasets/Training_Full/manifest.csv' # CHANGEME

to desired dataset manifest (generated with manifest.py)

df = pd.read_csv(manifest)

98

df.head()

data_path = ''

df = df[['filepath ', 'label ']] # labels can be anything, the model will run labels as index numbers

df.head()

myds = SoundDS(df, data_path)

num_classes = len(myds.label_to_id)

Random Split of 70:15:15 Between Training, Validation , & Testing Datasets

num_items = len(myds)

num_train = round(num_items * 0.7)

num_val_test = num_items - num_train

num_val = round(num_val_test * 0.5)

num_test = num_val_test - num_val

train_ds , val_test_ds = random_split(myds, [num_train , num_val_test])

val_ds, test_ds = random_split(val_test_ds , [num_val, num_test])

Create Training/Testing Data Loaders

train_dl = torch.utils.data.DataLoader(train_ds, batch_size=16, shuffle=True)

val_dl = torch.utils.data.DataLoader(val_ds, batch_size=16, shuffle=False)

test_dl = torch.utils.data.DataLoader(test_ds, batch_size=16, shuffle=False)

Create the Model & Put on GPU if Available

myModel = AudioClassifier(num_classes)

device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")

myModel = myModel.to(device)

next(myModel.parameters()).device

Training

num_epochs=500 # default 500, may stop early due to validation

training(myModel, train_dl , val_dl, num_epochs)

Define a Path for Saving the Model

save_model(myModel, "/home/destin/Documents/Programming/Thesis/Saved_Models") # CHANGEME if you want

to save the weighted model elsewhere

Testing

class_ids = sorted(df['label '].unique())

class_ids = [str(id) for id in class_ids]

testing(myModel, test_dl, class_ids)

99

Appendix G: Infer Script

infer.py

Destin Hinkel

Classifying Supersonic Frequencies for Active Acoustic Side-Channel Exploitation

Run: python3 infer.py within .venv

Script to infer labels on unseen datasets by loading in weighted models

CHANGEME Line 52 to specify a manifest file for the inference dataset

CHANGEME Line 59 to specify the number of classes trained on for the model weights

CHANGEME in model.py, make sure that you're using correct number of convolution layers - 4 layers for

6 subset, 5 for lowercase , 6 for full

CHANGEME Line 68 to specify a model .pth file

import os

import torch

import pandas as pd

from model import SoundDS, AudioClassifier , statistics , id_to_min_label , id_to_label

Function to Perform Final Inference

def inference (model, inf_dl, num_classes):

Calculate Global Statistics & Convert to Tensors

global_mean , global_std = statistics(inf_dl)

global_mean = torch.from_numpy(global_mean).float()

global_std = torch.from_numpy(global_std).float()

model.eval()

password = []

Disable gradient updates

with torch.no_grad():

for data in inf_dl:

Get the input features

inputs = data[0].to(device)

Normalize Inputs with Global Values

inputs = (inputs - global_mean) / global_std

Save Predictions

outputs = model(inputs)

Get the Predicted Class with Highest Score

_, prediction = torch.max(outputs ,1)

Map the Integer Label ID to Alphanumeric Label

100

if num_classes == 6: # if we are using the subset

letter = id_to_min_label(prediction.item())

else:

letter = id_to_label(prediction.item())

Append letter to full password

password.append(letter)

return (password)

Read in Manifest

manifest = '/home/destin/Documents/Programming/Thesis/Datasets/PATH/GOES/HERE/manifest.csv' # CHANGEME

for different infer sets

df = pd.read_csv(manifest)

df = df[['filepath ', 'label ']] # dataloader takes in "label" values, which should be NULL but aren't

used if defined

Instantiate Inference Dataset

data_path=''

inf_ds = SoundDS(df, data_path)

num_classes = 94 # CHANGEME for different model weights (6, 26, 94), if this script is crashing , this

is probably the reason - make sure this number matches the weight

Create Data Loader

inf_dl = torch.utils.data.DataLoader(inf_ds, batch_size=1, shuffle=False)

Initialize GPU & Load in Model Weights

device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")

model = AudioClassifier(num_classes)

model.to(device)

model.load_state_dict(torch.load('/home/destin/Documents/Programming/Thesis/Saved_Models/Training_Full.

pth', weights_only=True)) # CHANGEME for different models

Run inference on trained model with the password set and output labels for each character of the

password

predicted_labels = inference(model, inf_dl, num_classes)

Calculate Percentage of Correct Classification (only works on 6 label subset excluding abeimp,

otherwise calculate manually)

correct_label = os.path.basename(os.path.dirname(manifest))

correct_label = correct_label.replace('Key', '').strip() # Label should just be the name of the key

correct_predictions = sum(1 for label in predicted_labels if label == correct_label)

accuracy = (correct_predictions / len(predicted_labels)) * 100

Write Results to File

output_dir = os.path.dirname(manifest)

output_file = os.path.join(output_dir , 'inference_results_full.txt')

with open(output_file , 'w') as f:

101

f.write(f"Predicated Labels: {''.join(predicted_labels)}\n")

f.write(f"Accuracy for {correct_label}: {accuracy: .2f}%\n")

print(f"Inference results saved to {output_file}")

102

Appendix H: Final Password List

MasterPass.txt

From: common.txt

01. autodiscover

02. openvpnadmin

03. activeCollab

04. clientscript

05. single_pages

06. config.local

07. default_icon

08. swfobject.js

09. open-account

10. m6_edit_item

From: rockyou.txt

01. Beachdemon21

02. tummycha!R53

03. ANDYje$s1992

04. papiC*R!L022

05. BaByG&Rl19(5

06. !mC0NFU$E*69

07. p-n@ng!0@MIW

08. hMD0p7Rf&)(c

09. fki!u"6,r'KN

10. !(l?4&v"nˆv@

103

BIOGRAPHICAL SKETCH

Destin A. Hinkel is completing the Master of Science program in Computer Science

at the University of South Alabama (USA) in Mobile, Alabama. Destin previously

attended USA for both a Master of Music (M.M.) and a Bachelor of Music (B.M.) in

Music Education. During his time as a graduate assistant for the USA Department of

Music, he was able to take prerequisite courses for the computer science program.

In 2022, Destin was offered the NSF Scholarship for Service award, which allowed

him to return to graduate school in computer science full-time while preparing for a career

in the federal government. In the summers between his academic years of funding, Destin

worked for the Government Accountability Office (GAO) in Washington, D.C. While at

GAO, Destin was involved with drafting federally published documents.

While at USA for his graduate studies in computer science, Destin was published

through IEEE along with two other graduate students in a conference paper entitled

“Attack Vectors Against ICS: A Survey” [36]. He has also taken opportunities to become

involved with the DayZero cybersecurity club and participate in cyber competitions such

as the DoE CyberForce Competition and the National Collegiate Cyber Defense

Competition. Upon graduation, Destin plans to pursue a career performing cybersecurity

work for the United States Federal Government.

104

	Classifying Supersonic Frequencies for Active Acoustic Side-Channel Exploitation
	tmp.1729691818.pdf.7Vo_X

